Skip to main content

Optical Super-Resolution Imaging of β-Amyloid Aggregation In Vitro and In Vivo: Method and Techniques

  • Protocol
Systems Biology of Alzheimer's Disease

Part of the book series: Methods in Molecular Biology ((MIMB,volume 1303))

Abstract

Super-resolution microscopy has emerged as a powerful and non-invasive tool for the study of molecular processes both in vitro and in live cells. In particular, super-resolution microscopy has proven valuable for research studies in protein aggregation. In this chapter we present details of recent advances in this method and the specific techniques, enabling the study of amyloid beta aggregation optically, both in vitro and in cells. First, we show that variants of optical super-resolution microscopy provide a capability to visualize oligomeric and fibrillar structures directly, providing detailed information on species morphology in vitro and even in situ, in the cellular environment. We focus on direct Stochastic Optical Reconstruction Microscopy, dSTORM, which provides morphological detail on spatial scales below 20 nm, and provide detailed protocols for its implementation in the context of amyloid beta research. Secondly, we present a range of optical techniques that offer super-resolution indirectly, which we call multi-parametric microscopy. The latter offers molecular scale information on self-assembly reactions via changes in protein or fluorophore spectral signatures. These techniques are empowered by our recent discovery that disease related amyloid proteins adopt intrinsic energy states upon fibrilisation. We show that fluorescence lifetime imaging provides a particularly sensitive readout to report on the aggregation state, which is robustly quantifiable for experiments performed either in vitro or in vivo.

This is a preview of subscription content, log in via an institution to check access.

Access this chapter

Protocol
USD 49.95
Price excludes VAT (USA)
  • Available as PDF
  • Read on any device
  • Instant download
  • Own it forever
eBook
USD 129.00
Price excludes VAT (USA)
  • Available as EPUB and PDF
  • Read on any device
  • Instant download
  • Own it forever
Softcover Book
USD 169.99
Price excludes VAT (USA)
  • Compact, lightweight edition
  • Dispatched in 3 to 5 business days
  • Free shipping worldwide - see info
Hardcover Book
USD 249.99
Price excludes VAT (USA)
  • Durable hardcover edition
  • Dispatched in 3 to 5 business days
  • Free shipping worldwide - see info

Tax calculation will be finalised at checkout

Purchases are for personal use only

Institutional subscriptions

References

  1. Fitzpatrick AWP, Debelouchina GT, Bayro MJ et al (2013) Atomic structure and hierarchical assembly of a cross-β amyloid fibril. Proc Natl Acad Sci U S A 110:5468–5473

    Article  CAS  PubMed Central  PubMed  Google Scholar 

  2. Lomakin A (1997) Kinetic theory of fibrillogenesis of amyloid beta-protein. Proc Natl Acad Sci U S A 94:7942–7947

    Article  CAS  PubMed Central  PubMed  Google Scholar 

  3. Knowles TPJ, Waudby CA, Devlin GL et al (2009) An analytical solution to the kinetics of breakable filament assembly. Science 326:1533–1537

    Article  CAS  PubMed  Google Scholar 

  4. Cohen SIA, Linse S, Luheshi LM et al (2013) Proliferation of amyloid-β42 aggregates occurs through a secondary nucleation mechanism. Proc Natl Acad Sci U S A 110:9758–9763

    Article  CAS  PubMed Central  PubMed  Google Scholar 

  5. Hellstrand E, Boland B, Walsh DM, Linse S (2010) Amyloid β-protein aggregation produces highly reproducible kinetic data and occurs by a two-phase process. ACS Chem Neurosci 1:13–18

    Article  CAS  PubMed Central  PubMed  Google Scholar 

  6. Pinotsi D, Buell AK, Dobson CM et al (2013) A label-free, quantitative assay of amyloid fibril growth based on intrinsic fluorescence. Chembiochem 14:846–850

    Article  CAS  PubMed Central  PubMed  Google Scholar 

  7. Kaminski Schierle GS, Bertoncini CW, Chan FTS et al (2011) A FRET sensor for non-invasive imaging of amyloid formation in vivo. ChemPhysChem 12:673–680

    Article  CAS  PubMed  Google Scholar 

  8. Chan FTS, Kaminski Schierle GS, Kumita JR et al (2013) Protein amyloids develop an intrinsic fluorescence signature during aggregation. Analyst 138:2156–2162

    Article  CAS  PubMed  Google Scholar 

  9. Heilemann M, van de Linde S, Schüttpelz M et al (2008) Subdiffraction-resolution fluorescence imaging with conventional fluorescent probes. Angew Chem Int Ed Engl 47:6172–6176

    Article  CAS  PubMed  Google Scholar 

  10. Hell SW, Wichmann J (1994) Breaking the diffraction resolution limit by stimulated emission: stimulated-emission-depletion fluorescence microscopy. Opt Lett 19:780–782

    Article  CAS  PubMed  Google Scholar 

  11. Hess ST, Girirajan TPK, Mason MD (2006) Ultra-high resolution imaging by fluorescence photoactivation localization microscopy. Biophys J 91:4258–4272

