Skip to main content

Overview of Methods in RNA Nanotechnology: Synthesis, Purification, and Characterization of RNA Nanoparticles

  • Protocol
RNA Nanotechnology and Therapeutics

Part of the book series: Methods in Molecular Biology ((MIMB,volume 1297))

Abstract

RNA nanotechnology encompasses the use of RNA as a construction material to build homogeneous nanostructures by bottom-up self-assembly with defined size, structure, and stoichiometry; this pioneering concept demonstrated in 1998 (Guo et al., Molecular Cell 2:149–155, 1998; featured in Cell) has emerged as a new field that also involves materials engineering and synthetic structural biology (Guo, Nature Nanotechnology 5:833–842, 2010). The field of RNA nanotechnology has skyrocketed over the last few years, as evidenced by the burst of publications in prominent journals on RNA nanostructures and their applications in nanomedicine and nanotechnology. Rapid advances in RNA chemistry, RNA biophysics, and RNA biology have created new opportunities for translating basic science into clinical practice. RNA nanotechnology holds considerable promise in this regard. Increased evidence also suggests that substantial part of the 98.5 % of human genome (Lander et al. Nature 409:860–921, 2001) that used to be called “junk DNA” actually codes for noncoding RNA. As we understand more on how RNA structures are related to function, we can fabricate synthetic RNA nanoparticles for the diagnosis and treatment of diseases. This chapter provides a brief overview of the field regarding the design, construction, purification, and characterization of RNA nanoparticles for diverse applications in nanotechnology and nanomedicince.

This is a preview of subscription content, log in via an institution to check access.

Access this chapter

Protocol
USD 49.95
Price excludes VAT (USA)
  • Available as PDF
  • Read on any device
  • Instant download
  • Own it forever
eBook
USD 89.00
Price excludes VAT (USA)
  • Available as EPUB and PDF
  • Read on any device
  • Instant download
  • Own it forever
Softcover Book
USD 119.00
Price excludes VAT (USA)
  • Compact, lightweight edition
  • Dispatched in 3 to 5 business days
  • Free shipping worldwide - see info
Hardcover Book
USD 109.99
Price excludes VAT (USA)
  • Durable hardcover edition
  • Dispatched in 3 to 5 business days
  • Free shipping worldwide - see info

Tax calculation will be finalised at checkout

Purchases are for personal use only

Institutional subscriptions

References

  1. Sugimoto N, Nakano S, Katoh M et al (1995) Thermodynamic parameters to predict stability of RNA/DNA hybrid duplexes. Biochemistry 34:11211–11216

    Article  CAS  Google Scholar 

  2. Searle MS, Williams DH (1993) On the stability of nucleic acid structures in solution: enthalpy-entropy compensations, internal rotations and reversibility. Nucleic Acids Res 21:2051–2056

    Article  CAS  Google Scholar 

  3. Ikawa Y, Tsuda K, Matsumura S et al (2004) De novo synthesis and development of an RNA enzyme. Proc Natl Acad Sci U S A 101:13750–13755

    Article  CAS  Google Scholar 

  4. Matsumura S, Ohmori R, Saito H et al (2009) Coordinated control of a designed trans-acting ligase ribozyme by a loop-receptor interaction. FEBS Lett 583:2819–2826

    Article  CAS  Google Scholar 

  5. Leontis NB, Lescoute A, Westhof E (2006) The building blocks and motifs of RNA architecture. Curr Opin Struct Biol 16:279–287

    Article  CAS  Google Scholar 

  6. Schroeder KT, McPhee SA, Ouellet J et al (2010) A structural database for k-turn motifs in RNA. RNA 16:1463–1468

    Article  CAS  Google Scholar 

  7. Li X, Horiya S, Harada K (2006) An efficient thermally induced RNA conformational switch as a framework for the functionalization of RNA nanostructures. J Am Chem Soc 128:4035–4040

    Article  CAS  Google Scholar 

  8. Laurenti E, Barde I, Verp S et al (2010) Inducible gene and shRNA expression in resident hematopoietic stem cells in vivo. Stem Cells 28:1390–1398

    Article  CAS  Google Scholar 

  9. Hoeprich S, Zhou Q, Guo S et al (2003) Bacterial virus phi29 pRNA as a hammerhead ribozyme escort to destroy hepatitis B virus. Gene Ther 10:1258–1267

    Article  CAS  Google Scholar 

  10. Chang KY, Tinoco I Jr (1994) Characterization of a “kissing” hairpin complex derived from the human immunodeficiency virus genome. Proc Natl Acad Sci U S A 91(18):8705–8709

