Skip to main content

GFP-Based Expression Screening of Membrane Proteins in Insect Cells Using the Baculovirus System

  • Protocol
  • First Online:
Book cover Structural Proteomics

Abstract

A key step in the production of recombinant membrane proteins for structural studies is the optimization of protein yield and quality. One commonly used approach is to fuse the protein to green fluorescent protein (GFP), enabling expression to be tracked without the need to purify the protein. Combining fusion to green fluorescent protein with the baculovirus expression system provides a useful platform for both screening and production of eukaryotic membrane proteins. In this chapter we describe our protocol for the expression screening of membrane proteins in insect cells using fusion to GFP as a reporter. We use both SDS-PAGE with in-gel fluorescence imaging and fluorescence-detection size-exclusion chromatography (FSEC) to screen for expression.

This is a preview of subscription content, log in via an institution to check access.

Access this chapter

Protocol
USD 49.95
Price excludes VAT (USA)
  • Available as PDF
  • Read on any device
  • Instant download
  • Own it forever
eBook
USD 84.99
Price excludes VAT (USA)
  • Available as EPUB and PDF
  • Read on any device
  • Instant download
  • Own it forever
Softcover Book
USD 139.00
Price excludes VAT (USA)
  • Compact, lightweight edition
  • Dispatched in 3 to 5 business days
  • Free shipping worldwide - see info
Hardcover Book
USD 109.99
Price excludes VAT (USA)
  • Durable hardcover edition
  • Dispatched in 3 to 5 business days
  • Free shipping worldwide - see info

Tax calculation will be finalised at checkout

Purchases are for personal use only

Institutional subscriptions

References

  1. Leonetti MD, Yuan P, Hsiung Y, Mackinnon R (2012) Functional and structural analysis of the human SLO3 pH- and voltage-gated K + channel. Proc Natl Acad Sci U S A 109:19274–19279

    Article  CAS  PubMed Central  PubMed  Google Scholar 

  2. Yuan P, Leonetti MD, Pico AR, Hsiung Y, MacKinnon R (2010) Structure of the human BK channel Ca2+-activation apparatus at 3.0 A resolution. Science 329:182–186

    Article  CAS  PubMed Central  PubMed  Google Scholar 

  3. Maeda S, Nakagawa S, Suga M et al (2009) Structure of the connexin 26 gap junction channel at 3.5 A resolution. Nature 458:597–602

    Article  CAS  PubMed  Google Scholar 

  4. Granier S, Manglik A, Kruse AC et al (2012) Structure of the delta-opioid receptor bound to naltrindole. Nature 485:400–404

    Article  CAS  PubMed Central  PubMed  Google Scholar 

  5. Hanson MA, Roth CB, Jo E et al (2012) Crystal structure of a lipid G protein-coupled receptor. Science 335:851–855

    Article  CAS  PubMed Central  PubMed  Google Scholar 

  6. Siu FY, He M, de Graaf C, Han GW et al (2013) Structure of the human glucagon class B G-protein-coupled receptor. Nature 499:444–449

    Article  CAS  PubMed  Google Scholar 

  7. Tan Q, Zhu Y, Li J et al (2013) Structure of the CCR5 chemokine receptor-HIV entry inhibitor maraviroc complex. Science 341:1387–1390

    Article  CAS  PubMed  Google Scholar 

  8. Wacker D, Wang C, Katritch V et al (2013) Structural features for functional selectivity at serotonin receptors. Science 340:615–619

    Article  CAS  PubMed Central  PubMed  Google Scholar 

  9. Wang C, Jiang Y, Ma J et al (2013) Structural basis for molecular recognition at serotonin receptors. Science 340:610–614

    Article  CAS  PubMed Central  PubMed  Google Scholar 

  10. Wu B, Chien EY, Mol CD et al (2010) Structures of the CXCR4 chemokine GPCR with small-molecule and cyclic peptide antagonists. Science 330:1066–1071

    Article  CAS  PubMed Central  PubMed  Google Scholar 

  11. Zhang C, Srinivasan Y, Arlow DH et al (2012) High-resolution crystal structure of human protease-activated receptor 1. Nature 492:387–392

    Article  CAS  PubMed Central  PubMed  Google Scholar 

  12. Shintre CA, Pike AC, Li Q et al (2013) Structures of ABCB10, a human ATP-binding cassette transporter in apo- and nucleotide-bound states. Proc Natl Acad Sci U S A 110:9710–9715

