Skip to main content

Glycocalyx Remodeling with Glycopolymer-Based Proteoglycan Mimetics

  • Protocol
Macro-Glycoligands

Part of the book series: Methods in Molecular Biology ((MIMB,volume 1367))

Abstract

The cellular glycocalyx controls many of the crucial signaling pathways involved in cellular development. Synthetic materials that can mimic the multivalency and three-dimensional architecture of native glycans serve as important tools for deciphering and exploiting the roles of these glycans. Here we describe a chemical approach for the engineering of growth-factor interactions at the surfaces of stem cells using synthetic glycomimetic materials, with an eye towards promoting their commitment towards specific cell lineages with therapeutic potential.

This is a preview of subscription content, log in via an institution to check access.

Access this chapter

Protocol
USD 49.95
Price excludes VAT (USA)
  • Available as PDF
  • Read on any device
  • Instant download
  • Own it forever
eBook
USD 89.00
Price excludes VAT (USA)
  • Available as EPUB and PDF
  • Read on any device
  • Instant download
  • Own it forever
Softcover Book
USD 119.00
Price excludes VAT (USA)
  • Compact, lightweight edition
  • Dispatched in 3 to 5 business days
  • Free shipping worldwide - see info
Hardcover Book
USD 109.99
Price excludes VAT (USA)
  • Durable hardcover edition
  • Dispatched in 3 to 5 business days
  • Free shipping worldwide - see info

Tax calculation will be finalised at checkout

Purchases are for personal use only

Institutional subscriptions

References

  1. Varki A, Freeze HH, Vacquier VD (2009) Essentials of glycobiology, 2nd edn. CSHL Press, New York, pp. 531–536.

    Google Scholar 

  2. Yayon A, Klagsbrun M, Esko JD et al (1991) Cell surface, heparin-like molecules are required for binding of basic fibroblast growth factor to its high affinity receptor. Cell 64:841–848.

    Article  CAS  PubMed  Google Scholar 

  3. Kreuger J, Spillman D, Li JP et al (2006) Interactions between heparan sulfate and proteins: the concept of specificity. J Chem Biol 174:323–327.

    CAS  Google Scholar 

  4. Kunath T, Saba-El-Leil MK, Almousailleakh M et al (2007) FGF stimulation of the Erk1/2 signalling cascade triggers transition of pluripotent embryonic stem cells from self-renewal to lineage commitment. Development 134:2895–2902.

    Article  CAS  PubMed  Google Scholar 

  5. Johnson CE, Ward CM, Wilson V et al (2007) Essential alterations of heparan sulfate during the differentiation of embryonic stem cells to Sox1-enhanced green fluorescent protein-expressing neural progenitor cells. Stem Cells 25:1913–1923.

    Article  CAS  PubMed  Google Scholar 

  6. Chiefari J, Chong YK, Ercole F et al (1998) Living free-radical polymerization by reversible addition-fragmentation chain transfer: the RAFT process. Macromolecules 31:5559–5562

    Article  CAS  Google Scholar 

  7. Kuzmin A, Poloukhtine A, Wolfert MA et al (2010) Surface functionalization using catalyst-free azide-alkyne cycloaddition. Bioconjugate Chem 21:2076–2085.

    Article  CAS  Google Scholar 

  8. Rabuka D, Forstner MB, Groves JT et al (2008) Noncovalent cell surface engineering: incorporation of bioactive synthetic glycopolymers into cellular membranes. J Am Chem Soc 130:5947–5953.

    Article  PubMed Central  CAS  PubMed  Google Scholar 

  9. Huang ML, Smith RAA, Trieger GW et al (2014) Glycocalyx remodeling with proteoglycan mimetics promotes neural specification in embryonic stem cells. J Am Chem Soc 136:10565–10568.

    Article  PubMed Central  CAS  PubMed  Google Scholar 

  10. Godula K, Umbel ML, Rabuka D et al (2009) Control of the molecular orientation of membrane-anchored biomimetic glycopolymers. J Am Chem Soc 131:10263–10268.

    Google Scholar 

  11. Xin L, Wei G, Shi Z et al (2000) Disruption of gastrulation and heparan sulfate biosynthesis in Ext1-deficient mice. Dev Biol 224:299–311.

    Article  Google Scholar 

  12. Ying Q-L, Stavridis M, Griffiths D et al (2003) Conversion of embryonic stem cells into neuroectodermal precursors in adherent monoculture. Nat Biotechnol 21:183–186.

    Article  CAS  PubMed  Google Scholar 

  13. Lawrence R, Lu H, Rosenberg RD et al (2008) Disaccharide structure code for the easy representation of constituent oligosaccharides from glycosaminoglycans. Nat Methods 5:291–292.

    Article  CAS  PubMed  Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Kamil Godula .

Editor information

Editors and Affiliations

Rights and permissions

Reprints and permissions

Copyright information

© 2016 Springer Science+Business Media New York

About this protocol

Cite this protocol

Huang, M.L., Smith, R.A.A., Trieger, G.W., Godula, K. (2016). Glycocalyx Remodeling with Glycopolymer-Based Proteoglycan Mimetics. In: Sun, XL. (eds) Macro-Glycoligands. Methods in Molecular Biology, vol 1367. Humana Press, New York, NY. https://doi.org/10.1007/978-1-4939-3130-9_17

Download citation

  • DOI: https://doi.org/10.1007/978-1-4939-3130-9_17

  • Publisher Name: Humana Press, New York, NY

  • Print ISBN: 978-1-4939-3129-3

  • Online ISBN: 978-1-4939-3130-9

  • eBook Packages: Springer Protocols

Publish with us

Policies and ethics