Skip to main content

Simultaneous Detection of Nuclear and Cytoplasmic RNA Variants Utilizing Stellaris® RNA Fluorescence In Situ Hybridization in Adherent Cells

  • Protocol
  • First Online:
In Situ Hybridization Protocols

Part of the book series: Methods in Molecular Biology ((MIMB,volume 1211))

Abstract

RNA fluorescence in situ hybridization (FISH) has long been an indispensable tool for the detection and localization of RNA and is increasingly becoming an important complement to other gene expression analysis methods. We detail a streamlined RNA FISH protocol for the simultaneous imaging of multiple RNA gene products and RNA variants in fixed mammalian cells. The technique utilizes fluorescently pre-labeled, short DNA oligonucleotides (20 nucleotides in length), pooled into sets of up to 48 individual probes. The overall binding of multiple oligonucleotides to the same RNA target results in punctate fluorescent signals representing individual RNA molecules without the need for enzymatic signal amplification. Visualization of these punctate signals, through the use of wide-field fluorescence microscopy, enables the quantification of single RNA transcripts. Additionally, by utilizing probe sets with spectrally distinct fluorophores, multiplex analysis of specific RNAs, or RNA variants, can be achieved. We focus on the detection of a cytoplasmic mRNA and a nuclear long noncoding RNA to illustrate the benefits of this method for cell-specific detection and subcellular localization. Post-processing of images and spot counting is briefly discussed to demonstrate the capabilities of this method for the statistical analysis of RNA molecule number per cell, which is information that can be utilized to determine overall gene expression levels and cell-to-cell gene expression variation.

This is a preview of subscription content, log in via an institution to check access.

Access this chapter

Protocol
USD 49.95
Price excludes VAT (USA)
  • Available as PDF
  • Read on any device
  • Instant download
  • Own it forever
eBook
USD 89.00
Price excludes VAT (USA)
  • Available as EPUB and PDF
  • Read on any device
  • Instant download
  • Own it forever
Softcover Book
USD 119.99
Price excludes VAT (USA)
  • Compact, lightweight edition
  • Dispatched in 3 to 5 business days
  • Free shipping worldwide - see info
Hardcover Book
USD 169.99
Price excludes VAT (USA)
  • Durable hardcover edition
  • Dispatched in 3 to 5 business days
  • Free shipping worldwide - see info

Tax calculation will be finalised at checkout

Purchases are for personal use only

Institutional subscriptions

References

  1. ENCODE Project Consortium (2012) An integrated encyclopedia of DNA elements in the human genome. Nature 489:57–74. doi:10.1038/nature11247

    Article  Google Scholar 

  2. Rinn JL, Chang HY (2012) Genome regulation by long noncoding RNAs. Annu Rev Biochem 81:145–166. doi:10.1146/annurev-biochem-051410-092902

    Article  PubMed  CAS  Google Scholar 

  3. Clark MB, Choudhary A, Smith MA et al (2013) The dark matter rises: the expanding world of regulatory RNAs. Essays Biochem 54:1–16. doi:10.1042/bse0540001

    Article  PubMed  CAS  Google Scholar 

  4. Femino AM, Fay FS, Fogarty K et al (1998) Visualization of single RNA transcripts in situ. Science 280:585–590. doi:10.1126/science. 280.5363.585

    Article  PubMed  CAS  Google Scholar 

  5. Raj A, van den Bogaard P, Rifkin SA et al (2008) Imaging individual mRNA molecules using multiple singly labeled probes. Nat Methods 5:877–879. doi:10.1038/nmeth.1253

    Article  PubMed  CAS  PubMed Central  Google Scholar 

  6. Raj A, Peskin CS, Tranchina D et al (2006) Stochastic mRNA synthesis in mammalian cells. PLoS Biol 4:e309. doi:10.1371/journal.pbio.0040309

    Article  PubMed  PubMed Central  Google Scholar 

  7. Raj A, Rifkin SA, Andersen E et al (2010) Variability in gene expression underlies incomplete penetrance. Nature 463:913–918. doi: 10.1038/nature08781

    Article  PubMed  CAS  PubMed Central  Google Scholar 

  8. Batish M, Raj A, Tyagi S (2011) Single molecule imaging of RNA in situ. Methods Mol Biol 714:3–13. doi:10.1007/978-1-61779-005-8_1

