Skip to main content

Herbarium Specimens: A Treasure for DNA Extraction, an Update

  • Protocol
  • First Online:

Part of the book series: Methods in Molecular Biology ((MIMB,volume 2222))

Abstract

With the expansion of molecular techniques, the historical collections have become widely used. The last boom started with using next- and second-generation sequencing in which massive parallel sequencing replaced targeted sequencing and third-generation technology involves single molecule technology. Studying plant DNA using these modern molecular techniques plays an important role in understanding evolutionary relationships, identification through DNA barcoding, conservation status, and many other aspects of plant biology. Enormous herbarium collections are an important source of material especially for taxonomic long-standing issues, specimens from areas difficult to access or from taxa that are now extinct. The ability to utilize these specimens greatly enhances the research. However, the process of extracting DNA from herbarium specimens is often fraught with difficulty related to such variables as plant chemistry, drying method of the specimen, and chemical treatment of the specimen. The result of these applications is often fragmented DNA. The reason new sequencing approaches have been so successful is that the template DNA needs to be fragmented for proper library building, and herbarium DNA is exactly that. Although many methods have been developed for extraction of DNA from herbarium specimens, the most frequently used are modified CTAB and DNeasy Plant Mini Kit protocols. Nine selected protocols in this chapter have been successfully used for high-quality DNA extraction from different kinds of plant herbarium tissues. These methods differ primarily with respect to their requirements for input material (from algae to vascular plants), type of the plant tissue (leaves with incrustations, sclerenchyma strands, mucilaginous tissues, needles, seeds), and further possible applications (PCR-based methods, microsatellites, AFLP or next-generation sequencing).

This is a preview of subscription content, log in via an institution.

Buying options

Protocol
USD   49.95
Price excludes VAT (USA)
  • Available as PDF
  • Read on any device
  • Instant download
  • Own it forever
eBook
USD   99.00
Price excludes VAT (USA)
  • Available as EPUB and PDF
  • Read on any device
  • Instant download
  • Own it forever
Softcover Book
USD   129.99
Price excludes VAT (USA)
  • Compact, lightweight edition
  • Dispatched in 3 to 5 business days
  • Free shipping worldwide - see info
Hardcover Book
USD   199.99
Price excludes VAT (USA)
  • Durable hardcover edition
  • Dispatched in 3 to 5 business days
  • Free shipping worldwide - see info

Tax calculation will be finalised at checkout

Purchases are for personal use only

Learn about institutional subscriptions

Springer Nature is developing a new tool to find and evaluate Protocols. Learn more

References

  1. Guschanski K, Krause J, Sawyer S, Valente LM, Bailey S, Finstermeier K, Sabin R, Gilissen E, Sonet G, Nagy ZT et al (2013) Next-generation museomics disentangles one of the largest primate radiations. Syst Biol 62:539–554

    Article  PubMed  PubMed Central  Google Scholar 

  2. Rogers SO (1994) Phylogenetic and taxonomic information from herbarium and mummified DNA. In: Adams RP et al (eds) Conservation of plant genes II: utilization of ancient and modern DNA, Monographs in systematic botany from the Missouri Botanical Garden, vol 48. Missouri Botanical Garden

    Google Scholar 

  3. Tailor JW, Swann EC (1994) Dried samples: soft tissues, DNA from herbarium specimens. In: Herrmann B, Hummel S (eds) Ancient DNA. Springer Verlag, Heidelberg

    Google Scholar 

  4. Hall DW (1981) Microwave: a method to control herbarium insects. Taxon 30:818–819

    Article  Google Scholar 

  5. Hill SR (1983) Microwave and the herbarium specimen: potential dangers. Taxon 32:614–615

    Article  Google Scholar 

  6. Bacci M, Checcuccii A, Checcuccii G, Palandek MR (1983) Microwave drying of herbarium specimens. Taxon 34:649–653

    Article  Google Scholar 

  7. Metsger DA, Byers SC (1999) Managing the modern herbarium, an interdisciplinary approach. Society for the preservation of natural history collections, Washington DC, p 384

    Google Scholar 

  8. Lindahl T, Andersson A (1972) Rate of chain breakage at apurinic sites in double-stranded deoxyribonucleic acid. Biochemistry 11:3618–3623

    Article  CAS  PubMed  Google Scholar 

  9. Doyle JJ, Dickson EE (1987) Preservation of plant species for DNA restriction endonuclease analysis. Taxon 36:715–722

    Article  Google Scholar 

  10. Pyle MM, Adams RP (1989) In situ preservation of DNA in plant specimens. Taxon 38:576–581

    Article  Google Scholar 

  11. Harris SA (1993) DNA analysis of tropical plant species: an assessment of different drying methods. Plant Syst Evol 188:57–64

    CAS  Google Scholar 

  12. Bakker FT (2017) Herbarium genomics: skimming and plastomics from archival specimens. Webbia 72:35–45

    Article  Google Scholar 

  13. Lindahl T (1993) Instability and decay of the primary structure of DNA. Nature 362:709–715

    Article  CAS  PubMed  Google Scholar 

  14. Pääbo S, Poinar H, Serre D, Jaenicke-Despres V, Hebler J, Rohland N, Kuch M, Krause J, Vigilant L, Hofreiter M (2004) Genetic analyses from ancient DNA. Ann Rev Genet 38:645–679

