Skip to main content

Mapping Protein–RNA Interactions by RCAP, RNA-Cross-Linking and Peptide Fingerprinting

  • Protocol

Part of the book series: Methods in Molecular Biology ((MIMB,volume 1297))

Abstract

RNA nanotechnology often feature protein RNA complexes. The interaction between proteins and large RNAs are difficult to study using traditional structure-based methods like NMR or X-ray crystallography. RCAP, an approach that uses reversible-cross-linking affinity purification method coupled with mass spectrometry, has been developed to map regions within proteins that contact RNA. This chapter details how RCAP is applied to map protein–RNA contacts within virions.

This is a preview of subscription content, log in via an institution.

Buying options

Protocol
USD   49.95
Price excludes VAT (USA)
  • Available as PDF
  • Read on any device
  • Instant download
  • Own it forever
eBook
USD   89.00
Price excludes VAT (USA)
  • Available as EPUB and PDF
  • Read on any device
  • Instant download
  • Own it forever
Softcover Book
USD   119.00
Price excludes VAT (USA)
  • Compact, lightweight edition
  • Dispatched in 3 to 5 business days
  • Free shipping worldwide - see info
Hardcover Book
USD   109.99
Price excludes VAT (USA)
  • Durable hardcover edition
  • Dispatched in 3 to 5 business days
  • Free shipping worldwide - see info

Tax calculation will be finalised at checkout

Purchases are for personal use only

Learn about institutional subscriptions

Springer Nature is developing a new tool to find and evaluate Protocols. Learn more

References

  1. Kao CC, Ni P, Hema M, Huang X, Dragnea B (2011) The coat protein leads the way: an update on basic and applied studies with the Brome mosaic virus coat protein. Mol Plant Pathol 12(4):403–412. doi:10.1111/j.1364-3703.2010.00678.x

    Article  CAS  Google Scholar 

  2. Noueiry AO, Ahlquist P (2003) Brome mosaic virus RNA replication: revealing the role of the host in RNA virus replication. Annu Rev Phytopathol 41:77–98. doi:10.1146/annurev.phyto. 41.052002.095717

    Article  CAS  Google Scholar 

  3. Running WE, Ni P, Kao CC, Reilly JP (2012) Chemical reactivity of brome mosaic virus capsid protein. J Mol Biol 423(1):79–95. doi:10.1016/j.jmb.2012.06.031

    Article  CAS  Google Scholar 

  4. Lucas RW, Larson SB, McPherson A (2002) The crystallographic structure of brome mosaic virus. J Mol Biol 317(1):95–108. doi:10.1006/jmbi.2001.5389

    Article  CAS  Google Scholar 

  5. Ni P, Wang Z, Ma X, Das NC, Sokol P, Chiu W, Dragnea B, Hagan M, Kao CC (2012) An examination of the electrostatic interactions between the N-terminal tail of the Brome Mosaic Virus coat protein and encapsidated RNAs. J Mol Biol 419(5):284–300. doi:10.1016/j.jmb.2012.03.023

    Article  CAS  Google Scholar 

  6. Vaughan R, Running W, Qi R, Kao CC (2012) Mapping protein-RNA interactions. Virus Adapt Treat 4:29–41. doi:http://dx.doi.org/10.2147/VAAT.S31299

    CAS  Google Scholar 

  7. Leitner A, Walzthoeni T, Kahraman A, Herzog F, Rinner O, Beck M, Aebersold R (2010) Probing native protein structures by chemical cross-linking, mass spectrometry, and bioinformatics. Mol Cell Proteomics 9(8):1634–1649. doi:10.1074/mcp. R000001-MCP201

    Article  CAS  Google Scholar 

  8. Park AY, Robinson CV (2011) Protein-nucleic acid complexes and the role of mass spectrometry in their structure determination. Crit Rev Biochem Mol Biol 46(2):152–164. doi:10.3109/10409238.2011.559451

