Skip to main content

Error-Prone Rolling Circle Amplification Greatly Simplifies Random Mutagenesis

  • Protocol
  • First Online:
Directed Evolution Library Creation

Part of the book series: Methods in Molecular Biology ((MIMB,volume 1179))

Abstract

We describe a simple and easy protocol to introduce random mutations into plasmid DNA: error-prone rolling circle amplification. A template plasmid is amplified via rolling circle amplification with decreased fidelity in the presence of MnCl2 and is used to transform a host strain resulting in a mutant library with several random point mutations per kilobase through the entire plasmid. The primary advantage of this method is its simplicity. This protocol does not require the design of specific primers or thermal cycling. The reaction mixture can be used for direct transformation of a host strain. This method allows rapid preparation of randomly mutated plasmid libraries, enabling wider application of random mutagenesis.

This is a preview of subscription content, log in via an institution to check access.

Access this chapter

Protocol
USD 49.95
Price excludes VAT (USA)
  • Available as PDF
  • Read on any device
  • Instant download
  • Own it forever
eBook
USD 89.00
Price excludes VAT (USA)
  • Available as EPUB and PDF
  • Read on any device
  • Instant download
  • Own it forever
Softcover Book
USD 119.99
Price excludes VAT (USA)
  • Compact, lightweight edition
  • Dispatched in 3 to 5 business days
  • Free shipping worldwide - see info
Hardcover Book
USD 169.99
Price excludes VAT (USA)
  • Durable hardcover edition
  • Dispatched in 3 to 5 business days
  • Free shipping worldwide - see info

Tax calculation will be finalised at checkout

Purchases are for personal use only

Institutional subscriptions

References

  1. Bloom JD, Meyer MM, Meinhold P et al (2005) Evolving strategies for enzyme engineering. Curr Opin Struct Biol 15:447–452

    Article  CAS  PubMed  Google Scholar 

  2. Jaeger KE, Eggert T (2004) Enantioselective biocatalysis optimized by directed evolution. Curr Opin Biotechnol 15:305–313

    Article  CAS  PubMed  Google Scholar 

  3. Arnold FH, Wintrode PL, Miyazaki K et al (2001) How enzymes adapt: lessons from directed evolution. Trends Biochem Sci 26: 100–106

    Article  CAS  PubMed  Google Scholar 

  4. Johannes TW, Zhao H (2006) Directed evolution of enzymes and biosynthetic pathways. Curr Opin Microbiol 9:261–267

    Article  CAS  PubMed  Google Scholar 

  5. Reetz MT (2006) Directed evolution of enantioselective enzymes as catalysts for organic synthesis. Adv Catal 49:1–69

    Article  CAS  Google Scholar 

  6. Aharoni A, Griffiths AD, Tawfik DS (2005) High-throughput screens and selections of enzyme-encoding genes. Curr Opin Chem Biol 9:210–216

    Article  CAS  PubMed  Google Scholar 

  7. Goddard JP, Reymond JL (2004) Enzyme assays for high-throughput screening. Curr Opin Biotechnol 15:314–322

    Article  CAS  PubMed  Google Scholar 

  8. Taylor SV, Kast P, Hilvert D (2001) Investigating and engineering enzymes by genetic selection. Angew Chem Int Ed Engl 40: 3310–3335

    Article  PubMed  Google Scholar 

  9. Lin H, Cornish VW (2002) Screening and selection methods for large-scale analysis of protein function. Angew Chem Int Ed Engl 41:4402–4425

    Article  CAS  PubMed  Google Scholar 

  10. Reetz MT, Jaeger KE (1999) Superior biocatalysts by directed evolution. In: Fessner WD, Archelas A, Demirjian DC et al (eds) Biocatalysis—from discovery to application. Springer-Verlag, Berlin, pp 31–57

    Google Scholar 

  11. Leung DW, Chen E, Goeddel DW (1989) A method for random mutagenesis of a defined DNA segment using a modified polymerase chain reaction. Techniques 1:11–15

    Google Scholar 

  12. Greener A, Callahan M, Jerpseth B (1996) An efficient random mutagenesis technique using an E. coli mutator strain. In: Trower MK (ed) In vitro mutagenesis protocols. Humana Press, New Jersey, pp 375–385

    Chapter  Google Scholar 

  13. Kornberg A, Baker T (1992) DNA replication. W.H. Freeman & Company, New York

    Google Scholar 

  14. Dean FB, Nelson JR, Giesler TL et al (2001) Rapid amplification of plasmid and phage DNA using Phi 29 DNA polymerase and multiply-primed rolling circle amplification. Genome Res 11:1095–1099

