Skip to main content

Acute Brain Slice Methods for Adult and Aging Animals: Application of Targeted Patch Clamp Analysis and Optogenetics

  • Protocol
  • First Online:
Patch-Clamp Methods and Protocols

Part of the book series: Methods in Molecular Biology ((MIMB,volume 1183))

Abstract

The development of the living acute brain slice preparation for analyzing synaptic function roughly a half century ago was a pivotal achievement that greatly influenced the landscape of modern neuroscience. Indeed, many neuroscientists regard brain slices as the gold-standard model system for detailed cellular, molecular, and circuitry level analysis and perturbation of neuronal function. A critical limitation of this model system is the difficulty in preparing slices from adult and aging animals, and over the past several decades few substantial methodological improvements have emerged to facilitate patch clamp analysis in the mature adult stage. In this chapter we describe a robust and practical protocol for preparing brain slices from mature adult mice that are suitable for patch clamp analysis. This method reduces swelling and damage in superficial layers of the slices and improves the success rate for targeted patch clamp recordings, including recordings from fluorescently labeled populations in slices derived from transgenic mice. This adult brain slice method is suitable for diverse experimental applications, including both monitoring and manipulating neuronal activity with genetically encoded calcium indicators and optogenetic actuators, respectively. We describe the application of this adult brain slice platform and associated methods for screening kinetic properties of Channelrhodopsin (ChR) variants expressed in genetically defined neuronal subtypes.

This is a preview of subscription content, log in via an institution to check access.

Access this chapter

Protocol
USD 49.95
Price excludes VAT (USA)
  • Available as PDF
  • Read on any device
  • Instant download
  • Own it forever
eBook
USD 99.00
Price excludes VAT (USA)
  • Available as EPUB and PDF
  • Read on any device
  • Instant download
  • Own it forever
Softcover Book
USD 129.99
Price excludes VAT (USA)
  • Compact, lightweight edition
  • Dispatched in 3 to 5 business days
  • Free shipping worldwide - see info
Hardcover Book
USD 199.99
Price excludes VAT (USA)
  • Durable hardcover edition
  • Dispatched in 3 to 5 business days
  • Free shipping worldwide - see info

Tax calculation will be finalised at checkout

Purchases are for personal use only

Institutional subscriptions

References

  1. Aghajanian GK, Rasmussen K (1989) Intracellular studies in the facial nucleus illustrating a simple new method for obtaining viable motoneurons in adult rat brain slices. Synapse 3:331–338. doi:10.1002/syn.890030406

    Article  CAS  PubMed  Google Scholar 

  2. Moyer JR Jr, Brown TH (1998) Methods for whole-cell recording from visually preselected neurons of perirhinal cortex in brain slices from young and aging rats. J Neurosci Methods 86:35–54

    Article  PubMed  Google Scholar 

  3. Bischofberger J, Engel D, Li L, Geiger JR, Jonas P (2006) Patch-clamp recording from mossy fiber terminals in hippocampal slices. Nat Protoc 1:2075–2081. doi:10.1038/nprot.2006.312

    Article  CAS  PubMed  Google Scholar 

  4. Mainen ZF, Maletic-Savatic M, Shi SH et al (1999) Two-photon imaging in living brain slices. Methods 18:231–239. doi:10.1006/meth.1999.0776

    Article  CAS  PubMed  Google Scholar 

  5. Tanaka Y, Furuta T, Yanagawa Y, Kaneko T (2008) The effects of cutting solutions on the viability of GABAergic interneurons in cerebral cortical slices of adult mice. J Neurosci Methods 171:118–125. doi:10.1016/j.jneumeth.2008.02.021

    Article  CAS  PubMed  Google Scholar 

  6. Ye JH, Zhang J, Xiao C, Kong JQ (2006) Patch-clamp studies in the CNS illustrate a simple new method for obtaining viable neurons in rat brain slices: glycerol replacement of NaCl protects CNS neurons. J Neurosci Methods 158:251–259. doi:10.1016/j.jneumeth.2006.06.006

