Skip to main content

Identification of Essential Genes and Synthetic Lethal Gene Combinations in Escherichia coli K-12

  • Protocol
  • First Online:

Part of the book series: Methods in Molecular Biology ((MIMB,volume 1279))

Abstract

Here we describe the systematic identification of single genes and gene pairs, whose knockout causes lethality in Escherichia coli K-12. During construction of precise single-gene knockout library of E. coli K-12, we identified 328 essential gene candidates for growth in complex (LB) medium. Upon establishment of the Keio single-gene deletion library, we undertook the development of the ASKA single-gene deletion library carrying a different antibiotic resistance. In addition, we developed tools for identification of synthetic lethal gene combinations by systematic construction of double-gene knockout mutants. We introduce these methods herein.

This is a preview of subscription content, log in via an institution.

Buying options

Protocol
USD   49.95
Price excludes VAT (USA)
  • Available as PDF
  • Read on any device
  • Instant download
  • Own it forever
eBook
USD   84.99
Price excludes VAT (USA)
  • Available as EPUB and PDF
  • Read on any device
  • Instant download
  • Own it forever
Softcover Book
USD   109.99
Price excludes VAT (USA)
  • Compact, lightweight edition
  • Dispatched in 3 to 5 business days
  • Free shipping worldwide - see info
Hardcover Book
USD   109.99
Price excludes VAT (USA)
  • Durable hardcover edition
  • Dispatched in 3 to 5 business days
  • Free shipping worldwide - see info

Tax calculation will be finalised at checkout

Purchases are for personal use only

Learn about institutional subscriptions

Springer Nature is developing a new tool to find and evaluate Protocols. Learn more

References

  1. Baba T, Ara T, Hasegawa M et al (2006) Construction of Escherichia coli K-12 in-frame, single-gene knock-out mutants—the Keio collection. Mol Syst Biol. doi:10.1038/msb4100050

    Google Scholar 

  2. Yamamoto N, Nakahigashi K, Nakamichi T et al (2009) Update on the Keio collection of Escherichia coli single-gene deletion mutants. Mol Syst Biol 5:335

    Article  PubMed Central  PubMed  Google Scholar 

  3. Giaever G, Chu AM, Ni L et al (2002) Functional profiling of the Saccharomyces cerevisiae genome. Nature 418:387–391

    Article  CAS  PubMed  Google Scholar 

  4. Kobayashi K, Ehrlich SD, Albertini A et al (2003) Essential Bacillus subtilis genes. Proc Natl Acad Sci U S A 100:4678–4683

    Article  CAS  PubMed Central  PubMed  Google Scholar 

  5. Jacobs MA, Alwood A, Thaipisuttikul I et al (2003) Comprehensive transposon mutant library of Pseudomonas aeruginosa. Proc Natl Acad Sci U S A 100:14339–14344

    Article  CAS  PubMed Central  PubMed  Google Scholar 

  6. Mori H, Isono K, Horiuchi T et al (2000) Functional genomics of Escherichia coli in Japan. Res Microbiol 151:121–128

    Article  CAS  PubMed  Google Scholar 

  7. Kohara Y, Akiyama K, Isono K (1987) The physical map of the whole E. coli chromosome: application of a new strategy for rapid analysis and sorting of a large genomic library. Cell 50:495–508

    Article  CAS  PubMed  Google Scholar 

  8. Miki T, Yamamoto Y, Matsuda H (2008) A novel, simple, high-throughput method for isolation of genome-wide transposon insertion mutants of Escherichia coli K-12. Methods Mol Biol 416:195–204

    Article  CAS  PubMed  Google Scholar 

  9. Datsenko KA, Wanner BL (2000) One-step inactivation of chromosomal genes in Escherichia coli K-12 using PCR products. Proc Natl Acad Sci U S A 97:6640–6645

    Article  CAS  PubMed Central  PubMed  Google Scholar 

  10. Baba T, Mori H (2008) The construction of systematic in-frame, single-gene knockout mutant collection in Escherichia coli K-12. Methods Mol Biol 416:171–181

    Article  PubMed  Google Scholar 

  11. Butland G, Babu M, Diaz-Mejia JJ et al (2008) eSGA: E. coli synthetic genetic array analysis. Nat Methods 5:789–795

    Article  CAS  PubMed  Google Scholar 

  12. Typas A, Nichols RJ, Siegele DA et al (2008) High-throughput, quantitative analyses of genetic interactions in E. coli. Nat Methods 5:781–787

    Article  CAS  PubMed Central  PubMed  Google Scholar 

  13. Gerdes SY, Scholle MD, Campbell JW et al (2003) Experimental determination and system level analysis of essential genes in Escherichia coli MG1655. J Bacteriol 185:5673–5684

    Article  CAS  PubMed Central  PubMed  Google Scholar 

  14. van Opijnen T, Camilli A (2013) Transposon insertion sequencing: a new tool for systems-level analysis of microorganisms. Nat Rev Microbiol 11:435–442

    Article  PubMed  Google Scholar 

  15. Sambrook J, Russell DW (2001) Molecular cloning: a laboratory manual, 3rd edn. Cold Spring Harbor Laboratory, Cold Spring Harbor

    Google Scholar 

  16. Takeuchi R, Tamura T, Nakayashiki T et al (2014) Colony-live—a high-throughput method for measuring microbial colony growth kinetics—reveals diverse growth effects of gene knockouts in Escherichia coli. BMC Microbiol 14:171

