Skip to main content

Controlling the Activity of CRISPR Transcriptional Regulators with Inducible sgRNAs

  • Protocol
  • First Online:
  • 2105 Accesses

Part of the book series: Methods in Molecular Biology ((MIMB,volume 2162))

Abstract

The type-II CRISPR-Cas9 system has been repurposed to create synthetic programmable transcriptional regulators (CRISPR-TRs). Subsequent modifications of the system now allow for spatiotemporal control of CRISPR-mediated gene activation and repression. Among these solutions, the development of inducible spacer-blocking hairpin guide RNAs (iSBH-sgRNAs) provide an easy to implement and versatile way to condition the activation of most CRISPR-TRs on the presence of a user defined inducer. In this chapter, I cover the know-how relating to the design and synthesis of iSBH-sgRNAs, as well as the implementation in mammalian cells of inducible CRISPR-TR strategies based on this technology.

This is a preview of subscription content, log in via an institution.

Buying options

Protocol
USD   49.95
Price excludes VAT (USA)
  • Available as PDF
  • Read on any device
  • Instant download
  • Own it forever
eBook
USD   109.00
Price excludes VAT (USA)
  • Available as EPUB and PDF
  • Read on any device
  • Instant download
  • Own it forever
Softcover Book
USD   139.99
Price excludes VAT (USA)
  • Compact, lightweight edition
  • Dispatched in 3 to 5 business days
  • Free shipping worldwide - see info
Hardcover Book
USD   249.99
Price excludes VAT (USA)
  • Durable hardcover edition
  • Dispatched in 3 to 5 business days
  • Free shipping worldwide - see info

Tax calculation will be finalised at checkout

Purchases are for personal use only

Learn about institutional subscriptions

Springer Nature is developing a new tool to find and evaluate Protocols. Learn more

References

  1. Hsu PD, Lander ES, Zhang F (2014) Development and applications of CRISPR-Cas9 for genome engineering. Cell 157(6):1262–1278

    Article  CAS  Google Scholar 

  2. Chavez A et al (2016) Comparison of Cas9 activators in multiple species. Nat Methods 13(7):563–567

    Article  CAS  Google Scholar 

  3. Ferry QRV, Lyutova R, Fulga TA (2017) Rational design of inducible CRISPR guide RNAs for de novo assembly of transcriptional programs. Nat Commun 8:14633

    Article  Google Scholar 

  4. Jain PK et al (2016) Development of light-activated CRISPR using guide RNAs with photocleavable protectors. Angew Chem Int Ed Engl 55(40):12440–12444

    Article  CAS  Google Scholar 

  5. Lee YJ et al (2016) Programmable control of bacterial gene expression with the combined CRISPR and antisense RNA system. Nucl Acids Res 44(5):gkw056-2473

    Article  Google Scholar 

  6. Liu Y et al (2016) Directing cellular information flow via CRISPR signal conductors. Nat Methods 66(4):1173–1179

    Google Scholar 

  7. Tang W, Hu JH, Liu DR (2017) Aptazyme-embedded guide RNAs enable ligand-responsive genome editing and transcriptional activation. Nat Commun 8:15939

    Article  CAS  Google Scholar 

  8. Baeumler TA, Ahmed AA, Fulga TA (2017) Engineering synthetic signaling pathways with programmable dCas9-based chimeric receptors. Cell Rep 20(11):2639–2653

    Article  CAS  Google Scholar 

  9. Aricescu AR, Lu W, Jones EY (2006) A time- and cost-efficient system for high-level protein production in mammalian cells. Acta Crystallogr D Biol Crystallogr 62(Pt 10):1243–1250

    Article  Google Scholar 

  10. Untergasser A et al (2012) Primer3—new capabilities and interfaces. Nucleic Acids Res 40(15):e115–e115

    Article  CAS  Google Scholar 

  11. Bennett CF, Swayze EE (2010) RNA targeting therapeutics: molecular mechanisms of antisense oligonucleotides as a therapeutic platform. Annu Rev Pharmacol Toxicol 50(1):259–293

    Article  CAS  Google Scholar 

  12. Zheng C, Baum BJ (2008) Evaluation of promoters for use in tissue-specific gene delivery. Methods Mol Biol (Clifton, NJ) 434(Chapter 13):205–219

    CAS  Google Scholar 

  13. Gossen M et al (1995) Transcriptional activation by tetracyclines in mammalian cells. Science (New York, NY) 268(5218):1766–1769

    Article  CAS  Google Scholar 

  14. Gilbert LA et al (2013) CRISPR-mediated modular RNA-guided regulation of transcription in eukaryotes. Cell 154(2):442–451

    Article  CAS  Google Scholar 

  15. Mali P et al (2013) CAS9 transcriptional activators for target specificity screening and paired nickases for cooperative genome engineering. Nat Biotechnol 31(9):833–838

    Article  CAS  Google Scholar 

  16. Konermann S et al (2014) Genome-scale transcriptional activation by an engineered CRISPR-Cas9 complex. Nature 517(7536):583–588

    Article  Google Scholar 

  17. Chavez A et al (2015) Highly efficient Cas9-mediated transcriptional programming. Nat Methods 12(4):326–328

    Article  CAS  Google Scholar 

  18. Gilbert LA et al (2014) Genome-scale CRISPR-mediated control of gene repression and activation. Cell 159(3):647–661

    Article  CAS  Google Scholar 

  19. Shechner DM et al (2015) Multiplexable, locus-specific targeting of long RNAs with CRISPR-Display. Nat Methods 12(7):664–670

    Article  CAS  Google Scholar 

  20. Zalatan JG et al (2014) Engineering complex synthetic transcriptional programs with CRISPR RNA scaffolds. Cell 160(1-2):339–350

    Article  Google Scholar 

  21. Zadeh JN et al (2011) NUPACK: analysis and design of nucleic acid systems. J Comput Chem 32(1):170–173

    Article  CAS  Google Scholar 

  22. Dahlman JE et al (2015) Orthogonal gene knockout and activation with a catalytically active Cas9 nuclease. Nat Biotechnol 33(11):1159–1161

    Article  CAS  Google Scholar 

  23. Kiani S et al (2015) Cas9 gRNA engineering for genome editing, activation and repression. Nat Methods 12(11):1051–1054

    Article  CAS  Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Quentin R. V. Ferry .

Editor information

Editors and Affiliations

Rights and permissions

Reprints and permissions

Copyright information

© 2021 Springer Science+Business Media, LLC, part of Springer Nature

About this protocol

Check for updates. Verify currency and authenticity via CrossMark

Cite this protocol

Ferry, Q.R.V., Fulga, T.A. (2021). Controlling the Activity of CRISPR Transcriptional Regulators with Inducible sgRNAs. In: Fulga, T.A., Knapp, D.J.H.F., Ferry, Q.R.V. (eds) CRISPR Guide RNA Design. Methods in Molecular Biology, vol 2162. Humana, New York, NY. https://doi.org/10.1007/978-1-0716-0687-2_9

Download citation

  • DOI: https://doi.org/10.1007/978-1-0716-0687-2_9

  • Published:

  • Publisher Name: Humana, New York, NY

  • Print ISBN: 978-1-0716-0686-5

  • Online ISBN: 978-1-0716-0687-2

  • eBook Packages: Springer Protocols

Publish with us

Policies and ethics