Skip to main content

Biophysical Methods for Identifying Fragment-Based Inhibitors of Protein-Protein Interactions

  • Protocol
Protein-Protein Interactions

Part of the book series: Methods in Molecular Biology ((MIMB,volume 1278))

Abstract

Fragment-based lead discovery complements high-throughput screening and computer-aided drug design for the discovery of small-molecule inhibitors of protein-protein interactions. Fragments are molecules with molecular masses ca 280 Da or smaller, and are generally screened using structural or biophysical approaches. Several methods of fragment-based screening are feasible for any soluble protein that can be expressed and purified; specific techniques also have size limitations and/or require multiple milligrams of protein. This chapter describes some of the most common fragment-discovery methods, including surface plasmon resonance, nuclear magnetic resonance, differential scanning fluorimetry, and X-ray crystallography.

This is a preview of subscription content, log in via an institution to check access.

Access this chapter

Protocol
USD 49.95
Price excludes VAT (USA)
  • Available as PDF
  • Read on any device
  • Instant download
  • Own it forever
eBook
USD 139.00
Price excludes VAT (USA)
  • Available as EPUB and PDF
  • Read on any device
  • Instant download
  • Own it forever
Softcover Book
USD 179.99
Price excludes VAT (USA)
  • Compact, lightweight edition
  • Dispatched in 3 to 5 business days
  • Free shipping worldwide - see info
Hardcover Book
USD 249.99
Price excludes VAT (USA)
  • Durable hardcover edition
  • Dispatched in 3 to 5 business days
  • Free shipping worldwide - see info

Tax calculation will be finalised at checkout

Purchases are for personal use only

Institutional subscriptions

References

  1. Rees DC, Congreve M, Murray CW et al (2004) Fragment-based lead discovery. Nat Rev Drug Discov 3:660–672

    Article  CAS  PubMed  Google Scholar 

  2. Hajduk PJ, Greer J (2007) A decade of fragment-based drug design: Strategic advances and lessons learned. Nat Rev Drug Discov 6:211–219

    Article  CAS  PubMed  Google Scholar 

  3. Scott DE, Ehebauer MT, Pukala T et al (2013) Using a fragment-based approach to target protein-protein interactions. Chembiochem 14:332–342

    Article  PubMed Central  CAS  PubMed  Google Scholar 

  4. Braisted AC, Oslob JD, Delano WL et al (2003) Discovery of a potent small molecule IL-2 inhibitor through fragment assembly. J Am Chem Soc 125:3714–3715

    Article  CAS  PubMed  Google Scholar 

  5. Arkin MR, Randal M, Delano WL et al (2003) Binding of small molecules to an adaptive protein-protein interface. Proc Natl Acad Sci U S A 100:1603–1608

    Article  PubMed Central  CAS  PubMed  Google Scholar 

  6. Petros AM, Huth JR, Oost T et al (2010) Discovery of a potent and selective bcl-2 inhibitor using SAR by NMR. Bioorg Med Chem Lett 20:6587–6591

    Article  CAS  PubMed  Google Scholar 

  7. Fuller JC, Burgoyne NJ, Jackson RM (2009) Predicting druggable binding sites at the protein-protein interface. Drug Discov Today 14:155–161

    Article  CAS  PubMed  Google Scholar 

  8. Lau WF, Withka JM, Hepworth D et al (2011) Design of a multi-purpose fragment screening library using molecular complexity and orthogonal diversity metrics. J Comput Aided Mol Des 25:621–636

    Article  CAS  PubMed  Google Scholar 

  9. Na J, Hu Q (2011) Design of screening collections for successful fragment-based lead discovery. Methods Mol Biol 685:219–240

    Article  CAS  PubMed  Google Scholar 

  10. Chen IJ, Hubbard RE (2009) Lessons for fragment library design: analysis of output from multiple screening campaigns. J Comput Aided Mol Des 23:603–620

    Article  PubMed  Google Scholar 

  11. Erlanson DA, Wells JA, Braisted AC (2004) Tethering: fragment-based drug discovery. Annu Rev Biophys Biomol Struct 33:199–223

