Skip to main content

Towards the Crystal Structure Determination of Muscarinic Acetylcholine Receptors

  • Protocol
Book cover Muscarinic Receptor: From Structure to Animal Models

Part of the book series: Neuromethods ((NM,volume 107))

  • 809 Accesses

Abstract

G protein-coupled receptors (GPCRs) constitute the largest family of receptors encoded by the human genome. Activation and inhibition of GPCRs under the physiological and pathophysiological conditions is largely mediated by chemical ligands (agonists and antagonists) that bind to the orthosteric binding pocket. Orthosteric ligands are, however, often nonspecific, binding to more than one GPCR subtype. In contrast to orthosteric agonists and antagonists, allosteric ligands do not directly compete with hormones and neurotransmitters for binding to the orthosteric binding pocket. Furthermore, allosteric ligands typically occupy structurally diverse regions of receptors and therefore are more selective for specific GPCRs, regulating receptor function in the more subtle ways by either enhancing or diminishing responses to natural ligands such as hormones or neurotransmitters. Recent X-ray crystallographic studies have provided detailed structural information regarding the nature of the orthosteric muscarinic binding site and an outer receptor cavity that can bind allosteric drugs. These new findings may guide the development of selective muscarinic receptor. The procedures involved in the production, purification, and crystallization of GPCRs are introduced here and facilitate a greater understanding of the structural basis of GPCR function.

This is a preview of subscription content, log in via an institution to check access.

Access this chapter

Protocol
USD 49.95
Price excludes VAT (USA)
  • Available as PDF
  • Read on any device
  • Instant download
  • Own it forever
eBook
USD 84.99
Price excludes VAT (USA)
  • Available as EPUB and PDF
  • Read on any device
  • Instant download
  • Own it forever
Softcover Book
USD 139.00
Price excludes VAT (USA)
  • Compact, lightweight edition
  • Dispatched in 3 to 5 business days
  • Free shipping worldwide - see info
Hardcover Book
USD 109.99
Price excludes VAT (USA)
  • Durable hardcover edition
  • Dispatched in 3 to 5 business days
  • Free shipping worldwide - see info

Tax calculation will be finalised at checkout

Purchases are for personal use only

Institutional subscriptions

References

  1. Hopkins AL, Groom CR (2002) The druggable genome. Nat Rev Drug Discov 1(9):727–730

    Article  CAS  PubMed  Google Scholar 

  2. Klabunde T, Hessler G (2002) Drug design strategies for targeting G-protein-coupled receptors. Chembiochem 3:455–459

    Article  Google Scholar 

  3. Bonner TI, Buckley NJ, Young AC, Brann MR (1987) Identification of a family of muscarinic acetylcholine receptor genes. Science 237(4814):527–532

    Article  CAS  PubMed  Google Scholar 

  4. Peralta EG, Winslow JW, Peterson GL, Smith DH (1987) Primary structure and biochemical property of an M2 muscarinic receptor. Science 236(4801):600–605

    Article  CAS  PubMed  Google Scholar 

  5. Bonner TI, Young AC, Brann MR, Buckley NJ (1988) Cloning and expression of the human and rat m5 muscarinic acetylcholine receptor genes. Neuron 1(5):403–410

    Article  CAS  PubMed  Google Scholar 

  6. Bonner TI (1989) The molecular basis of muscarinic receptor diversity. Trends Neurosci 12(4):148–151

    Article  CAS  PubMed  Google Scholar 

  7. Bonner TI (1989) New subtypes of muscarinic acetylcholine receptors. Trends Pharmacol Sci Suppl 11:5

    Google Scholar 

  8. Wess J, Bonner TI, Dorje F, Brann MR (1990) Delineation of muscarinic receptor domains conferring selectivity of coupling to guanine nucleotide-binding proteins and second messengers. Mol Pharmacol 38(4):517–523

