Skip to main content

Next-Generation Sequencing Applied to Flower Development: ChIP-Seq

  • Protocol
  • First Online:
Flower Development

Part of the book series: Methods in Molecular Biology ((MIMB,volume 1110))

Abstract

Over the past 20 years, classic genetic approaches have shown that the developmental program underlying flower formation involves a large number of transcriptional regulators. However, the target genes of these transcription factors, as well as the gene regulatory networks they control, remain largely unknown. Chromatin immunoprecipitation coupled to next-generation sequencing (ChIP-Seq), which allows the identification of transcription factor binding sites on a genome-wide scale, has been successfully applied to a number of transcription factors in Arabidopsis. The ChIP-Seq procedure involves chemical cross-linking of proteins to DNA, followed by chromatin fragmentation and immunoprecipitation of specific protein–DNA complexes. The regions of the genome bound by a specific transcription factor can then be identified after next-generation sequencing.

This is a preview of subscription content, log in via an institution to check access.

Access this chapter

Protocol
USD 49.95
Price excludes VAT (USA)
  • Available as PDF
  • Read on any device
  • Instant download
  • Own it forever
eBook
USD 89.00
Price excludes VAT (USA)
  • Available as EPUB and PDF
  • Read on any device
  • Instant download
  • Own it forever
Softcover Book
USD 119.99
Price excludes VAT (USA)
  • Compact, lightweight edition
  • Dispatched in 3 to 5 business days
  • Free shipping worldwide - see info
Hardcover Book
USD 169.99
Price excludes VAT (USA)
  • Durable hardcover edition
  • Dispatched in 3 to 5 business days
  • Free shipping worldwide - see info

Tax calculation will be finalised at checkout

Purchases are for personal use only

Institutional subscriptions

References

  1. Kaufmann K et al (2010) Regulation of transcription in plants: mechanisms controlling developmental switches. Nat Rev Genet 11(12):830–842

    Article  CAS  PubMed  Google Scholar 

  2. Bowman JL et al (1991) Genetic interactions among floral homeotic genes of Arabidopsis. Development 112(1):1–20

    CAS  PubMed  Google Scholar 

  3. Krizek BA, Fletcher JC (2005) Molecular mechanisms of flower development: an armchair guide. Nat Rev Genet 6(9):688–698

    Article  CAS  PubMed  Google Scholar 

  4. Solomon MJ, Varshavsky A (1985) Formaldehyde-mediated DNA-protein crosslinking: a probe for in vivo chromatin structures. Proc Natl Acad Sci U S A 82(19):6470–6474

    Article  CAS  PubMed Central  PubMed  Google Scholar 

  5. Metzker ML (2010) Sequencing technologies—the next generation. Nat Rev Genet 11(1):31–46

    Article  CAS  PubMed  Google Scholar 

  6. Johnson DS et al (2007) Genome-wide mapping of in vivo protein-DNA interactions. Science 316(5830):1497–1502

    Article  CAS  PubMed  Google Scholar 

  7. Kaufmann K et al (2010) Orchestration of floral initiation by APETALA1. Science 328(5974):85–89

    Article  CAS  PubMed  Google Scholar 

  8. Yant L et al (2010) Orchestration of the floral transition and floral development in Arabidopsis by the bifunctional transcription factor APETALA2. Plant Cell 22(7):2156–2170

    Article  CAS  PubMed Central  PubMed  Google Scholar 

  9. Wuest SE et al (2012) Molecular basis for the specification of floral organs by APETALA3 and PISTILLATA. Proc Natl Acad Sci U S A 109(33):13452–13457

    Article  CAS  PubMed Central  PubMed  Google Scholar 

  10. Gerstein MB et al (2012) Architecture of the human regulatory network derived from ENCODE data. Nature 489(7414):91–100

    Article  CAS  PubMed  Google Scholar 

  11. Morohashi K, Grotewold E (2009) A systems approach reveals regulatory circuitry for Arabidopsis trichome initiation by the GL3 and GL1 selectors. PLoS Genet 5(2):e1000396

    Article  PubMed Central  PubMed  Google Scholar 

  12. Kaufmann K et al (2009) Target genes of the MADS transcription factor SEPALLATA3: integration of developmental and hormonal pathways in the Arabidopsis flower. PLoS Biol 7(4):e1000090

    Article  PubMed Central  PubMed  Google Scholar 

  13. Mathieu J et al (2009) Repression of flowering by the miR172 target SMZ. PLoS Biol 7(7):e1000148

    Article  PubMed Central  PubMed  Google Scholar 

  14. Deal RB, Henikoff S (2010) A simple method for gene expression and chromatin profiling of individual cell types within a tissue. Dev Cell 18(6):1030–1040

    Article  CAS  PubMed Central  PubMed  Google Scholar 

Download references

Acknowledgements

Work in our laboratory is funded by grants from Science Foundation Ireland to F.W. and E.G.

Author information

Authors and Affiliations

Authors

Corresponding authors

Correspondence to Emmanuelle Graciet or Frank Wellmer .

Editor information

Editors and Affiliations

Rights and permissions

Reprints and permissions

Copyright information

© 2014 Springer Science+Business Media, New York

About this protocol

Cite this protocol

Graciet, E., Ó’Maoiléidigh, D.S., Wellmer, F. (2014). Next-Generation Sequencing Applied to Flower Development: ChIP-Seq. In: Riechmann, J., Wellmer, F. (eds) Flower Development. Methods in Molecular Biology, vol 1110. Humana Press, New York, NY. https://doi.org/10.1007/978-1-4614-9408-9_24

Download citation

  • DOI: https://doi.org/10.1007/978-1-4614-9408-9_24

  • Published:

  • Publisher Name: Humana Press, New York, NY

  • Print ISBN: 978-1-4614-9407-2

  • Online ISBN: 978-1-4614-9408-9

  • eBook Packages: Springer Protocols

Publish with us

Policies and ethics