    Article  CAS  PubMed  Google Scholar 

  7. Dugue GP, Dumoulin A, Triller A, Dieudonne S (2005) Target-dependent use of co-released inhibitory transmitters at central synapses. J Neurosci 2:6490–6498. doi:10.1523/JNEUROSCI.1500-05.2005

    Article  Google Scholar 

  8. Aitken PG, Breese GR, Dudek FF et al (1995) Preparative methods for brain slices: a discussion. J Neurosci Methods 59:139–149

    Article  CAS  PubMed  Google Scholar 

  9. Lipton P, Aitken PG, Dudek FE et al (1995) Making the best of brain slices: comparing preparative methods. J Neurosci Methods 59: 151–156

    Article  CAS  PubMed  Google Scholar 

  10. Hille B (1971) The permeability of the sodium channel to organic cations in myelinated nerve. J Gen Physiol 58:599–619

    Article  CAS  PubMed Central  PubMed  Google Scholar 

  11. Peca J, Feliciano C, Ting JT et al (2011) Shank3 mutant mice display autistic-like behaviours and striatal dysfunction. Nature 472:437–442. doi:10.1038/nature09965

    Article  CAS  PubMed Central  PubMed  Google Scholar 

  12. Zhao S, Ting JT, Atallah HE et al (2011) Cell type-specific channelrhodopsin-2 transgenic mice for optogenetic dissection of neural circuitry function. Nat Methods 8:745–752

    Article  CAS  PubMed Central  PubMed  Google Scholar 

  13. Chen Q, Cichon J, Wang W et al (2012) Imaging neural activity using Thy1-GCaMP transgenic mice. Neuron 76:297–308. doi:10.1016/j.neuron.2012.07.011

    Article  CAS  PubMed Central  PubMed  Google Scholar 

  14. Ting JT, Feng G (2013) Development of transgenic animals for optogenetic manipulation of mammalian nervous system function: progress and prospects for behavioral neuroscience. Behav Brain Res 255:3–18. doi:10.1016/j.bbr.2013.02.037

    Article  CAS  PubMed  Google Scholar 

  15. Arenkiel BR, Peca J, Davison IG et al (2007) In vivo light-induced activation of neural circuitry in transgenic mice expressing channelrhodopsin-2. Neuron 54:205–218. doi:10.1016/j.neuron.2007.03.005

    Article  CAS  PubMed Central  PubMed  Google Scholar 

  16. Asrican B, Augustine GJ, Berglund K et al (2013) Next-generation transgenic mice for optogenetic analysis of neural circuits. Front Neural Circuits 7:160. doi:10.3389/fncir.2013.00160

    Article  PubMed Central  PubMed  Google Scholar 

  17. Ren J, Qin C, Hu F et al (2011) Habenula “cholinergic” neurons co-release glutamate and acetylcholine and activate postsynaptic neurons via distinct transmission modes. Neuron 69:445–452. doi:10.1016/j.neuron.2010.12.038

    Article  CAS  PubMed  Google Scholar 

  18. Wang H, Peca J, Matsuzaki M et al (2007) High-speed mapping of synaptic connectivity using photostimulation in Channelrhodopsin-2 transgenic mice. Proc Natl Acad Sci U S A 104:8143–8148. doi:10.1073/pnas.0700384104

    Article  CAS  PubMed Central  PubMed  Google Scholar 

  19. Ting JT, Peca J, Daigle TL et al (2012) Ultrafast optogenetic control of diverse neuronal populations with cre-inducible ChETA knock-in mice. Soc Neurosci Abs 208:11

    Google Scholar 

  20. Madisen L, Mao T, Koch H et al (2012) A toolbox of Cre-dependent optogenetic transgenic mice for light-induced activation and silencing. Nat Neurosci 15:793–802. doi:10.1038/nn.3078

    Article  CAS  PubMed Central  PubMed  Google Scholar 

  21. Yizhar O, Fenno LE, Davidson TJ et al (2011) Optogenetics in neural systems. Neuron 71:9–34. doi:10.1016/j.neuron.2011.06.004

