Skip to main content

Somatic Embryogenesis and Genetic Modification of Vitis

  • Protocol
In Vitro Embryogenesis in Higher Plants

Part of the book series: Methods in Molecular Biology ((MIMB,volume 1359))

Abstract

Grapevine embryogenic cultures are ideal target tissues for inserting desired traits of interest and improving existing cultivars via precision breeding (PB). PB is a new approach that, like conventional breeding, utilizes only DNA fragments obtained from sexually compatible grapevine plants. Embryogenic culture induction occurs by placing leaves or stamens and pistils on induction medium with a dark/light photoperiod cycle for 12–16 weeks. Resulting cultures produce sectors of embryogenic and non-embryogenic callus, which can be identified on the basis of callus morphology and color. Somatic embryo development occurs following transfer of embryogenic callus to development medium and cultures can be maintained for extended periods of time by transfer of the proliferating proembryonic masses to fresh medium at 4–6-week intervals. To demonstrate plant recovery via PB, somatic embryos at the mid-cotyledonary stage are cocultivated with Agrobacterium containing the desired gene of interest along with a, non-PB, enhanced green fluorescent protein/neomycin phosphotransferase II (egfp/nptII) fusion gene. Modified cultures are grown on proliferation and development medium to produce uniformly modified somatic embryos via secondary embryogenesis. Modified embryos identified on the basis of green fluorescence and kanamycin resistance are transferred to germination medium for plant development. The resulting plants are considered to prototype examples of the PB approach, since they contain egfp/nptII, a non-grapevine-derived fusion gene. Uniform green fluorescent protein (GFP) fluorescence can be observed in all tissues of regenerated plants.

This is a preview of subscription content, log in via an institution to check access.

Access this chapter

Protocol
USD 49.95
Price excludes VAT (USA)
  • Available as PDF
  • Read on any device
  • Instant download
  • Own it forever
eBook
USD 89.00
Price excludes VAT (USA)
  • Available as EPUB and PDF
  • Read on any device
  • Instant download
  • Own it forever
Softcover Book
USD 119.99
Price excludes VAT (USA)
  • Compact, lightweight edition
  • Dispatched in 3 to 5 business days
  • Free shipping worldwide - see info
Hardcover Book
USD 169.99
Price excludes VAT (USA)
  • Durable hardcover edition
  • Dispatched in 3 to 5 business days
  • Free shipping worldwide - see info

Tax calculation will be finalised at checkout

Purchases are for personal use only

Institutional subscriptions

References

  1. Bertelli A, Das D (2009) Grapes, wines, resveratrol and heart health. J Cardiovasc Pharmacol 54:468–476

    Article  CAS  PubMed  Google Scholar 

  2. Anderson K, Aryal N (2014) Database of regional, national and global winegrape bearing areas by variety, 2000 and 2010. Wine Econ. Res. Ctr., Univ. Adelaide, Dec 2013. http://www.adelaide.edu.au/wine-econ/databases/winegrapes/

  3. Gray DJ, Jayasankar S, Li Z (2005) Vitis spp. Grape (Chapter 22). In: Litz RE (ed) Biotechnology of fruit and nut crops. CAB International, Wallingford, Oxfordshire, pp 672–706

    Chapter  Google Scholar 

  4. Einset J, Pratt C (1975) Grapes. In: Moore JN, Janick J (eds) Advances in fruit breeding. Purdue University Press, Lafayette, IN, pp 130–153

    Google Scholar 

  5. Winkler AJ, Cook JA, Kliewer WM, Lider LA (1974) General viticulture. University of California Press, Berkeley, pp 16–28

    Google Scholar 

  6. Vivier MA, Pretorius IS (2000) Genetic improvement of grapevine: tailoring grape varieties for the third millennium – a review. S Afr J Enol Vitic 21:5–26

    CAS  Google Scholar 

  7. Gray DJ, Li ZT, Dhekney SA (2014) Precision breeding of grapevine for improved traits. Plant Sci. doi:10.1016/j.plantsci.2014.03.023, Online First

    Google Scholar 

  8. Li ZT, Dhekney SA, Gray DJ (2011) Use of the VvMybA1 gene for non-destructive quantification of promoter activity via color histogram analysis in grapevine (Vitis vinifera) and tobacco. Transgenic Res 20:1087–1097

    Article  CAS  PubMed  Google Scholar 

  9. Li ZT, Kim KH, Jasinski JR, Creech MR, Gray DJ (2012) Large-scale characterization of promoters from grapevine (Vitis spp.) using quantitative anthocyanin and GUS assay. Plant Sci 196:132–142

    Article  CAS  PubMed  Google Scholar 

  10. Kikkert JR, Vidal MJ, Reisch BI (2004) Stable transformation of plant cells by particle bombardment/biolistics. In: Pena L (ed) Transgenic plants: methods and protocols, 286th edn. Humana, Totowa, NJ, pp 61–78

    Chapter  Google Scholar 

  11. Gray DJ, Dhekney SA, Li ZT, Cordts JM (2012) Genetic engineering of grapevine and progress towards commercial deployment. In: Scorza R, Mou B (eds) Transgenic horticultural crops: challenges and opportunities – essays by experts. CRC, Taylor and Francis, Boca Raton, FL, pp 317–331