    Article  CAS  Google Scholar 

  11. Bindewald E, Hayes R, Yingling YG et al (2008) RNAJunction: a database of RNA junctions and kissing loops for three-dimensional structural analysis and nanodesign. Nucleic Acids Res 36:D392–D397

    Article  CAS  Google Scholar 

  12. Wagner C, Ehresmann C, Ehresmann B et al (2004) Mechanism of dimerization of bicoid mRNA: initiation and stabilization. J Biol Chem 279:4560–4569

    Article  CAS  Google Scholar 

  13. Chen C, Sheng S, Shao Z et al (2000) A dimer as a building block in assembling RNA: A hexamer that gears bacterial virus phi29 DNA-translocating machinery. J Biol Chem 275(23):17510–17516

    Article  CAS  Google Scholar 

  14. Guo P, Zhang C, Chen C et al (1998) Inter-RNA interaction of phage phi29 pRNA to form a hexameric complex for viral DNA transportation. Mol Cell 2:149–155

    Article  CAS  Google Scholar 

  15. Guo P (2010) The emerging field of RNA nanotechnology. Nat Nanotechnol 5:833–842

    Article  CAS  Google Scholar 

  16. Guo P, Haque F, Hallahan B et al (2012) Uniqueness, advantages, challenges, solutions, and perspectives in therapeutics applying RNA nanotechnology. Nucleic Acid Ther 22:226–245

    CAS  Google Scholar 

  17. Shu Y, Pi F, Sharma A et al (2014) Stable RNA nanoparticles as potential new generation drugs for cancer therapy. Adv Drug Deliv Rev 66C:74–89

    Article  Google Scholar 

  18. Freier SM, Kierzek R, Jaeger JA et al (1986) Improved free-energy parameters for predictions of RNA duplex stability. Proc Natl Acad Sci U S A 83:9373–9377

    Article  CAS  Google Scholar 

  19. Ehresmann C, Baudin F, Mougel M et al (1987) Probing the structure of RNAs in solution. Nucleic Acids Res 15:9109–9128

    Article  CAS  Google Scholar 

  20. Privalov PL, Filiminov VV (1978) Thermodynamic analysis of transfer RNA unfolding. J Mol Biol 122:447–464

    Article  CAS  Google Scholar 

  21. Pleij CWA, Rietveld K, Bosch L (1985) A new principle of RNA folding based on pseudonotting. Nucleic Acids Res 13(5):1717–1731

    Article  CAS  Google Scholar 

  22. Zuker M (1989) On finding all suboptimal foldings of an RNA molecule. Science 244:48–52

    Article  CAS  Google Scholar 

  23. Studnicka GM, Rahn GM, Cummings IW et al (1978) Computer method for predicting the secondary structure of single-stranded RNA. Nucleic Acids Res 5:3365–3387

    Article  CAS  Google Scholar 

  24. Reid BR (1981) NMR studies on RNA structure and dynamics. Annu Rev Biochem 50:969–96

    Article  CAS  Google Scholar 

  25. Shu D, Shu Y, Haque F et al (2011) Thermodynamically stable RNA three-way junctions for constructing multifuntional nanoparticles for delivery of therapeutics. Nat Nanotechnol 6:658–667

    Article  CAS  Google Scholar 

  26. Haque F, Shu D, Shu Y et al (2012) Ultrastable synergistic tetravalent RNA nanoparticles for targeting to cancers. Nano Today 7:245–257

    Article  CAS  Google Scholar 

  27. Liu J, Guo S, Cinier M et al (2010) Fabrication of stable and RNase-resistant RNA nanoparticles active in gearing the nanomotors for viral DNA packaging. ACS Nano 5:237–246

    Article  Google Scholar 

  28. de Fougerolles A, Vornlocher HP, Maraganore J et al (2007) Interfering with disease: a progress report on siRNA-based therapeutics. Nat Rev Drug Discov 6:443–453

    Article  Google Scholar 

  29. Kim DH, Rossi JJ (2007) Strategies for silencing human disease using RNA interference. Nat Rev Genet 8:173–184

    Article  CAS  Google Scholar 

  30. Rozema DB, Lewis DL, Wakefield DH et al (2007) Dynamic polyconjugates for targeted in vivo delivery of siRNA to hepatocytes. Proc Natl Acad Sci U S A 104:12982–12987

    Article  CAS  Google Scholar 

  31. Seth S, Johns R, Templin MV (2012) Delivery and biodistribution of siRNA for cancer therapy: challenges and future prospects. Ther Deliv 3:245–261