    Article  PubMed Central  PubMed  Google Scholar 

  17. Yong HT, Yamamoto N, Takeuchi R et al (2013) Development of a system for discovery of genetic interactions for essential genes in Escherichia coli K-12. Genes Genet Syst 88:233–240

    CAS  PubMed  Google Scholar 

  18. Hiraga S (1986) Mechanisms of stable plasmid inheritance. Adv Biophys 21:91–103

    Article  CAS  PubMed  Google Scholar 

  19. Kline BC (1985) A review of mini-F plasmid maintenance. Plasmid 14:1–16

    Article  CAS  PubMed  Google Scholar 

  20. Hiraga S, Ogura T, Mori H et al (1985) Mechanisms essential for stable inheritance of mini-F plasmid. Basic Life Sci 30:469–487

    CAS  PubMed  Google Scholar 

  21. Timmis K, Cabello F, Cohen SN (1975) Cloning, isolation, and characterization of replication regions of complex plasmid genomes. Proc Natl Acad Sci U S A 72:2242–2246

    Article  CAS  PubMed Central  PubMed  Google Scholar 

  22. Lovett MA, Helinski DR (1976) Method for the isolation of the replication region of a bacterial replicon: construction of a mini-F’kn plasmid. J Bacteriol 127:982–987

    CAS  PubMed Central  PubMed  Google Scholar 

  23. Lane HE (1981) Replication and incompatibility of F and plasmids in the IncFI Group. Plasmid 5:100–126

    Article  CAS  PubMed  Google Scholar 

  24. Mori H, Kondo A, Ohshima A et al (1986) Structure and function of the F plasmid genes essential for partitioning. J Mol Biol 192:1–15

    Article  CAS  PubMed  Google Scholar 

  25. Kitagawa M, Ara T, Arifuzzaman M et al (2005) Complete set of ORF clones of Escherichia coli ASKA library (a complete set of E. coli K-12 ORF archive): unique resources for biological research. DNA Res 12:291–299

    Article  CAS  PubMed  Google Scholar 

  26. Rajagopala SV, Yamamoto N, Zweifel AE et al (2010) The Escherichia coli K-12 ORFeome: a resource for comparative molecular microbiology. BMC Genomics 11:470

    Article  PubMed Central  PubMed  Google Scholar 

  27. Nichols RJ, Sen S, Choo YJ et al (2011) Phenotypic landscape of a bacterial cell. Cell 144:143–156

    Article  CAS  PubMed Central  PubMed  Google Scholar 

  28. Tohsato Y, Mori H (2008) Phenotype profiling of single gene deletion mutants of E. coli using Biolog technology. Genome Inform 21:42–52

    Article  CAS  PubMed  Google Scholar 

  29. Hayashi K, Morooka N, Yamamoto Y et al (2006) Highly accurate genome sequences of Escherichia coli K-12 strains MG1655 and W3110. Mol Syst Biol. doi:10.1038/msb4100049

    PubMed Central  PubMed  Google Scholar 

  30. Riley M, Abe T, Arnaud MB et al (2006) Escherichia coli K-12: a cooperatively developed annotation snapshot—2005. Nucleic Acids Res 34:1–9

    Article  CAS  PubMed Central  PubMed  Google Scholar 

  31. Murakami A, Nakatogawa H, Ito K (2004) Translation arrest of SecM is essential for the basal and regulated expression of SecA. Proc Natl Acad Sci U S A 101:12330–12335

    Article  CAS  PubMed Central  PubMed  Google Scholar 

  32. Nakatogawa H, Murakami A, Mori H et al (2005) SecM facilitates translocase function of SecA by localizing its biosynthesis. Genes Dev 19:436–444

    Article  CAS  PubMed Central  PubMed  Google Scholar 

  33. Kruse T, Moller-Jensen J, Lobner-Olesen A et al (2003) Dysfunctional MreB inhibits chromosome segregation in Escherichia coli. EMBO J 22:5283–5292

    Article  CAS  PubMed Central  PubMed  Google Scholar 

  34. Kruse T, Bork-Jensen J, Gerdes K (2005) The morphogenetic MreBCD proteins of Escherichia coli form an essential membrane-bound complex. Mol Microbiol 55:78–89

    Article  CAS  PubMed  Google Scholar 

Download references

Acknowledgements

This work was supported by a Grant-in-Aid for Scientific Research on Priority Areas from the Ministry of Education, Culture, Sports, Science, and Technology of Japan and a grant from CREST, JST (Japan Science and Technology), NEDO (New Energy and Industrial Technology Development Organization), Tsuruoka City, Yamagata prefecture in Japan. B.L.W. is supported by the US National Science Foundation (grant number 106394).

Author information

Authors and Affiliations

Authors

Corresponding authors

Correspondence to Hirotada Mori or Barry L. Wanner .

Editor information

Editors and Affiliations

Rights and permissions

Reprints and permissions

Copyright information

© 2015 Springer Science+Business Media New York

About this protocol

Cite this protocol

Mori, H. et al. (2015). Identification of Essential Genes and Synthetic Lethal Gene Combinations in Escherichia coli K-12. In: Lu, L. (eds) Gene Essentiality. Methods in Molecular Biology, vol 1279. Humana Press, New York, NY. https://doi.org/10.1007/978-1-4939-2398-4_4

Download citation

  • DOI: https://doi.org/10.1007/978-1-4939-2398-4_4

  • Published:

  • Publisher Name: Humana Press, New York, NY

  • Print ISBN: 978-1-4939-2397-7

  • Online ISBN: 978-1-4939-2398-4

  • eBook Packages: Springer Protocols

Publish with us

Policies and ethics