    Article  CAS  Google Scholar 

  9. Kim YC, Russell WK, Ranjith-Kumar CT, Thomson M, Russell DH, Kao CC (2005) Functional analysis of RNA binding by the hepatitis C virus RNA-dependent RNA polymerase. J Biol Chem 280(45):38011–38019. doi:10.1074/jbc.M508145200, M508145200 [pii]

    Article  CAS  Google Scholar 

  10. Hema M, Murali A, Ni P, Vaughan RC, Fujisaki K, Tsvetkova I, Dragnea B, Kao CC (2010) Effects of amino-acid substitutions in the Brome mosaic virus capsid protein on RNA encapsidation. Mol Plant Microbe Interact 23(11):1433–1447. doi:10.1094/MPMI-05-10-0118

    Article  CAS  Google Scholar 

  11. Hwang J, Huang L, Cordek DG, Vaughan R, Reynolds SL, Kihara G, Raney KD, Kao CC, Cameron CE (2010) Hepatitis C virus nonstructural protein 5A: biochemical characterization of a novel structural class of RNA-binding proteins. J Virol 84(24):12480–12491. doi:10.1128/JVI. 01319-10

    Article  CAS  Google Scholar 

  12. Ranjith-Kumar CT, Duffy KE, Jordan JL, Eaton-Bassiri A, Vaughan R, Hoose SA, Lamb RJ, Sarisky RT, Kao CC (2008) Single-stranded oligonucleotides can inhibit cytokine production induced by human Toll-like receptor 3. Mol Cell Biol 28(14):4507–4519. doi:10.1128/MCB. 00308-08

    Article  CAS  Google Scholar 

  13. Ranjith-Kumar CT, Murali A, Dong W, Srisathiyanarayanan D, Vaughan R, Ortiz-Alacantara J, Bhardwaj K, Li X, Li P, Kao CC (2009) Agonist and antagonist recognition by RIG-I, a cytoplasmic innate immunity receptor. J Biol Chem 284(2):1155–1165. doi:10.1074/jbc.M806219200

    Article  CAS  Google Scholar 

  14. Vaughan R, Fan B, You JS, Kao CC (2012) Identification and functional characterization of the nascent RNA contacting residues of the hepatitis C virus RNA-dependent RNA polymerase. RNA 18(8):1541–1552. doi:10.1261/rna.031914.111

    Article  CAS  Google Scholar 

  15. Yi G, Vaughan RC, Yarbrough I, Dharmaiah S, Kao CC (2009) RNA binding by the brome mosaic virus capsid protein and the regulation of viral RNA accumulation. J Mol Biol 391(2):314–326. doi:10.1016/j.jmb.2009.05.065, doi:S0022-2836(09)00647-0 [pii]

    Article  CAS  Google Scholar 

  16. Jones S, Daley DT, Luscombe NM, Berman HM, Thornton JM (2001) Protein-RNA interactions: a structural analysis. Nucleic Acids Res 29(4):943–954

    Article  CAS  Google Scholar 

  17. Metz B, Kersten GF, Hoogerhout P, Brugghe HF, Timmermans HA, de Jong A, Meiring H, ten Hove J, Hennink WE, Crommelin DJ, Jiskoot W (2004) Identification of formaldehyde-induced modifications in proteins: reactions with model peptides. J Biol Chem 279(8):6235–6243. doi:10.1074/jbc.M310752200

    Article  CAS  Google Scholar 

  18. Niranjanakumari S, Lasda E, Brazas R, Garcia-Blanco MA (2002) Reversible cross-linking combined with immunoprecipitation to study RNA-protein interactions in vivo. Methods 26(2):182–190, doi:10.1016/S1046-2023(02)00021-XS1046-2023(02)00021-X [pii]