    Article  CAS  Google Scholar 

  32. Bae YH, Park K (2011) Targeted drug delivery to tumors: myths, reality and possibility. J Control Release 153:198–205

    Article  CAS  Google Scholar 

  33. Shu D, Moll WD, Deng Z et al (2004) Bottom-up assembly of RNA arrays and superstructures as potential parts in nanotechnology. Nano Lett 4:1717–1723

    Article  CAS  Google Scholar 

  34. Shu Y, Haque F, Shu D et al (2013) Fabrication of 14 different RNA nanoparticles for specific tumor targeting without accumulation in normal organs. RNA 19:766–777

    Article  Google Scholar 

  35. Li W, Szoka F (2007) Lipid-based Nanoparticles for Nucleic Acid Delivery. Pharm Res 24:438–449

    Article  Google Scholar 

  36. Abdelmawla S, Guo S, Zhang L et al (2011) Pharmacological characterization of chemically synthesized monomeric pRNA nanoparticles for systemic delivery. Mol Ther 19:1312–1322

    Article  CAS  Google Scholar 

  37. Guo P, Haque F (eds) (2013) RNA Nanotechnology and Therapeutics. CRC Press, Boca Raton, FL

    Google Scholar 

  38. Shukla GC, Haque F, Tor Y et al (2011) A Boost for the Emerging Field of RNA Nanotechnology. ACS Nano 5:3405–3418

    Article  CAS  Google Scholar 

  39. Leontis N, Sweeney B, Haque F et al (2013) Conference Scene: Advances in RNA nanotechnology promise to transform medicine. Nanomedicine 8:1051–1054

    Article  CAS  Google Scholar 

  40. Guo P (ed) (2011) Methods: RNA nanotechnology. Elsevier, Amsterdam

    Google Scholar 

  41. Guo P (2005) RNA Nanotechnology: Engineering, assembly and applications in detection, gene delivery and therapy. J Nano Nanotechnol 5(12):1964–1982

    Google Scholar 

  42. Guo P, Coban O, Snead NM et al (2010) Engineering RNA for targeted siRNA delivery and medical application. Advan Drug Delivery Rev 62:650–666

    Google Scholar 

  43. Zuker M (2003) Mfold web server for nucleic acid folding and hybridization prediction. Nucleic Acids Res 31:3406–3415

    Article  CAS  Google Scholar 

  44. Andronescu M, Fejes AP, Hutter F et al (2004) A new algorithm for RNA secondary structure design. J Mol Biol 336:607–624

    Article  CAS  Google Scholar 

  45. Ding Y, Chan CY, Lawrence CE (2004) Sfold web server for statistical folding and rational design of nucleic acids. Nucleic Acids Res 32:W135–W141

    Article  CAS  Google Scholar 

  46. Zadeh JN, Steenberg CD, Bois JS et al (2011) NUPACK: Analysis and design of nucleic acid systems. J Comput Chem 32:170–173

    Article  CAS  Google Scholar 

  47. Delebecque CJ, Silver PA, Lindner AB (2012) Designing and using RNA scaffolds to assemble proteins in vivo. Nat Protoc 7:1797–1807

    Article  CAS  Google Scholar 

  48. Watts JK, Deleavey GF, Damha MJ (2008) Chemically modified siRNA: tools and applications. Drug Discov Today 13:842–855

    Article  CAS  Google Scholar 

  49. Shaw BR, Moussa L, Sharaf M et al (2008) Boranophosphate siRNA-aptamer chimeras for tumor-specific downregulation of cancer receptors and modulators. Nucleic Acids Symp Ser (Oxf) 52:655–656

    Article  CAS  Google Scholar 

  50. Helmling S, Moyroud E, Schroeder W et al (2003) A new class of Spiegelmers containing 2′-fluoro-nucleotides. Nucleosides Nucleotides Nucleic Acids 22:1035–1038

    Article  CAS  Google Scholar 

  51. Luy B, Marino JP (2001) Measurement and application of 1H-19F dipolar couplings in the structure determination of 2′-fluorolabeled RNA. J Biomol NMR 20:39–47

    Article  CAS  Google Scholar 

  52. Reif B, Wittmann V, Schwalbe H et al (1997) Structural comparison of oligoribonucleotides and their 2′-deoxy-2′-fluoro analogs by heteronuclear NMR spectroscopy. Helv Chim Acta 80:1952–1971

    Article  CAS  Google Scholar 

  53. Binzel DW, Khisamutdinov EF, Guo P (2014) Entropy-driven one-step formation of Phi29 pRNA 3WJ from three RNA fragments. Biochemistry 53:2221–2231

