Skip to main content

In Vitro Generation of Vascular Wall–Typical Mesenchymal Stem Cells (VW-MSC) from Murine Induced Pluripotent Stem Cells Through VW-MSC–Specific Gene Transfer

  • Protocol
  • First Online:
Stem Cells and Tissue Repair

Part of the book series: Methods in Molecular Biology ((MIMB,volume 2155))

Abstract

Among the adult stem cells, multipotent mesenchymal stem cells (MSCs) turned out to be a promising option for cell-based therapies for the treatment of various diseases including autoimmune and cardiovascular disorders. MSCs bear a high proliferation and differentiation capability and exert immunomodulatory functions while being still clinically safe. As tissue-resident stem cells, MSCs can be isolated from various tissue including peripheral or umbilical cord blood, placenta, blood, fetal liver, lung, adipose tissue, and blood vessels, although the most commonly used source for MSCs is the bone marrow. However, the proportion of MSCs in primary isolates from adult tissue biopsies is rather low, and therefore MSCs must be intensively expanded in vitro before the MSCs find particular use in therapies that may require extensive and repetitive cell replacement. Therefore, more easily accessible sources of MSCs are needed. Here, we present a detailed protocol to generate tissue-typical MSCs by direct linage conversion using transcription factors defining target MSC identity from murine induced pluripotent stem cells (iPSCs).

This is a preview of subscription content, log in via an institution to check access.

Access this chapter

Protocol
USD 49.95
Price excludes VAT (USA)
  • Available as PDF
  • Read on any device
  • Instant download
  • Own it forever
eBook
USD 99.00
Price excludes VAT (USA)
  • Available as EPUB and PDF
  • Read on any device
  • Instant download
  • Own it forever
Softcover Book
USD 129.99
Price excludes VAT (USA)
  • Compact, lightweight edition
  • Dispatched in 3 to 5 business days
  • Free shipping worldwide - see info
Hardcover Book
USD 199.99
Price excludes VAT (USA)
  • Durable hardcover edition
  • Dispatched in 3 to 5 business days
  • Free shipping worldwide - see info

Tax calculation will be finalised at checkout

Purchases are for personal use only

Institutional subscriptions

References

  1. Lemos DR, Duffield JS (2018) Tissue-resident mesenchymal stromal cells: implications for tissue-specific antifibrotic therapies. Sci Transl Med 10(426). https://doi.org/10.1126/scitranslmed.aan5174

  2. Rolandsson Enes S, Andersson Sjoland A, Skog I, Hansson L, Larsson H, Le Blanc K, Eriksson L, Bjermer L, Scheding S, Westergren-Thorsson G (2016) MSC from fetal and adult lungs possess lung-specific properties compared to bone marrow-derived MSC. Sci Rep 6:29160. https://doi.org/10.1038/srep29160

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  3. Fu Y, Karbaat L, Wu L, Leijten J, Both SK, Karperien M (2017) Trophic effects of mesenchymal stem cells in tissue regeneration. Tissue Eng Part B Rev 23(6):515–528. https://doi.org/10.1089/ten.TEB.2016.0365

    Article  CAS  PubMed  Google Scholar 

  4. Cho J, D'Antuono M, Glicksman M, Wang J, Jonklaas J (2018) A review of clinical trials: mesenchymal stem cell transplant therapy in type 1 and type 2 diabetes mellitus. Am J Stem Cells 7(4):82–93

    CAS  PubMed  PubMed Central  Google Scholar 

  5. Galipeau J, Sensebe L (2018) Mesenchymal stromal cells: clinical challenges and therapeutic opportunities. Cell Stem Cell 22(6):824–833. https://doi.org/10.1016/j.stem.2018.05.004

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  6. Squillaro T, Peluso G, Galderisi U (2016) Clinical trials with mesenchymal stem cells: an update. Cell Transplant 25(5):829–848. https://doi.org/10.3727/096368915X689622

    Article  PubMed  Google Scholar 

  7. Turnbull MT, Zubair AC, Meschia JF, Freeman WD (2019) Mesenchymal stem cells for hemorrhagic stroke: status of preclinical and clinical research. NPJ Regen Med 4:10. https://doi.org/10.1038/s41536-019-0073-8

    Article  PubMed  PubMed Central  Google Scholar 

  8. Borakati A, Mafi R, Mafi P, Khan WS (2018) A systematic review and meta-analysis of clinical trials of mesenchymal stem cell therapy for cartilage repair. Curr Stem Cell Res Ther 13(3):215–225. https://doi.org/10.2174/1574888X12666170915120620

    Article  CAS  PubMed  Google Scholar 

  9. Ward MR, Abadeh A, Connelly KA (2018) Concise review: rational use of mesenchymal stem cells in the treatment of ischemic heart disease. Stem Cells Transl Med 7(7):543–550. https://doi.org/10.1002/sctm.17-0210

    Article  PubMed  PubMed Central  Google Scholar 

  10. Conese M, Carbone A, Castellani S, Di Gioia S (2013) Paracrine effects and heterogeneity of marrow-derived stem/progenitor cells: relevance for the treatment of respiratory diseases. Cells Tissues Organs 197(6):445–473. https://doi.org/10.1159/000348831

