Skip to main content

Multivalent DNA-Based Vectors for DNA Vaccine Delivery

  • Protocol
  • First Online:
DNA Vaccines

Part of the book series: Methods in Molecular Biology ((MIMB,volume 1143))

Abstract

DNA can be utilized as a generic delivery vector as well as a traditional biological material for DNA vaccination. Although the use of DNA as an antigen expression vector or a vaccine adjuvant has been intensively studied for several decades, the use of DNA molecules as a delivery carrier has not been explored until recently. This issue is probably due to the topological limitation of DNA in its natural linear or circular structure form. Multivalent DNA-based vector delivery platforms overcome this structural barrier and are particularly suited for DNA vaccine delivery because of their multifunctionality, monodispersity, anisotropicity, and bioconjugation ability with numerous functional moieties. In this chapter, we mainly describe the construction of multivalent DNA-based delivery vectors using DNA engineering methods. Specifically, the synthesis strategies for highly branched dendrimer-like DNA structures in general and methods for their application to DNA vaccine delivery are introduced.

This is a preview of subscription content, log in via an institution to check access.

Access this chapter

Protocol
USD 49.95
Price excludes VAT (USA)
  • Available as PDF
  • Read on any device
  • Instant download
  • Own it forever
eBook
USD 89.00
Price excludes VAT (USA)
  • Available as EPUB and PDF
  • Read on any device
  • Instant download
  • Own it forever
Softcover Book
USD 119.99
Price excludes VAT (USA)
  • Compact, lightweight edition
  • Dispatched in 3 to 5 business days
  • Free shipping worldwide - see info
Hardcover Book
USD 169.99
Price excludes VAT (USA)
  • Durable hardcover edition
  • Dispatched in 3 to 5 business days
  • Free shipping worldwide - see info

Tax calculation will be finalised at checkout

Purchases are for personal use only

Institutional subscriptions

References

  1. Luo D, Saltzman WM (2000) Synthetic DNA delivery systems. Nat Biotechnol 18:33–37

    Article  CAS  PubMed  Google Scholar 

  2. Luo D (2003) The road from biology to materials. Mater Today 6:38–43

    Article  CAS  Google Scholar 

  3. Lee JB, Roh YH, Um SH et al (2009) Multifunctional nanoarchitectures from DNA-based ABC monomers. Nat Biotechnol 4:430–436

    CAS  Google Scholar 

  4. Li Y, Tseng YD, Kwon SY et al (2004) Controlled assembly of dendrimer-like DNA. Nat Mater 3:38–42

    Article  CAS  PubMed  Google Scholar 

  5. Roh YH, Lee JB, Tan SJ et al (2010) Photocrosslinked DNA nanospheres for drug delivery. Macromol Rapid Commun 31: 1207–1211

    Article  CAS  PubMed  Google Scholar 

  6. Roh YH, Lee JB, Kiatwuthinon P et al (2011) DNAsomes: multifunctional DNA-based nanocarriers. Small 7:74–78

    Article  CAS  PubMed  Google Scholar 

  7. Zuker M (2003) Mfold web server for nucleic acid folding and hybridization prediction. Nucleic Acids Res 31:3406–3015

    Article  CAS  PubMed Central  PubMed  Google Scholar 

  8. UNAFold: http://mfold.rit.albany.edu, Integrated DNA Technologies (OligoAnalyzer): http://www.idtdna.com/analyzer/applications/oligoanalyzer/, Sigma-Aldrich (OligoEvaluator): http://www.sigmaaldrich.com/life-science/custom-oligos/custom-dna/learning-center/calculator.html

  9. Roh YH, Ruiz RCH, Peng S et al (2011) Engineering DNA-based functional materials. Chem Soc Rev 40:5730–5744

    Article  CAS  PubMed  Google Scholar 

  10. Park N, Kahn J, Rice EJ et al (2009) High-yield cell-free protein production from P-gel. Nat Protoc 4:1759–1770

    Article  CAS  PubMed  Google Scholar 

  11. Um SH, Lee JB, Kwon SY et al (2006) Dendrimer-like DNA-based fluorescence nanobarcodes. Nat Protoc 1:995–1000

    Article  CAS  PubMed  Google Scholar 

  12. Roh YH, Park JH, Ye JJ et al (2012) Systematic studies of UV stability and photopolymerization efficiency of DNA-based nanomaterials. ChemPhysChem 13:2517–2521

    Article  CAS  PubMed  Google Scholar 

  13. Zanta MA, Belguise-Valladier P, Behr JP (1999) Gene delivery: a single nuclear localization signal peptide is sufficient to carry DNA to the cell nucleus. Proc Natl Acad Sci U S A 96:91–96

    Article  CAS  PubMed Central  PubMed  Google Scholar 

  14. Bonny C, Oberson A, Negri S et al (2001) Cell-permeable peptide inhibitors of JNK: novel blockers of beta-cell death. Diabetes 50:77–82

    Article  CAS  PubMed  Google Scholar 

  15. Keller M, Tagawa T, Preuss M et al (2002) Biophysical characterization of the DNA binding and condensing properties of adenoviral core peptide mu. Biochemistry 41:652–659

    Article  CAS  PubMed  Google Scholar 

  16. Corbel SY, Rossi FM (2002) Latest developments and in vivo use of the Tet system: ex vivo and in vivo delivery of tetracycline-regulated genes. Curr Opin Biotechnol 13:448–452

    Article  CAS  PubMed  Google Scholar 

  17. Mohri K, Nishikawa M, Takahashi N et al (2012) Design and development of nanosized DNA assemblies in polypod-like structures as efficient vehicles for immunostimulatory CpG motifs to immune cells. ACS Nano 6:5931–5940

    Article  CAS  PubMed  Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Young Hoon Roh .

Editor information

Editors and Affiliations

Rights and permissions

Reprints and permissions

Copyright information

© 2014 Springer Science+Business Media New York

About this protocol

Cite this protocol

Roh, Y.H., Lee, K., Ye, J.J., Luo, D. (2014). Multivalent DNA-Based Vectors for DNA Vaccine Delivery. In: Rinaldi, M., Fioretti, D., Iurescia, S. (eds) DNA Vaccines. Methods in Molecular Biology, vol 1143. Humana Press, New York, NY. https://doi.org/10.1007/978-1-4939-0410-5_11

Download citation

  • DOI: https://doi.org/10.1007/978-1-4939-0410-5_11

  • Published:

  • Publisher Name: Humana Press, New York, NY

  • Print ISBN: 978-1-4939-0409-9

  • Online ISBN: 978-1-4939-0410-5

  • eBook Packages: Springer Protocols

Publish with us

Policies and ethics