    Article  CAS  Google Scholar 

  54. Guo P, Erickson S, Anderson D (1987) A small viral RNA is required for in vitro packaging of bacteriophage phi29 DNA. Science 236:690–694

    Article  CAS  Google Scholar 

  55. Zhang H, Endrizzi JA, Shu Y et al (2013) Crystal structure of 3WJ core revealing divalent ion-promoted thermostability and assembly of the Phi29 hexameric motor pRNA. RNA 19:1226–1237

    Article  CAS  Google Scholar 

  56. Khisamutdinov EF, Jasinski DL, Guo P (2014) RNA as a boiling-resistant anionic polymer material to build robust structures with defined shape and stoichiometry. ACS Nano 8:4771–4781

    Article  CAS  Google Scholar 

  57. Khisamutdinov E, Li H, Jasinski D et al (2014) Enhancing immunomodulation on innate immunity by shape transition among RNA triangle, square, and pentagon nanovehicles. Nucelic Acids Research 42:9996–10004

    Article  CAS  Google Scholar 

  58. Jasinski D, Khisamutdinov EF, Lyubchenko YL et al (2014) Physicochemically tunable poly-functionalized RNA square architecture with fluorogenic and ribozymatic properties. ACS Nano 8:7620–7629

    Article  CAS  Google Scholar 

  59. Martinez HM, Maizel JV, Shapiro BA (2008) RNA2D3D: A program for generating, viewing, and comparing 3-dimensional models of RNA. J Biomol Str Dyn 25:669–683

    Article  CAS  Google Scholar 

  60. Bindewald E, Grunewald C, Boyle B et al (2008) Computational strategies for the automated design of RNA nanoscale structures from building blocks using NanoTiler. J Mol Graph Model 27:299–308

    Article  CAS  Google Scholar 

  61. Grabow WW, Zakrevsky P, Afonin KA et al (2011) Self-assembling RNA nanorings based on RNAI/II inverse kissing complexes. Nano Lett 11:878–887

    Article  CAS  Google Scholar 

  62. Afonin KA, Bindewald E, Yaghoubian AJ et al (2010) In vitro assembly of cubic RNA-based scaffolds designed in silico. Nat Nanotechnol 5:676–682

    Article  CAS  Google Scholar 

  63. Markham NR, Zuker M (2008) UNAFold: software for nucleic acid folding and hybridization. Methods Mol Biol 453:3–31

    Article  CAS  Google Scholar 

  64. Ohno H, Kobayashi T, Kabata R et al (2011) Synthetic RNA-protein complex shaped like an equilateral triangle. Nat Nanotechnol 6:116–120

    Article  CAS  Google Scholar 

  65. Ellington AD, Szostak JW (1990) In vitro selection of RNA molecules that bind specific ligands. Nature 346:818–822

    Article  CAS  Google Scholar 

  66. Tuerk C, Gold L (1990) Systematic evolution of ligands by exponential enrichment: RNA ligands to bacteriophage T4 DNA ploymerase. Science 249:505–510

    Article  CAS  Google Scholar 

  67. Mi J, Liu Y, Rabbani ZN et al (2010) In vivo selection of tumor-targeting RNA motifs. Nat Chem Biol 6:22–24

    Article  CAS  Google Scholar 

  68. Lupold SE, Hicke BJ, Lin Y et al (2002) Identification and characterization of nuclease-stabilized RNA molecules that bind human prostate cancer cells via the prostate-specific membrane antigen. Cancer Res 62:4029–4033

    CAS  Google Scholar 

  69. Sharma AK, Kent AD, Heemstra JM (2012) Enzyme-linked small-molecule detection using split aptamer ligation. Anal Chem 84:6104–6109

    Article  CAS  Google Scholar 

  70. Sharma AK, Heemstra JM (2011) Small-molecule-dependent split aptamer ligation. J Am Chem Soc 133:12426–12429

    Article  CAS  Google Scholar 

  71. Low PS, Henne WA, Doorneweerd DD (2008) Discovery and development of folic-acid-based receptor targeting for imaging and therapy of cancer and inflammatory diseases. Acc Chem Res 41:120–129

    Article  CAS  Google Scholar 

  72. Toffoli G, Cernigoi C, Russo A et al (1997) Overexpression of folate binding protein in ovarian cancers. Int J Cancer 74:193–198

    Article  CAS  Google Scholar 

  73. Gosselin MA, Guo W, Lee RJ (2002) Incorporation of reversibly cross-linked polyplexes into LPDII vectors for gene delivery. Bioconjug Chem 13:1044–1053