    Article  CAS  PubMed  Google Scholar 

  22. Tang W, Ehrlich I, Wolff SB et al (2009) Faithful expression of multiple proteins via 2A-peptide self-processing: a versatile and reliable method for manipulating brain circuits. J Neurosci 29:8621–8629. doi:10.1523/JNEUROSCI.0359-09.2009

    Article  CAS  PubMed  Google Scholar 

  23. Prakash R, Yizhar O, Grewe B et al (2012) Two-photon optogenetic toolbox for fast inhibition, excitation and bistable modulation. Nat Methods 9:1171–1179. doi:10.1038/nmeth.2215

    Article  CAS  PubMed  Google Scholar 

  24. Yonehara K, Balint K, Noda M et al (2011) Spatially asymmetric reorganization of inhibition establishes a motion-sensitive circuit. Nature 469:407–410. doi:10.1038/nature09711

    Article  CAS  PubMed  Google Scholar 

  25. Li Y, Tsien RW (2012) pHTomato, a red, genetically encoded indicator that enables multiplex interrogation of synaptic activity. Nat Neurosci 15:1047–1053. doi:10.1038/nn.3126

    Article  CAS  PubMed Central  PubMed  Google Scholar 

  26. Aoyama K, Suh SW, Hamby AM et al (2006) Neuronal glutathione deficiency and age-dependent neurodegeneration in the EAAC1 deficient mouse. Nat Neurosci 9:119–126. doi:10.1038/nn1609

    Article  CAS  PubMed  Google Scholar 

  27. MacGregor DG, Chesler M, Rice ME (2001) HEPES prevents edema in rat brain slices. Neurosci Lett 303:141–144

    Article  CAS  PubMed  Google Scholar 

  28. Brahma B, Forman RE, Stewart EE et al (2000) Ascorbate inhibits edema in brain slices. J Neurochem 74:1263–1270

    Article  CAS  PubMed  Google Scholar 

  29. Huang S, Uusisaari MY (2013) Physiological temperature during brain slicing enhances the quality of acute slice preparations. Front Cell Neurosci 7:48. doi:10.3389/fncel.2013.00048

  30. Davie JT, Kole MH, Letzkus JJ et al (2006) Dendritic patch-clamp recording. Nat Protoc 1:1235–1247. doi:10.1038/nprot.2006.164

    Article  CAS  PubMed  Google Scholar 

  31. Mattis J, Tye KM, Ferenczi EA et al (2012) Principles for applying optogenetic tools derived from direct comparative analysis of microbial opsins. Nat Methods 9:159–172. doi:10.1038/nmeth.1808

    Article  CAS  Google Scholar 

Download references

Acknowledgements

This work was supported in part by a National Alliance for Research on Schizophrenia and Depression: The Brain and Behavior Research Foundation Young Investigator Award to J.T.T., and US National Institutes of Health Ruth L. Kirschstein National Research Service Awards to J.T.T. (F32-MH084460).

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Jonathan T. Ting .

Editor information

Editors and Affiliations

Rights and permissions

Reprints and permissions

Copyright information

© 2014 Springer Science+Business Media New York

About this protocol

Cite this protocol

Ting, J.T., Daigle, T.L., Chen, Q., Feng, G. (2014). Acute Brain Slice Methods for Adult and Aging Animals: Application of Targeted Patch Clamp Analysis and Optogenetics. In: Martina, M., Taverna, S. (eds) Patch-Clamp Methods and Protocols. Methods in Molecular Biology, vol 1183. Humana Press, New York, NY. https://doi.org/10.1007/978-1-4939-1096-0_14

Download citation

  • DOI: https://doi.org/10.1007/978-1-4939-1096-0_14

  • Published:

  • Publisher Name: Humana Press, New York, NY

  • Print ISBN: 978-1-4939-1095-3

  • Online ISBN: 978-1-4939-1096-0

  • eBook Packages: Springer Protocols

Publish with us

Policies and ethics