    CAS  PubMed  Google Scholar 

  9. Wess J, Bonner TI, Brann MR (1990) Chimeric m2/m3 muscarinic receptors: role of carboxyl terminal receptor domains in selectivity of ligand binding and coupling to phosphoinositide hydrolysis. Mol Pharmacol 38(6):872–877

    CAS  PubMed  Google Scholar 

  10. Wess J, Liu J, Blin N et al (1997) Structural basis of receptor/G protein coupling selectivity studied with muscarinic receptors as model systems. Life Sci 60(13–14):1007–1014

    Article  CAS  PubMed  Google Scholar 

  11. Haga K, Kruse AC, Asada H et al (2012) Structure of the human M2 muscarinic acetylcholine receptor bound to an antagonist. Nature 482(7386):547–551

    Article  CAS  PubMed Central  PubMed  Google Scholar 

  12. Kruse AC, Hu J, Pan AC et al (2012) Structure and dynamics of the M3 muscarinic acetylcholine receptor. Nature 482(7386):547–551

    Article  PubMed Central  PubMed  Google Scholar 

  13. Alkhalfioui F, Magnin T, Wagner R (2009) From purified GPCRs to drug discovery: the promise of protein-based methodologies. Curr Opin Pharmacol 9(5):629–635

    Article  CAS  PubMed  Google Scholar 

  14. Furukawa H, Haga T (2000) Expression of functional M2 muscarinic acetylcholine receptor in Escherichia coli. J Biochem 127(1):151–161

    Article  CAS  PubMed  Google Scholar 

  15. Ichiyama S, Oka Y, Haga K et al (2006) The structure of the third intracellular loop of the muscarinic acetylcholine receptor M2 subtype. FEBS Lett 580(1):23–26

    Article  CAS  PubMed  Google Scholar 

  16. Yurugi-Kobayashi T, Asada H, Shiroishi M et al (2009) Comparison of functional non-glycosylated GPCRs expression in Pichia pastoris. Biochem Biophys Res Commun 380(2):271–276

    Article  CAS  PubMed  Google Scholar 

  17. Hayashi MK, Haga T (1996) Purification and functional reconstitution with GTP-binding regulatory proteins of hexahistidine-tagged muscarinic acetylcholine receptors (m2 subtype). J Biochem 120(6):1232–1238

    Article  CAS  PubMed  Google Scholar 

  18. Asada H, Uemura T, Yurugi-Kobayashi T et al (2011) Evaluation of the Pichia pastoris expression system for the production of GPCRs for structural analysis. Microb Cell Fact 10:24

    Article  CAS  PubMed Central  PubMed  Google Scholar 

  19. Kameyama K, Haga K, Haga T et al (1994) Activation of a GTP-binding protein and a GTP-binding-protein-coupled receptor kinase (β-adrenergic-receptor kinase-1) by a muscarinic receptor m2 mutant lacking phosphorylation sites. Eur J Biochem 226:267–276

    Article  CAS  PubMed  Google Scholar 

  20. Rosenbaum DM, Cherezov V, Hanson MA et al (2007) GPCR engineering yields high-resolution structural insights into β2-adrenergic receptor function. Science 318(5854):1266–1273

    Article  CAS  PubMed  Google Scholar 

  21. Ballesteros JA, Weinstein H (1995) Integrated methods for the construction of three dimensional models and computational probing of structure function relations in G protein-coupled receptors. Methods Neurosci 25:366–428

    Article  CAS  Google Scholar 

  22. Scorer CA, Clare JJ, McCombie WR et al (1994) Rapid selection using G418 of high copy number transformants of Pichia pastoris for high-level foreign gene expression. Biotechnology (NY) 12(2):181–184

    Article  CAS  Google Scholar 

  23. Weiss HM, Haase W, Michel H et al (1998) Comparative biochemical and pharmacological characterization of the mouse 5HT5A 5-hydroxytryptamine receptor and the human beta2-adrenergic receptor produced in the methylotrophic yeast Pichia pastoris. Biochem J 330(Pt 3):1137–1147