    Article  CAS  Google Scholar 

  19. Lu K, Ye W, Zhou L, Collins LB, Chen X, Gold A, Ball LM, Swenberg JA (2010) Structural characterization of formaldehyde-induced cross-links between amino acids and deoxynucleosides and their oligomers. J Am Chem Soc 132(10):3388–3399. doi:10.1021/ja908282f

    Article  CAS  Google Scholar 

  20. Toth J, Biggin MD (2000) The specificity of protein-DNA crosslinking by formaldehyde: in vitro and in drosophila embryos. Nucleic Acids Res 28(2):e4

    Article  CAS  Google Scholar 

  21. Barlow JJ, Mathias AP, Williamson R, Gammack DB (1963) A simple method for the quantitative isolation of undegraded high molecular weight ribonucleic acid. Biochem Biophyl Res Commun 13:61–66

    Article  CAS  Google Scholar 

  22. Cathala G, Savouret JF, Mendez B, West BL, Karin M, Martial JA, Baxter JD (1983) A method for isolation of intact, translationally active ribonucleic acid. DNA 2(4):329–335

    Article  CAS  Google Scholar 

  23. Vaughan R, Tragesser B, Ni P, Ma X, Dragnea B, Kao CC (2014) The tripartite virions of the brome mosaic virus have distinct physical properties that affect the timing of the infection process. J Virol 88(11):6483–6491. doi:10.1128/JVI. 00377-14

    Article  Google Scholar 

  24. Seidler J, Zinn N, Boehm ME, Lehmann WD (2010) De novo sequencing of peptides by MS/MS. Proteomics 10(4):634–649. doi:10.1002/pmic.200900459

    Article  CAS  Google Scholar 

  25. Koenig T, Menze BH, Kirchner M, Monigatti F, Parker KC, Patterson T, Steen JJ, Hamprecht FA, Steen H (2008) Robust prediction of the MASCOT score for an improved quality assessment in mass spectrometric proteomics. J Proteome Res 7(9):3708–3717. doi:10.1021/pr700859x

    Article  CAS  Google Scholar 

  26. Perkins DN, Pappin DJ, Creasy DM, Cottrell JS (1999) Probability-based protein identification by searching sequence databases using mass spectrometry data. Electrophoresis 20(18):3551–3567. doi:10.1002/(SICI)1522-2683(19991201)20:18<3551::AID-ELPS3551>3.0.CO;2-2

    Article  CAS  Google Scholar 

  27. Clauser KR, Baker P, Burlingame AL (1999) Role of accurate mass measurement (+/- 10 ppm) in protein identification strategies employing MS or MS/MS and database searching. Anal Chem 71(14):2871–2882

    Article  CAS  Google Scholar 

  28. Artimo P, Jonnalagedda M, Arnold K, Baratin D, Csardi G, de Castro E, Duvaud S, Flegel V, Fortier A, Gasteiger E, Grosdidier A, Hernandez C, Ioannidis V, Kuznetsov D, Liechti R, Moretti S, Mostaguir K, Redaschi N, Rossier G, Xenarios I, Stockinger H (2012) ExPASy: SIB bioinformatics resource portal. Nucleic Acids Res 40(Web Server issue):W597–603. doi:10.1093/nar/gks400

    Article  CAS  Google Scholar 

  29. Wilkins MR, Gasteiger E, Bairoch A, Sanchez JC, Williams KL, Appel RD, Hochstrasser DF (1999) Protein identification and analysis tools in the ExPASy server. Methods Mol Biol 112:531–552

    CAS  Google Scholar 

  30. Pettersen EF, Goddard TD, Huang CC, Couch GS, Greenblatt DM, Meng EC, Ferrin TE (2004) UCSF Chimera–a visualization system for exploratory research and analysis. J Comput Chem 25(13):1605–1612. doi:10.1002/jcc.20084

    Article  CAS  Google Scholar 

  31. Perez-Vargas J, Vaughan RC, Houser C, Hastie KM, Kao CC, Nemerow GR (2014) Isolation and characterization of the DNA and protein binding activities of adenovirus protein. J Virol 88(16):9287–9296