    Article  CAS  PubMed Central  PubMed  Google Scholar 

  15. Blanco L, Bernad A, Lázaro JM et al (1989) Highly efficient DNA synthesis by phage phi29 DNA polymerase. Symmetrical mode of DNA replication. J Biol Chem 264:8935–8940

    Google Scholar 

  16. Fujii R, Kitaoka M, Hayashi K (2006) Error-prone rolling circle amplification: the simplest random mutagenesis protocol. Nat Protoc 1:2493–2497

    Article  CAS  PubMed  Google Scholar 

  17. Fire A, Xu SQ (1995) Rolling replication of short DNA circles. Proc Natl Acad Sci U S A 92:4641–4645

    Article  CAS  PubMed Central  PubMed  Google Scholar 

  18. Liu DY, Daubendiek SL, Zillman MA et al (1996) Rolling circle DNA synthesis: small circular oligonucleotides as efficient templates for DNA polymerases. J Am Chem Soc 118: 1587–1594

    Article  CAS  PubMed Central  PubMed  Google Scholar 

  19. Lizardi PM, Huang X, Zhu Z et al (1998) Mutation detection and single-molecule counting using isothermal rolling-circle amplification. Nat Genet 19:225–232

    Article  CAS  PubMed  Google Scholar 

  20. Fujii R, Kitaoka M, Hayashi K (2004) One-step random mutagenesis by error-prone rolling circle amplification. Nucleic Acids Res 32:e145

    Article  PubMed Central  PubMed  Google Scholar 

  21. Ding X, Snyder AK, Shaw R et al (2003) Direct retransformation of yeast with plasmid DNA isolated from single yeast colonies using rolling circle amplification. Biotechniques 35: 774–779

    CAS  PubMed  Google Scholar 

  22. Camps M, Naukkarinen J, Johnson BP et al (2003) Targeted gene evolution in Escherichia coli using a highly error-prone DNA polymerase I. Proc Natl Acad Sci U S A 100: 9727–9732

    Article  CAS  PubMed Central  PubMed  Google Scholar 

  23. Henke E, Bornscheuer UT (1999) Directed evolution of an esterase from Pseudomonas fluorescens. Random mutagenesis by error-prone PCR or a mutator strain and identification of mutants showing enhanced enantioselectivity by a resorufin-based fluorescence assay. Biol Chem 380:1029–1033

    Article  CAS  PubMed  Google Scholar 

  24. Bornscheuer UT, Altenbuchner J, Meyer HH (1998) Directed evolution of an esterase for the stereoselective resolution of a key intermediate in the synthesis of epothilones. Biotechnol Bioeng 58:554–559

    Article  CAS  PubMed  Google Scholar 

  25. de Vega M, Lazaro JM, Salas M (2000) Phage φ29 DNA polymerase residues involved in the proper stabilisation of the primer-terminus at the 3′-5′ exonuclease active site. J Mol Biol 304:1–9

    Article  PubMed  Google Scholar 

  26. Huovinen T, Julin M, Sanmark H et al (2011) Enhanced error-prone RCA mutagenesis by concatemer resolution. Plasmid 66:47–51

    Article  CAS  PubMed  Google Scholar 

Download references

Acknowledgments

This study was supported in part by a grant from the Program for Promotion of Basic Research Activities for Innovative Biosciences (PROBRAIN).

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Motomitsu Kitaoka .

Editor information

Editors and Affiliations

Rights and permissions

Reprints and permissions

Copyright information

© 2014 Springer Science+Business Media, LLC

About this protocol

Cite this protocol

Fujii, R., Kitaoka, M., Hayashi, K. (2014). Error-Prone Rolling Circle Amplification Greatly Simplifies Random Mutagenesis. In: Gillam, E., Copp, J., Ackerley, D. (eds) Directed Evolution Library Creation. Methods in Molecular Biology, vol 1179. Springer, New York, NY. https://doi.org/10.1007/978-1-4939-1053-3_2

Download citation

  • DOI: https://doi.org/10.1007/978-1-4939-1053-3_2

  • Published:

  • Publisher Name: Springer, New York, NY

  • Print ISBN: 978-1-4939-1052-6

  • Online ISBN: 978-1-4939-1053-3

  • eBook Packages: Springer Protocols

Publish with us

Policies and ethics