    Article  CAS  PubMed  Google Scholar 

  12. Wilson CG, Arkin MR (2013) Probing structural adaptivity at PPI interfaces with small molecules Drug Discovery Today: Technologies 10 (4):e501–e508

    Google Scholar 

  13. Giannetti AM, Koch BD, Browner MF (2008) Surface plasmon resonance based assay for the detection and characterization of promiscuous inhibitors. J Med Chem 51:574–580

    Article  CAS  PubMed  Google Scholar 

  14. Babaoglu K, Simeonov A, Irwin JJ et al (2008) Comprehensive mechanistic analysis of hits from high-throughput and docking screens against beta-lactamase. J Med Chem 51:2502–2511

    Article  PubMed Central  CAS  PubMed  Google Scholar 

  15. Cimmperman P, Baranauskiene L, Jachimoviciute S et al (2008) A quantitative model of thermal stabilization and destabilization of proteins by ligands. Biophys J 95:3222–3231

    Article  PubMed Central  CAS  PubMed  Google Scholar 

  16. Kranz JK, Schalk-Hihi C (2011) Protein thermal shifts to identify low molecular weight fragments. Methods Enzymol 493:277–298

    Article  CAS  PubMed  Google Scholar 

  17. Rizo J, Rosen MK, Gardner KH (2012) Enlightening molecular mechanisms through study of protein interactions. J Mol Cell Biol 4:270–283

    Article  PubMed Central  CAS  PubMed  Google Scholar 

  18. Pellecchia M, Bertini I, Cowburn D et al (2008) Perspectives on NMR in drug discovery: a technique comes of age. Nat Rev Drug Discov 7:738–745

    Article  PubMed Central  CAS  PubMed  Google Scholar 

  19. Ito Y, Selenko P (2010) Cellular structural biology. Curr Opin Struct Biol 20:640–648

    Article  CAS  PubMed  Google Scholar 

  20. Dalvit C, Fagerness PE, Hadden DT et al (2003) Fluorine-NMR experiments for high-throughput screening: theoretical aspects, practical considerations, and range of applicability. J Am Chem Soc 125:7696–7703

    Article  CAS  PubMed  Google Scholar 

  21. Dalvit C, Flocco M, Veronesi M et al (2002) Fluorine-NMR competition binding experiments for high-throughput screening of large compound mixtures. Comb Chem High Throughput Screen 5:605–611

    Article  CAS  PubMed  Google Scholar 

  22. Hajduk PJ, Meadows RP, Fesik SW (1999) NMR-based screening in drug discovery. Q Rev Biophys 32:211–240

    Article  CAS  PubMed  Google Scholar 

  23. Hajduk PJ, Gerfin T, Boehlen JM et al (1999) High-throughput nuclear magnetic resonance-based screening. J Med Chem 42:2315–2317

    Article  CAS  PubMed  Google Scholar 

  24. Murray CW, Blundell TL (2010) Structural biology in fragment-based drug design. Curr Opin Struct Biol 20:497–507

    Article  CAS  PubMed  Google Scholar 

  25. Spurlino JC (2011) Fragment screening purely with protein crystallography. Methods Enzymol 493:321–356

    Article  CAS  PubMed  Google Scholar 

  26. Bottcher J, Jestel A, Kiefersauer R et al (2011) Key factors for successful generation of protein-fragment structures requirement on protein, crystals, and technology. Methods Enzymol 493:61–89

    Article  PubMed  Google Scholar 

  27. Prakash O, Eisenberg MA (1979) Biotinyl 5'-adenylate: corepressor role in the regulation of the biotin genes of Escherichia coli k-12. Proc Natl Acad Sci U S A 76:5592–5595

    Article  PubMed Central  CAS  PubMed  Google Scholar 

  28. Giannetti AM (2011) From experimental design to validated hits a comprehensive walk-through of fragment lead identification using surface plasmon resonance. Methods Enzymol 493:169–218

