Skip to main content

Chemical Genomic Profiling via Barcode Sequencing to Predict Compound Mode of Action

  • Protocol
  • First Online:

Part of the book series: Methods in Molecular Biology ((MIMB,volume 1263))

Abstract

Chemical genomics is an unbiased, whole-cell approach to characterizing novel compounds to determine mode of action and cellular target. Our version of this technique is built upon barcoded deletion mutants of Saccharomyces cerevisiae and has been adapted to a high-throughput methodology using next-generation sequencing. Here we describe the steps to generate a chemical genomic profile from a compound of interest, and how to use this information to predict molecular mechanism and targets of bioactive compounds.

This is a preview of subscription content, log in via an institution.

Buying options

Protocol
USD   49.95
Price excludes VAT (USA)
  • Available as PDF
  • Read on any device
  • Instant download
  • Own it forever
eBook
USD   89.00
Price excludes VAT (USA)
  • Available as EPUB and PDF
  • Read on any device
  • Instant download
  • Own it forever
Softcover Book
USD   119.00
Price excludes VAT (USA)
  • Compact, lightweight edition
  • Dispatched in 3 to 5 business days
  • Free shipping worldwide - see info
Hardcover Book
USD   109.99
Price excludes VAT (USA)
  • Durable hardcover edition
  • Dispatched in 3 to 5 business days
  • Free shipping worldwide - see info

Tax calculation will be finalised at checkout

Purchases are for personal use only

Learn about institutional subscriptions

Springer Nature is developing a new tool to find and evaluate Protocols. Learn more

References

  1. Parsons A et al (2006) Exploring the mode-of-action of bioactive compounds by chemical-genetic profiling in yeast. Cell 126:611–625

    Article  CAS  PubMed  Google Scholar 

  2. Ho CH et al (2011) Combining functional genomics and chemical biology to identify targets of bioactive compounds. Curr Opin Chem Biol 15:66–78

    Article  CAS  PubMed  Google Scholar 

  3. Fung S-Y et al (2013) Unbiased screening of marine sponge extracts for anti-inflammatory agents combined with chemical genomics identifies girolline as an inhibitor of protein synthesis. ACS Chem Biol 9:247–257

    Article  PubMed  Google Scholar 

  4. Williams DE et al (2011) Padanamides A and B, highly modified linear tetrapeptides produced in culture by a Streptomyces sp. isolated from a marine sediment. Org Lett 13:3936–3939

    Article  CAS  PubMed Central  PubMed  Google Scholar 

  5. Giaever G et al (2004) Chemogenomic profiling: identifying the functional interactions of small molecules in yeast. Proc Natl Acad Sci U S A 101:793–798

    Article  CAS  PubMed Central  PubMed  Google Scholar 

  6. Giaever G et al (2002) Functional profiling of the Saccharomyces cerevisiae genome. Nature 418:387–391

    Article  CAS  PubMed  Google Scholar 

  7. Kim D-U et al (2010) Analysis of a genome-wide set of gene deletions in the fission yeast Schizosaccharomyces pombe. Nat Biotechnol 28:617–623

    Article  CAS  PubMed Central  PubMed  Google Scholar 

  8. Kitagawa M et al (2006) Complete set of ORF clones of Escherichia coli ASKA library (a complete set of E. coli K-12 ORF archive): unique resources for biological research. DNA Res 12:291–299

    Article  Google Scholar 

  9. Smith AM et al (2009) Quantitative phenotyping via deep barcode sequencing. Genome Res 19:1836–1842

    Article  CAS  PubMed Central  PubMed  Google Scholar 

  10. Costanzo M et al (2010) The genetic landscape of a cell. Science 327:425–431

    Article  CAS  PubMed  Google Scholar 

  11. Robinson DG, Chen W, Storey JD, Gresham D (2014) Design and analysis of bar-seq experiments. G3 (Bethesda) 4:11–18

    Article  Google Scholar 

  12. Robinson MD, McCarthy DJ, Smyth GK (2010) edgeR: a Bioconductor package for differential expression analysis of digital gene expression data. Bioinformatics 26:139–140

    Article  CAS  PubMed Central  PubMed  Google Scholar 

  13. Andrusiak K (2012) Adapting S. cerevisiae chemical genomics for identifying the modes of action of natural compounds. Thesis. https://tspace.library.utoronto.ca/handle/1807/32456. Accessed 24 Apr 2014

  14. Smith AM et al (2010) Highly-multiplexed barcode sequencing: an efficient method for parallel analysis of pooled samples. Nucleic Acids Res 38:e142

    Article  PubMed Central  PubMed  Google Scholar 

Download references

Acknowledgements

J.P., S.M., and I.O. are funded by the DOE Great Lakes Bioenergy Research Center (DOE BER Office of Science DE-FC02-07ER64494). SC is supported by a RIKEN Foreign Postdoctoral Researcher Award. C.M., and R.D. are supported by grants from the National Institutes of Health (1R01HG005084-01A1, 1R01GM104975-01, R01HG005853), a grant from the National Science Foundation (DBI 0953881), and the CIFAR Genetic Networks Program. S.W.S. is supported by an NIH Biotechnology training grant (5T32GM008347-22). C.B. is supported by the Canadian Institutes of Health Research (CIHR MOP-57830). R.A. is supported by the Natural Science and Engineering Research Council (NSERC) of Canada, the Canada Foundation for Innovation (CFI), and the Canadian Cancer Society Research Institute.

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Jeff S. Piotrowski .

Editor information

Editors and Affiliations

Rights and permissions

Reprints and permissions

Copyright information

© 2015 Springer Science+Business Media New York

About this protocol

Cite this protocol

Piotrowski, J.S. et al. (2015). Chemical Genomic Profiling via Barcode Sequencing to Predict Compound Mode of Action. In: Hempel, J., Williams, C., Hong, C. (eds) Chemical Biology. Methods in Molecular Biology, vol 1263. Humana Press, New York, NY. https://doi.org/10.1007/978-1-4939-2269-7_23

Download citation

  • DOI: https://doi.org/10.1007/978-1-4939-2269-7_23

  • Published:

  • Publisher Name: Humana Press, New York, NY

  • Print ISBN: 978-1-4939-2268-0

  • Online ISBN: 978-1-4939-2269-7

  • eBook Packages: Springer Protocols

Publish with us

Policies and ethics