    Article  PubMed  CAS  Google Scholar 

  15. Hofreiter M, Jaenicke V, Serre D, von Haeseler A, Pääbo S (2001) DNA sequences from multiple amplifications reveal artifacts induced by cytosine deamination in ancient DNA. Nucleic Acids Res 29:4793–4799

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  16. Gilbert MTP, Hansen AJ, Willerslev E, Rudbeck L, Barnes I, Lynnerup N, Cooper A (2003) Distribution patterns of postmortem damage in human mitochondrial DNA. Am J Hum Genet 72:48–61

    Article  CAS  PubMed  Google Scholar 

  17. Stiller M, Green RE, Ronan M, Simons JF, Du L, He W, Egholm M, Rothberg JM, Keates SG, Ovodov ND et al (2006) Patterns of nucleotide misincorporations during enzymatic amplification and direct large-scale sequencing of ancient DNA. Proc Natl Acad Sci U S A 103:13578–13584

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  18. Rogers SO, Bendich AJ (1994) Extraction of total cellular DNA from plants, algae and fungi. In: Gelvin SB, Schilperoort RA (eds) Plant molecular biology manual. Kluwer Academic Publishers, Dordrecht, pp 1–8

    Google Scholar 

  19. Doyle JJ, Doyle JL (1987) A rapid DNA isolation procedure for small quantities of fresh leaf tissue. Phytochem Bull 19:11–15

    Google Scholar 

  20. Ribeiro RA, Lovato MB (2007) Comparative analysis of different DNA extraction protocols in fresh and herbarium specimens of the genus Dalbergia. Genet Mol Res 6:173–187

    CAS  PubMed  Google Scholar 

  21. Agostini G, Lüdtke R, Echeverrigaray S, de Souz-Chies TT (2011) Genomic DNA extraction from herbarium samples of Cunila D. Royen ex L. (Lamiaceae) and Polygala L. (Polygalaceae). Conservation Genet Resour 3:37–39

    Article  Google Scholar 

  22. Wittzell H (1999) Chloroplast DNA variation and reticulate evolution in sexual and apomictic sections of dandelions. Mol Ecol 8:2023–2035

    Article  CAS  PubMed  Google Scholar 

  23. Ristaino JB, Groves CT, Parra GR (2001) PCR amplification of the Irish potato famine pathogen from historic specimens. Nature 411(6838):695–697

    Article  CAS  PubMed  Google Scholar 

  24. Drábková L, Kirschner J, Vlček Č (2002) Historical herbarium specimens in molecular taxonomy of the Juncaceae: a comparison of DNA extraction and amplification protocols. Plant Mol Biol Rep 20(2):161–175

    Article  Google Scholar 

  25. De Castro O, Menale B (2004) PCR amplification of Michele Tenore’s historical specimens and facility to utilize an alternative approach to resolve taxonomic problems. Taxon 53:147–151

    Article  Google Scholar 

  26. Jankowiak K, Buczkowska K, Szweykowska-Kulinska Z (2005) Successful extraction of DNA from 100-year-old herbarium specimens of the liverwort Bazzania trilobata. Taxon 54:335–336

    Article  Google Scholar 

  27. Asif MJ, Cannon CH (2005) DNA extraction from processed wood: a case study for identification of an endangered timber species (Gonystylus bancanus). Plant Mol Biol Rep 23(2):185–192

    Article  CAS  Google Scholar 

  28. Erkens RHJ, Cross H, Maas JW, Hoenselaar K, Chatrou LW (2008) Assessment of age and greenness of herbarium specimens as predictors for successful extraction and amplification of DNA. Blumea 53:407–428

    Article  Google Scholar 

  29. Lister DL, Bower MA, Howe CJ, Jones MK (2008) Extraction and amplification of nuclear DNA from herbarium specimens of emmer wheat: a method for assessing DNA preservation by maximum amplicon length recovery. Taxon 57:254–258

    Google Scholar 

  30. Andreasen K, Manktelow M, Razafimandimbison SG (2009) Successful DNA amplification of a more than 200-year-old herbarium specimen: recovering genetic material from the Linnaean era. Taxon 58:959–962

    Article  Google Scholar 

  31. Poczai P, Taller J, Szabo I (2009) Molecular genetic study of a historical Solanum (Solanaceae) herbarium specimen collected by Paulus Kitaibel in the 18th century. Acta Bot Hung 51:337–346

    Article  CAS  Google Scholar 

  32. Sohrabi M, Myllis L, Soili S (2010) Successful DNA sequencing of a 75 year-old herbarium specimen of Aspicilia aschabadensis (J. Steiner) Mereschk. Lichenologist 42:626–628

    Article  Google Scholar 

  33. Walters C, Reilley AA, Reeves PA, Baszczak J, Richards CM (2006) The utility of aged seeds in DNA banks. Seed Sci Res 16:169–178