    Article  CAS  PubMed Central  PubMed  Google Scholar 

  12. Betzig E, Patterson GH, Sougrat R et al (2006) Imaging intracellular fluorescent proteins at nanometer resolution. Science 313:1642–1645

    Article  CAS  PubMed  Google Scholar 

  13. Kaminski Schierle GS, van de Linde S, Erdelyi M et al (2011) In situ measurements of the formation and morphology of intracellular β-amyloid fibrils by super-resolution fluorescence imaging. J Am Chem Soc 133:12902–12905

    Article  CAS  PubMed  Google Scholar 

  14. Tokunaga M, Imamoto N, Sakata-Sogawa K (2008) Highly inclined thin illumination enables clear single-molecule imaging in cells. Nat Methods 5:159–161

    Article  CAS  PubMed  Google Scholar 

  15. Esbjörner EK, Chan F, Rees EJ, Erdelyi M, Luheshi LM, Bertoncini CW, Kaminski CF, Dobson CM, Kaminski-Schierle GS (2014) Direct observations of the formation of amyloid β self-assembly in live cells provide insights into differences in the kinetics of Aβ(1–40) and Aβ(1–42) aggregation. Chem Biol 21 (6): 732–742

    Google Scholar 

  16. Fritschi SK, Langer F, Kaeser SA, Maia LF, Portelius E, Pinotsi D, Kaminski CF, Winkler DT, Maetzler W, Keyvani K, Spitzer P, Wiltfang J, Kaminski Schierle GS, Zetterberg H, Staufenbiel M, Jucker M (2014) Highly potent soluble amyloid-β seeds in human Alzheimer brain but not cerebrospinal fluid. Brain 137(11):2909–2915

    Google Scholar 

  17. Pinotsi D, Buell AK, Galvagnion C et al (2014) Direct observation of heterogeneous amyloid fibril growth kinetics via two-color super-resolution microscopy. Nano Lett 14:339–345

    Article  CAS  PubMed Central  PubMed  Google Scholar 

  18. Michel CH, Kumar S, Pinotsi D et al (2014) Extracellular monomeric tau protein is sufficient to initiate the spread of tau protein pathology. J Biol Chem 289:956–967

    Article  CAS  PubMed Central  PubMed  Google Scholar 

  19. Frank JH, Elder AD, Swartling J et al (2007) A white light confocal microscope for spectrally resolved multidimensional imaging. J Microsc 227:203–215

    Article  CAS  PubMed  Google Scholar 

  20. van Ham TJ, Esposito A, Kumita JR et al (2010) Towards multiparametric fluorescent imaging of amyloid formation: studies of a YFP model of alpha-synuclein aggregation. J Mol Biol 395:627–642

    Article  PubMed  Google Scholar 

  21. Murakami T, Yang SP, Xie L et al (2012) ALS mutations in FUS cause neuronal dysfunction and death in Caenorhabditis elegans by a dominant gain-of-function mechanism. Hum Mol Genet 21:1–9

    Article  PubMed Central  PubMed  Google Scholar 

  22. Erdelyi M, Rees E, Metcalf D et al (2013) Correcting chromatic offset in multicolor super-resolution localization microscopy. Opt Express 21:10978–10988

    Article  PubMed  Google Scholar 

  23. Rees EJ, Erdelyi M, Pinotsi D et al (2012) Blind assessment of localisation microscope image resolution. Opt Nanoscopy 1:12

    Article  Google Scholar 

  24. Wolter S, Löschberger A, Holm T et al (2012) rapidSTORM: accurate, fast open-source software for localization microscopy. Nat Methods 9:1040–1041

    Article  CAS  PubMed  Google Scholar 

  25. Thompson RE, Larson DR, Webb WW (2002) Precise nanometer localization analysis for individual fluorescent probes. Biophys J 82:2775–2783

    Article  CAS  PubMed Central  PubMed  Google Scholar 

Download references

Acknowledgements

This work was funded by grants from the Medical Research Council UK (MR/K015850/1 and MR/K02292X/1), Alzheimer Research UK (ARUK-EG2012A-1), the EPSRC (EP/H018301/1) and the Wellcome Trust (089703/Z/09/Z). D.P. wishes to acknowledge support from the Swiss National Science Foundation and the Cambridge Wellcome Trust Senior Internship scheme.

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Dorothea Pinotsi .

Editor information

Editors and Affiliations

Rights and permissions

Reprints and permissions

Copyright information

© 2016 Springer Science+Business Media New York

About this protocol

Cite this protocol

Pinotsi, D., Kaminski Schierle, G.S., Kaminski, C.F. (2016). Optical Super-Resolution Imaging of β-Amyloid Aggregation In Vitro and In Vivo: Method and Techniques. In: Castrillo, J., Oliver, S. (eds) Systems Biology of Alzheimer's Disease. Methods in Molecular Biology, vol 1303. Humana Press, New York, NY. https://doi.org/10.1007/978-1-4939-2627-5_6

Download citation

  • DOI: https://doi.org/10.1007/978-1-4939-2627-5_6

  • Publisher Name: Humana Press, New York, NY

  • Print ISBN: 978-1-4939-2626-8

  • Online ISBN: 978-1-4939-2627-5

  • eBook Packages: Springer Protocols

Publish with us

Policies and ethics