    Article  CAS  Google Scholar 

  74. Fire A, Xu S, Montgomery MK et al (1998) Potent and specific genetic interference by double-stranded RNA in Caenorhabditis elegans. Nature 391:806–811

    Article  CAS  Google Scholar 

  75. Li H, Li WX, Ding SW (2002) Induction and suppression of RNA silencing by an animal virus. Science 296:1319–1321

    Article  CAS  Google Scholar 

  76. Brummelkamp TR, Bernards R, Agami R (2002) A system for stable expression of short interfering RNAs in mammalian cells. Science 296:550–553

    Article  CAS  Google Scholar 

  77. Jacque JM, Triques K, Stevenson M (2002) Modulation of HIV-1 replication by RNA interference. Nature 418:435–438

    Article  CAS  Google Scholar 

  78. Varambally S, Dhanasekaran SM, Zhou M et al (2002) The polycomb group protein EZH2 is involved in progression of prostate cancer. Nature 419:624–629

    Article  CAS  Google Scholar 

  79. Carmichael GG (2002) Medicine: silencing viruses with RNA. Nature 418:379–380

    Article  CAS  Google Scholar 

  80. Bartel DP (2009) MicroRNAs: target recognition and regulatory functions. Cell 136:215–233

    Article  CAS  Google Scholar 

  81. Calin GA, Croce CM (2006) MicroRNA signatures in human cancers. Nat Rev Cancer 6:857–866

    Article  CAS  Google Scholar 

  82. Ye X, Liu Z, Hemida MG et al (2011) Targeted delivery of mutant tolerant anti-coxsackievirus artificial microRNAs using folate conjugated bacteriophage Phi29 pRNA. PLoS One 6:e21215

    Article  CAS  Google Scholar 

  83. Hanagata N (2012) Structure-dependent immunostimulatory effect of CpG oligodeoxynucleotides and their delivery system. Int J Nanomedicine 7:2181–2195

    Article  CAS  Google Scholar 

  84. Klinman DM (2004) Immunotherapeutic uses of CpG oligodeoxynucleotides. Nat Rev Immunol 4:248–257

    Article  Google Scholar 

  85. Paredes E, Evans M, Das SR (2011) RNA labeling, conjugation and ligation. Methods 54(2):251–259

    Article  CAS  Google Scholar 

  86. Grate D, Wilson C (1999) Laser-mediated, site-specific inactivation of RNA transcripts. Proc Natl Acad Sci U S A 96:6131–6136

    Article  CAS  Google Scholar 

  87. Paige JS, Wu KY, Jaffrey SR (2011) RNA mimics of green fluorescent protein. Science 333:642–646

    Article  CAS  Google Scholar 

  88. Shu D, Zhang L, Khisamutdinov E et al (2013) Programmable folding of fusion RNA complex driven by the 3WJ motif of phi29 motor pRNA. Nucleic Acids Res 42:e10

    Article  Google Scholar 

  89. Shlyakhtenko LS, Gall AA, Filonov A et al (2003) Silatrane-based surface chemistry for immobilization of DNA, protein-DNA complexes and other biological materials. Ultramicroscopy 97:279–287

    Article  CAS  Google Scholar 

Download references

Acknowledgements

The research was supported by NIH grants R01-EB003730 and U01-CA151648 to P.G. The content is solely the responsibility of the authors and does not necessarily represent the official views of NIH. Funding to Peixuan Guo’s Endowed Chair in Nanobiotechnology position is from the William Fairish Endowment Fund. P.G. is a cofounder of Kylin Therapeutics, Inc., RNA Nano, LLC., and Biomotor and Nucleic Acid Nanotechnology Development Corp., Ltd.

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Farzin Haque Ph.D. .

Editor information

Editors and Affiliations

Rights and permissions

Reprints and permissions

Copyright information

© 2015 Springer Science+Business Media New York

About this protocol

Cite this protocol

Haque, F., Guo, P. (2015). Overview of Methods in RNA Nanotechnology: Synthesis, Purification, and Characterization of RNA Nanoparticles. In: Guo, P., Haque, F. (eds) RNA Nanotechnology and Therapeutics. Methods in Molecular Biology, vol 1297. Humana Press, New York, NY. https://doi.org/10.1007/978-1-4939-2562-9_1

Download citation

  • DOI: https://doi.org/10.1007/978-1-4939-2562-9_1

  • Publisher Name: Humana Press, New York, NY

  • Print ISBN: 978-1-4939-2561-2

  • Online ISBN: 978-1-4939-2562-9

  • eBook Packages: Springer Protocols

Publish with us

Policies and ethics