    Article  PubMed  CAS  Google Scholar 

  9. Orjalo AV Jr, Johansson HE, Ruth JR (2011) Stellaris™ fluorescence in situ hybridization (FISH) probes: a powerful tool for mRNA detection. Nat Methods 8:I–III. doi:10.1038/nmeth.f.349

    Google Scholar 

  10. Levesque MJ, Ginart P, Wei Y et al (2013) Visualizing SNVs to quantify allele-specific expression in single cells. Nat Methods 10: 865–867. doi:10.1038/nmeth.2589

    Article  PubMed  CAS  PubMed Central  Google Scholar 

  11. Shaffer SM, Wu MT, Levesque MJ et al (2013) Turbo FISH: a method for rapid single molecule RNA FISH. PLoS One 8:e75120. doi: 10.1371/journal.pone.0075120

    Article  PubMed  CAS  PubMed Central  Google Scholar 

  12. Yildiz A, Forkey JN, McKinney SA et al (2003) Myosin V walks hand-over-hand: single fluorophore imaging with 1.5-nm localization. Science 300:2061–2065. doi:10.1126/science. 1084398

    Article  PubMed  CAS  Google Scholar 

  13. Hattinger CM, Jochemsen AG, Tanke HJ et al (2002) Induction of p21 mRNA synthesis after short-wavelength UV light visualized in individual cells by RNA FISH. J Histochem Cytochem 50: 81–89. doi:10.1177/002215540205000109

    Article  PubMed  CAS  Google Scholar 

  14. Wiles JE, Freer SM, Spector DL (2008) 3′ End processing of a long nuclear-retained noncoding RNA yields a tRNA-like cytoplasmic RNA. Cell 135:919–932. doi:10.1016/j.cell.2008.10.012

    Article  Google Scholar 

  15. Davis JM (ed) (2002) Basic cell culture. Oxford University Press, New York

    Google Scholar 

  16. Rifkin SA (2011) Identifying fluorescently labeled single molecules in image stacks using machine learning. Methods Mol Biol 772:329–348. doi:10.1007/978-1-61779-228-1_20

    Article  PubMed  CAS  Google Scholar 

  17. Allalou A, Wählby C (2009) BlobFinder, a tool for fluorescence microscopy image cytometry. Comput Meth Programs Biomed 94:58–65. doi:10.1016/j.cmpb.2008.08.006

    Article  CAS  Google Scholar 

  18. Mueller F, Senecal A, Tantale K et al (2013) FISH-quant: automatic counting of transcripts in 3D FISH images. Nat Methods 10:277–278. doi:10.1038/nmeth.2406

    Article  PubMed  CAS  Google Scholar 

  19. Lyubimova A, Itzkovitz S, Junker JP et al (2013) Nat Protoc 8:1743–1758. doi:10.1038/nprot.2013.109

    Article  PubMed  CAS  Google Scholar 

Download references

Acknowledgements

We gratefully acknowledge the continual support of Dr. Ron Cook and members of the Stellaris team at Biosearch Technologies, Inc. This chapter is dedicated to Dr. Jerry L. Ruth, a pioneer in the creation of probes for in situ hybridization.

Disclaimers

For research use only. Not for use in diagnostic procedures. Stellaris® is a trademark of Biosearch Technologies, Inc. Products and technologies appearing in this application note may have trademark or patent restrictions associated with them. Please see http://www.biosearchtech.com/legal for a full legal disclosure.

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Hans E. Johansson .

Editor information

Editors and Affiliations

Rights and permissions

Reprints and permissions

Copyright information

© 2014 Springer Science+Business Media New York

About this protocol

Cite this protocol

Coassin, S.R., Orjalo, A.V., Semaan, S.J., Johansson, H.E. (2014). Simultaneous Detection of Nuclear and Cytoplasmic RNA Variants Utilizing Stellaris® RNA Fluorescence In Situ Hybridization in Adherent Cells. In: Nielsen, B. (eds) In Situ Hybridization Protocols. Methods in Molecular Biology, vol 1211. Humana Press, New York, NY. https://doi.org/10.1007/978-1-4939-1459-3_15

Download citation

  • DOI: https://doi.org/10.1007/978-1-4939-1459-3_15

  • Published:

  • Publisher Name: Humana Press, New York, NY

  • Print ISBN: 978-1-4939-1458-6

  • Online ISBN: 978-1-4939-1459-3

  • eBook Packages: Springer Protocols

Publish with us

Policies and ethics