    Article  CAS  PubMed Central  PubMed  Google Scholar 

  13. Cherezov V, Rosenbaum DM, Hanson MA et al (2007) High-resolution crystal structure of an engineered human beta2-adrenergic G protein-coupled receptor. Science 318:1258–1265

    Article  CAS  PubMed Central  PubMed  Google Scholar 

  14. Rosenbaum DM, Cherezov V, Hanson MA et al (2007) GPCR engineering yields high-resolution structural insights into beta2-adrenergic receptor function. Science 318:1266–1273

    Article  CAS  PubMed  Google Scholar 

  15. Hanson MA, Brooun A, Baker KA et al (2007) Profiling of membrane protein variants in a baculovirus system by coupling cell-surface detection with small-scale parallel expression. Protein Expr Purif 56:85–92

    Article  CAS  PubMed Central  PubMed  Google Scholar 

  16. Chun E, Thompson AA, Liu W et al (2012) Fusion partner toolchest for the stabilization and crystallization of G protein-coupled receptors. Structure 20:967–976

    Article  CAS  PubMed Central  PubMed  Google Scholar 

  17. Drew D, Lerch M, Kunji E, Slotboom DJ, de Gier JW (2006) Optimization of membrane protein overexpression and purification using GFP fusions. Nat Methods 3:303–313

    Article  CAS  PubMed  Google Scholar 

  18. Newstead S, Kim H, von Heijne G, Iwata S, Drew D (2007) High-throughput fluorescent-based optimization of eukaryotic membrane protein overexpression and purification in Saccharomyces cerevisiae. Proc Natl Acad Sci U S A 104:13936–13941

    Article  CAS  PubMed Central  PubMed  Google Scholar 

  19. Kawate T, Gouaux E (2006) Fluorescence-detection size-exclusion chromatography for precrystallization screening of integral membrane proteins. Structure 14:673–681

    Article  CAS  PubMed  Google Scholar 

  20. Kawate T, Michel JC, Birdsong WT, Gouaux E (2009) Crystal structure of the ATP-gated P2X(4) ion channel in the closed state. Nature 460:592–598

    Article  CAS  PubMed Central  PubMed  Google Scholar 

  21. Quigley A, Dong YY, Pike AC et al (2013) The structural basis of ZMPSTE24-dependent laminopathies. Science 339:1604–1607

    Article  CAS  PubMed  Google Scholar 

  22. Zhao Y, Chapman DA, Jones IM (2003) Improving baculovirus recombination. Nucleic Acids Res 31:E6-6

    Article  PubMed  Google Scholar 

  23. Bird LE, Rada H, Flanagan J et al (2014) Application of In-Fusion™ cloning for the parallel construction of E. coli expression vectors. Methods Mol Biol 1116:209–234

    Article  PubMed  Google Scholar 

  24. Hitchman RB, Possee RD, Siaterli E et al (2010) Improved expression of secreted and membrane-targeted proteins in insect cells. Biotechnol Appl Biochem 56:85–93

    Article  CAS  PubMed  Google Scholar 

  25. Hitchman RB, Possee RD, Crombie AT et al (2010) Genetic modification of a baculovirus vector for increased expression in insect cells. Cell Biol Toxicol 26:57–68

    Article  CAS  PubMed  Google Scholar 

Download references

Acknowledgements

The OPPF-UK is funded by the Medical Research Council, UK (grant MR/K018779/1). We thank Professor Ian Jones (University of Reading) for providing the baculovirus bacmid.

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Nien-Jen Hu .

Editor information

Editors and Affiliations

Rights and permissions

Reprints and permissions

Copyright information

© 2015 Springer Science+Business Media New York

About this protocol

Cite this protocol

Hu, NJ. et al. (2015). GFP-Based Expression Screening of Membrane Proteins in Insect Cells Using the Baculovirus System. In: Owens, R. (eds) Structural Proteomics. Methods in Molecular Biology, vol 1261. Humana Press, New York, NY. https://doi.org/10.1007/978-1-4939-2230-7_11

Download citation

  • DOI: https://doi.org/10.1007/978-1-4939-2230-7_11

  • Published:

  • Publisher Name: Humana Press, New York, NY

  • Print ISBN: 978-1-4939-2229-1

  • Online ISBN: 978-1-4939-2230-7

  • eBook Packages: Springer Protocols

Publish with us

Policies and ethics