    CAS  PubMed Central  PubMed  Google Scholar 

  24. Ciccarone VC, Polayes DA, Luckow VA (1998) Generation of recombinant baculovirus DNA in E. coli using a baculovirus shuttle vector. Methods Mol Med 13:213–235

    CAS  PubMed  Google Scholar 

  25. Luckow VA, Lee SC, Barry GF et al (1993) Efficient generation of infectious recombinant baculoviruses by site-specific transposon-mediated insertion of foreign genes into a baculovirus genome propagated in Escherichia coli. J Virol 67(8):4566–4579

    CAS  PubMed Central  PubMed  Google Scholar 

  26. Kadwell SH, Hardwicke PI (2007) Production of baculovirus-expressed recombinant proteins in wave bioreactors. Methods Mol Biol 388:247–266

    Article  CAS  PubMed  Google Scholar 

  27. Weber W, Weber E, Geisse S et al (2002) Optimisation of protein expression and establishment of the Wave Bioreactor for Baculovirus/insect cell culture. Cytotechnology 38(1–3):77–85

    Article  CAS  PubMed Central  PubMed  Google Scholar 

  28. Haga K, Haga T (1983) Affinity chromatography of the muscarinic acetylcholine receptor. J Biol Chem 258(22):13575–13579

    CAS  PubMed  Google Scholar 

  29. Kruse AC, Ring AM, Manglik A et al (2013) Activation and allosteric modulation of a muscarinic acetylcholine receptor. Nature 504(7478):101–106

    Article  CAS  PubMed Central  PubMed  Google Scholar 

Download references

Acknowledgments

This work was supported by the Exploratory Research for Advanced Technology (ERATO) program of the Japan Science and Technology Agency (JST) (to T.K.), by the Toray Science Foundation (to T.K.), by Takeda Science Foundation (to T.K., R.S., and H.A.), by Ichiro Kanehara Foundation (to T.K.), by The Sumitomo Foundation (to T.K.), by the Core Research for Evolutional Science and Technology (CREST) program of the JST (to T.K.), and by the Platform for Drug Discovery, Informatics, and Structural Life Science from the Ministry of Education, Culture, Sports, Science and Technology, Japan (to T.K.).

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Takuya Kobayashi .

Editor information

Editors and Affiliations

1 Electronic Supplementary Material

Below is the link to the electronic supplementary material.

Supplementary Fig. 1

This slide shows that structure of orthosteric domains similar among M1–M5 receptor subtypes. Asp103 conserved among all amine receptor has made a salt bridge with the amine of QNB, muscarinic receptor antagonist. Asn404 conserved among all muscarinic receptors has made hydrogen bonds with hydroxyl and carbonyl of QNB. There are 14 amino acids around QNB. Except Phe181, 13 amino acids of receptor are conserved among M1–M5 receptor subtypes. To develop the subtype specific ligand, we have to target the allosteric domain, not the orthosteric domain (PPTX 5750 kb)

Rights and permissions

Reprints and permissions

Copyright information

© 2016 Springer Science+Business Media New York

About this protocol

Cite this protocol

Suno, R., Asada, H., Kobayashi, T. (2016). Towards the Crystal Structure Determination of Muscarinic Acetylcholine Receptors. In: Myslivecek, J., Jakubik, J. (eds) Muscarinic Receptor: From Structure to Animal Models. Neuromethods, vol 107. Humana Press, New York, NY. https://doi.org/10.1007/978-1-4939-2858-3_1

Download citation

  • DOI: https://doi.org/10.1007/978-1-4939-2858-3_1

  • Publisher Name: Humana Press, New York, NY

  • Print ISBN: 978-1-4939-2857-6

  • Online ISBN: 978-1-4939-2858-3

  • eBook Packages: Springer Protocols

Publish with us

Policies and ethics