    Google Scholar 

  12. Gray DJ (1995) Somatic embryogenesis in grape. In: Jain SM, Gupta PK, Newton RJ (eds) Somatic embryogenesis in woody plants, vol 2. Kluwer Academic, Dordrecht, pp 191–217

    Chapter  Google Scholar 

  13. Dhekney SA, Li ZT, Compton ME, Gray DJ (2009) Optimizing initiation and maintenance of Vitis embryogenic cultures. HortSci 44:1400–1406

    Google Scholar 

  14. Dhekney SA, Li ZT, Gray DJ (2011) Factors influencing induction and maintenance of Vitis rotundifolia Michx. embryogenic cultures. Plant Cell Tissue Organ Cult 105:175–180

    Article  Google Scholar 

  15. Dhekney SA, Li ZT, Dutt M, Gray DJ (2008) Agrobacterium-mediated transformation of embryogenic cultures and regeneration of transgenic plants in Vitis routundifolia Michx. (muscadine grape). Plant Cell Rep 27:865–872

    Article  CAS  PubMed  Google Scholar 

  16. Dhekney SA, Li ZT, Zimmerman TW, Gray DJ (2009) Factors influencing genetic transformation and plant regeneration of Vitis. Am J Enol Vitic 60:285–292

    CAS  Google Scholar 

  17. Dhekney SA, Li ZT, Gray DJ (2011) Grapevines engineered to express cisgenic Vitis vinifera thaumatin-like protein exhibit fungal disease resistance. In Vitro Cell Dev Biol Plant 47:458–466

    Article  CAS  Google Scholar 

  18. Li ZT, Dhekney S, Dutt M, Van Aman M, Tattersall J, Kelley KT, Gray DJ (2006) Optimizing Agrobacterium-mediated transformation of grapevine. In Vitro Cell Dev Biol Plant 42:220–227

    Article  CAS  Google Scholar 

  19. Li ZT, Dhekney SA, Dutt M, Gray DJ (2008) An improved protocol for Agrobacterium-mediated transformation of grapevine. Plant Cell Tissue Organ Cult 93:311–321

    Article  Google Scholar 

  20. Jayasankar S, Gray DJ, Litz RE (1999) High frequency somatic embryogenesis and plant regeneration from suspension cultures of grapevine. Plant Cell Rep 18:533–537

    Article  CAS  Google Scholar 

  21. Nitsch JP, Nitsch C (1969) Haploid plants from pollen grains. Science 163:85–87

    Article  CAS  PubMed  Google Scholar 

  22. Murashige T, Skoog F (1962) A revised medium for rapid growth and bioassays with tobacco tissue cultures. Physiol Plant 15:473–497

    Article  CAS  Google Scholar 

  23. Franks T, He DG, Thomas M (1998) Regeneration of transgenic Vitis vinifera L. Sultana plants: genotypic and phenotypic analysis. Mol Breed 4:321–333

    Article  CAS  Google Scholar 

  24. Driver JA, Kuniyuki AH (1984) In vitro propagation of paradox walnut rootstock. HortSci 19:507–509

    Google Scholar 

  25. Gray DJ, Benton CM (1991) In vitro micropropagation and plant establishment of muscadine grape cultivars (Vitis rotundifolia). Plant Cell Tissue Organ Cult 27:7–14

    Article  CAS  Google Scholar 

  26. Li ZT, Kim KH, Dhekney SA, Jasinski JR, Creech MR, Gray DJ (2014) An optimized procedure for plant recovery from somatic embryos significantly facilitates the genetic improvement of Vitis. Hort Res 1:1–7

    Article  Google Scholar 

Download references

Acknowledgements

S.A. Dhekney holds the E.A. Whitney Endowed Professorship in the UW Department of Plant Sciences. The research that enabled the Precision Breeding approach for grapevine was fostered by long-term support from the Florida Department of Agriculture and Consumer Services Viticulture Trust Fund, the USDA Specialty Crops Research Initiative Grant Program, and the Florida Agricultural Experiment Station, UF/IFAS.

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Sadanand A. Dhekney .

Editor information

Editors and Affiliations

Rights and permissions

Reprints and permissions

Copyright information

© 2016 Springer Science+Business Media New York

About this protocol

Cite this protocol

Dhekney, S.A., Li, Z.T., Grant, T.N.L., Gray, D.J. (2016). Somatic Embryogenesis and Genetic Modification of Vitis . In: Germana, M., Lambardi, M. (eds) In Vitro Embryogenesis in Higher Plants. Methods in Molecular Biology, vol 1359. Humana Press, New York, NY. https://doi.org/10.1007/978-1-4939-3061-6_11

Download citation

  • DOI: https://doi.org/10.1007/978-1-4939-3061-6_11

  • Publisher Name: Humana Press, New York, NY

  • Print ISBN: 978-1-4939-3060-9

  • Online ISBN: 978-1-4939-3061-6

  • eBook Packages: Springer Protocols

Publish with us

Policies and ethics