    Article  CAS  Google Scholar 

  34. Csaikl UM, Bastion H, Brettschneider R, Gauch S, Metr A, Schauerte M, Schulz F, Sperisen C, Vornam B, Ziegenhagen B (1998) Comparative analysis of different DNA extraction protocols: a fast, universal maxi-preparation of high quality plant DNA for genetic evaluation and phylogenetic studies. Plant Mol Biol Rep 16:69–86

    Article  CAS  Google Scholar 

  35. Lambertini C, Frydenberg J, Gustafsson MHG, Brix H (2008) Herbarium specimens as a source of DNA for AFLP fingerprinting of Phragmites (Poaceae): possibilities and limitations. Plant Syst Evol 272:224–231

    Article  CAS  Google Scholar 

  36. Shepherd LD, McLay TGB (2011) Two micro-scale protocols for the isolation of DNA from polysaccharide-rich plant tissue. J Plant Res 124:311–314

    Article  CAS  PubMed  Google Scholar 

  37. Cota-Sánchez JH, Remarchuk K, Ubayasena K (2006) Ready-to-use DNA extracted with a CTAB method adapted for herbarium specimens and mucilaginous plant tissue. Plant Mol Biol Rep 24:161–167

    Article  Google Scholar 

  38. Cubero OF, Crespo A, Fatehi J, Bridge PD (1999) DNA extraction and PCR amplification method suitable for fresh, herbarium- stored, lichenized, and other fungi. Plant Syst Evol 216:243–249

    Article  CAS  Google Scholar 

  39. Ivanova NV, Dewaard JR, Hebert PDN (2006) An inexpensive, automation-friendly protocol for recovering high-quality DNA. Mol Ecol Notes 6:998–1002

    Article  CAS  Google Scholar 

  40. Dentinger BTM, Margaritescu S, Moncalvo J-M (2010) Rapid and reliable high-throughput methods of DNA extraction for use in barcoding and molecular systematics of mushrooms. Mol Ecol 10:628–633

    Article  CAS  Google Scholar 

  41. Hoarau G, Coyer JA, Stam TW, Olsen JL (2007) A fast and inexpensive DNA extraction/purification protocol for brown macroalgae. Mol Ecol Notes 7:191–193

    Article  CAS  Google Scholar 

  42. Malenica N, Šimon S, Besendorfer V, Malecić E, Kontić JK, Pejić I (2011) Whole genome amplification and microsatellite genotyping of herbarium DNA revealed the identity of an ancient grapevine cultivar. Naturwissenschaften 98:763–772

    Article  CAS  PubMed  Google Scholar 

  43. Gutaker RM, Reiter E, Furtwangler A, Schuenemann VJ, Burbano HA (2017) Extraction of ultrashort DNA molecules from herbarium specimens. BioTechniques 62:76–79

    Article  CAS  PubMed  Google Scholar 

  44. Kistler L (2012) Ancient DNA extraction from plants. Methods Mol Biol 840:71–79

    Article  CAS  PubMed  Google Scholar 

  45. Dabney J, Knapp M, Glocke I, Gansauge MT, Weihmann A, Nickel B, Valdiosera C, Garcia N et al (2013) Complete mitochondrial genome sequence of a middle Pleistocene cave bear reconstructed from ultrashort DNA fragments. Proc Natl Acad Sci U S A 110:15758–15763

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  46. Vasan S, Zhang X, Zhang X, Kapurniotu A, Bernhagen J, Teichberg S, Basgen J, Wagle D et al (1996) An agent cleaving glucose-derived protein crosslinks in vitro and in vivo. Nature 382:275–278

    Article  CAS  PubMed  Google Scholar 

  47. Poinar HN, Hofreiter M, Spaulding WG, Martin PS, Stankiewicz BA, Bland H, Evershed RP, Possnert G, Paabo S (1998) Molecular coproscopy: dung and diet of the extinct ground sloth Nothrotheriops shastensis. Science 281:402–406

    Article  CAS  PubMed  Google Scholar 

Download references

Acknowledgments

Upgrade of the study was supported by GAČR 19-02699S.

Author information

Authors and Affiliations

Authors

Editor information

Editors and Affiliations

Rights and permissions

Reprints and permissions

Copyright information

© 2021 Springer Science+Business Media, LLC, part of Springer Nature

About this protocol

Check for updates. Verify currency and authenticity via CrossMark

Cite this protocol

Záveská Drábková, L. (2021). Herbarium Specimens: A Treasure for DNA Extraction, an Update. In: Besse, P. (eds) Molecular Plant Taxonomy. Methods in Molecular Biology, vol 2222. Humana, New York, NY. https://doi.org/10.1007/978-1-0716-0997-2_4

Download citation

  • DOI: https://doi.org/10.1007/978-1-0716-0997-2_4

  • Published:

  • Publisher Name: Humana, New York, NY

  • Print ISBN: 978-1-0716-0996-5

  • Online ISBN: 978-1-0716-0997-2

  • eBook Packages: Springer Protocols

Publish with us

Policies and ethics