    Article  Google Scholar 

  32. Janecki DJ, Beardsley RL, Reilly JP (2005) Probing protein tertiary structure with amidination. Anal Chem 77(22):7274–7281. doi:10.1021/ac050891z

    Article  CAS  Google Scholar 

  33. Liu X, Reilly JP (2009) Correlating the chemical modification of Escherichia coli ribosomal proteins with crystal structure data. J Proteome Res 8(10):4466–4478. doi:10.1021/pr9002382

    Article  CAS  Google Scholar 

  34. Running WE, Reilly JP (2009) Ribosomal proteins of Deinococcus radiodurans: their solvent accessibility and reactivity. J Proteome Res 8(3):1228–1246. doi:10.1021/pr800544y

    Article  CAS  Google Scholar 

  35. Deval J, D’Abramo CM, Zhao Z, McCormick S, Coutsinos D, Hess S, Kvaratskhelia M, Gotte M (2007) High resolution footprinting of the hepatitis C virus polymerase NS5B in complex with RNA. J Biol Chem 282(23):16907–16916. doi:10.1074/jbc.M701973200

    Article  CAS  Google Scholar 

  36. Lundblad RL (2005) Chemical reagents for protein modification, 3rd edn. CRC Press, Boca Raton, FL

    Google Scholar 

  37. Kannan N, Schneider TD, Vishveshwara S (2000) Logos for amino-acid preferences in different backbone packing density regions of protein structural classes. Acta Crystallogr D Biol Crystallogr 56(Pt 9):1156–1165

    Article  CAS  Google Scholar 

  38. Inman JK, Perham RN, DuBois GC, Appella E (1983) Amidination. Methods Enzymol 91:559–569

    Article  CAS  Google Scholar 

  39. Carven GJ, Stern LJ (2005) Probing the ligand-induced conformational change in HLA-DR1 by selective chemical modification and mass spectrometric mapping. Biochemistry 44(42):13625–13637. doi:10.1021/bi050972p

    Article  CAS  Google Scholar 

  40. Lauber MA, Reilly JP (2011) Structural analysis of a prokaryotic ribosome using a novel amidinating cross-linker and mass spectrometry. J Proteome Res 10(8):3604–3616. doi:10.1021/pr200260n

    Article  CAS  Google Scholar 

  41. Shepherd CM, Borelli IA, Lander G, Natarajan P, Siddavanahalli V, Bajaj C, Johnson JE, Brooks CL III, Reddy VS (2006) VIPERdb: a relational database for structural virology. Nucleic Acids Res 34(Database issue):D386–D389. doi:10.1093/nar/gkj032

    Article  CAS  Google Scholar 

Download references

Acknowledgement

This work was supported by a grant from the NIH NIAID 1R01AI090280. We thank C.T. Ranjith-Kumar, William Running, James Reilly, and Jonathan Karty for helpful discussions and reagents used to determine the conditions for the protocols in this work.

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Robert C. Vaughan .

Editor information

Editors and Affiliations

Rights and permissions

Reprints and permissions

Copyright information

© 2015 Springer Science+Business Media New York

About this protocol

Cite this protocol

Vaughan, R.C., Kao, C.C. (2015). Mapping Protein–RNA Interactions by RCAP, RNA-Cross-Linking and Peptide Fingerprinting. In: Guo, P., Haque, F. (eds) RNA Nanotechnology and Therapeutics. Methods in Molecular Biology, vol 1297. Humana Press, New York, NY. https://doi.org/10.1007/978-1-4939-2562-9_16

Download citation

  • DOI: https://doi.org/10.1007/978-1-4939-2562-9_16

  • Publisher Name: Humana Press, New York, NY

  • Print ISBN: 978-1-4939-2561-2

  • Online ISBN: 978-1-4939-2562-9

  • eBook Packages: Springer Protocols

Publish with us

Policies and ethics