    Article  CAS  PubMed  Google Scholar 

  29. Zhang JH, Chung TD, Oldenburg KR (1999) A simple statistical parameter for use in evaluation and validation of high throughput screening assays. J Biomol Screen 4:67–73

    Article  PubMed  Google Scholar 

  30. Niesen FH, Berglund H, Vedadi M (2007) The use of differential scanning fluorimetry to detect ligand interactions that promote protein stability. Nat Protoc 2:2212–2221

    Article  CAS  PubMed  Google Scholar 

  31. Matulis D, Kranz JK, Salemme FR et al (2005) Thermodynamic stability of carbonic anhydrase: measurements of binding affinity and stoichiometry using thermofluor. Biochemistry 44:5258–5266

    Article  CAS  PubMed  Google Scholar 

  32. Maurer T (2011) Advancing fragment binders to lead-like compounds using ligand and protein-based NMR spectroscopy. Methods Enzymol 493:469–485

    Article  CAS  PubMed  Google Scholar 

  33. Bertini I, Molinari H, Niccolai N (1991) NMR and biomolecular structure, vol xvii. VCH, Weinheim, 209 p

    Google Scholar 

  34. Dalvit C, Pevarello P, Tato M et al (2000) Identification of compounds with binding affinity to proteins via magnetization transfer from bulk water. J Biomol NMR 18:65–68

    Article  CAS  PubMed  Google Scholar 

  35. Gossert AD, Henry C, Blommers MJ et al (2009) Time efficient detection of protein-ligand interactions with the polarization optimized PO-WaterLOGSY NMR experiment. J Biomol NMR 43:211–217

    Article  CAS  PubMed  Google Scholar 

  36. Shuker SB, Hajduk PJ, Meadows RP et al (1996) Discovering high-affinity ligands for proteins: SAR by NMR. Science 274:1531–1534

    Article  CAS  PubMed  Google Scholar 

  37. Kabsch W (2010) Xds. Acta Crystallogr D Biol Crystallogr 66:125–132

    Article  PubMed Central  CAS  PubMed  Google Scholar 

  38. Holton J, Alber T (2004) Automated protein crystal structure determination using ELVES. Proc Natl Acad Sci U S A 101:1537–1542

    Article  PubMed Central  CAS  PubMed  Google Scholar 

  39. Adams PD, Afonine PV, Bunkoczi G et al (2010) Phenix: a comprehensive python-based system for macromolecular structure solution. Acta Crystallogr D Biol Crystallogr 66:213–221

    Article  PubMed Central  CAS  PubMed  Google Scholar 

  40. Emsley P, Cowtan K (2004) Coot: model-building tools for molecular graphics. Acta Crystallogr D Biol Crystallogr 60:2126–2132

    Article  PubMed  Google Scholar 

  41. Hamalainen MD, Zhukov A, Ivarsson M et al (2008) Label-free primary screening and affinity ranking of fragment libraries using parallel analysis of protein panels. J Biomol Screen 13:202–209

    Article  PubMed  Google Scholar 

  42. Schrodinger, Llc (2010) The PyMOL molecular graphics system, version 1.3r1

    Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Michelle R. Arkin .

Editor information

Editors and Affiliations

Rights and permissions

Reprints and permissions

Copyright information

© 2015 Springer Science+Business Media New York

About this protocol

Cite this protocol

Pfaff, S.J., Chimenti, M.S., Kelly, M.J.S., Arkin, M.R. (2015). Biophysical Methods for Identifying Fragment-Based Inhibitors of Protein-Protein Interactions. In: Meyerkord, C., Fu, H. (eds) Protein-Protein Interactions. Methods in Molecular Biology, vol 1278. Humana Press, New York, NY. https://doi.org/10.1007/978-1-4939-2425-7_39

Download citation

  • DOI: https://doi.org/10.1007/978-1-4939-2425-7_39

  • Publisher Name: Humana Press, New York, NY

  • Print ISBN: 978-1-4939-2424-0

  • Online ISBN: 978-1-4939-2425-7

  • eBook Packages: Springer Protocols

Publish with us

Policies and ethics