    Article  CAS  PubMed  Google Scholar 

  11. De Becker A, Riet IV (2016) Homing and migration of mesenchymal stromal cells: how to improve the efficacy of cell therapy? World J Stem Cells 8(3):73–87. https://doi.org/10.4252/wjsc.v8.i3.73

    Article  PubMed  PubMed Central  Google Scholar 

  12. Leibacher J, Henschler R (2016) Biodistribution, migration and homing of systemically applied mesenchymal stem/stromal cells. Stem Cell Res Ther 7:7. https://doi.org/10.1186/s13287-015-0271-2

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  13. Klein D (2018) iPSCs-based generation of vascular cells: reprogramming approaches and applications. Cell Mol Life Sci 75(8):1411–1433. https://doi.org/10.1007/s00018-017-2730-7

    Article  CAS  PubMed  Google Scholar 

  14. Klein D (2016) Vascular wall-resident multipotent stem cells of Mesenchymal nature within the process of vascular remodeling: cellular basis, clinical relevance, and implications for stem cell therapy. Stem Cells Int 2016:1905846. https://doi.org/10.1155/2016/1905846

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  15. da Silva ML, Caplan AI, Nardi NB (2008) In search of the in vivo identity of mesenchymal stem cells. Stem Cells 26(9):2287–2299. https://doi.org/10.1634/stemcells.2007-1122

    Article  Google Scholar 

  16. Klein D, Hohn HP, Kleff V, Tilki D, Ergun S (2010) Vascular wall-resident stem cells. Histol Histopathol 25(5):681–689. https://doi.org/10.14670/HH-25.681

    Article  PubMed  Google Scholar 

  17. Zengin E, Chalajour F, Gehling UM, Ito WD, Treede H, Lauke H, Weil J, Reichenspurner H, Kilic N, Ergun S (2006) Vascular wall resident progenitor cells: a source for postnatal vasculogenesis. Development 133(8):1543–1551. https://doi.org/10.1242/dev.02315

    Article  CAS  PubMed  Google Scholar 

  18. Klein D, Schmetter A, Imsak R, Wirsdorfer F, Unger K, Jastrow H, Stuschke M, Jendrossek V (2016) Therapy with multipotent Mesenchymal stromal cells protects lungs from radiation-induced injury and reduces the risk of lung metastasis. Antioxid Redox Signal 24(2):53–69. https://doi.org/10.1089/ars.2014.6183

    Article  CAS  PubMed  Google Scholar 

  19. Klein D, Steens J, Wiesemann A, Schulz F, Kaschani F, Rock K, Yamaguchi M, Wirsdorfer F, Kaiser M, Fischer JW, Stuschke M, Jendrossek V (2017) Mesenchymal stem cell therapy protects lungs from radiation-induced endothelial cell loss by restoring superoxide dismutase 1 expression. Antioxid Redox Signal 26(11):563–582. https://doi.org/10.1089/ars.2016.6748

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  20. Steens J, Zuk M, Benchellal M, Bornemann L, Teichweyde N, Hess J, Unger K, Gorgens A, Klump H, Klein D (2017) In vitro generation of vascular wall-resident multipotent stem cells of mesenchymal nature from murine induced pluripotent stem cells. Stem Cell Reports 8(4):919–932. https://doi.org/10.1016/j.stemcr.2017.03.001

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  21. Kimbrel EA, Kouris NA, Yavanian GJ, Chu J, Qin Y, Chan A, Singh RP, McCurdy D, Gordon L, Levinson RD, Lanza R (2014) Mesenchymal stem cell population derived from human pluripotent stem cells displays potent immunomodulatory and therapeutic properties. Stem Cells Dev 23(14):1611–1624. https://doi.org/10.1089/scd.2013.0554

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  22. Wagner W, Ho AD (2007) Mesenchymal stem cell preparations--comparing apples and oranges. Stem Cell Rev 3(4):239–248. https://doi.org/10.1007/s12015-007-9001-1

    Article  PubMed  Google Scholar 

  23. Galipeau J (2013) The mesenchymal stromal cells dilemma--does a negative phase III trial of random donor mesenchymal stromal cells in steroid-resistant graft-versus-host disease represent a death knell or a bump in the road? Cytotherapy 15(1):2–8. https://doi.org/10.1016/j.jcyt.2012.10.002

    Article  PubMed  Google Scholar 

  24. Tyndall A (2014) Mesenchymal stem cell treatments in rheumatology: a glass half full? Nat Rev Rheumatol 10(2):117–124. https://doi.org/10.1038/nrrheum.2013.166

    Article  CAS  PubMed  Google Scholar 

  25. Ho PJ, Yen ML, Tang BC, Chen CT, Yen BL (2013) H2O2 accumulation mediates differentiation capacity alteration, but not proliferative decline, in senescent human fetal mesenchymal stem cells. Antioxid Redox Signal 18(15):1895–1905. https://doi.org/10.1089/ars.2012.4692

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  26. Liu Y, Goldberg AJ, Dennis JE, Gronowicz GA, Kuhn LT (2012) One-step derivation of mesenchymal stem cell (MSC)-like cells from human pluripotent stem cells on a fibrillar collagen coating. PLoS One 7(3):e33225. https://doi.org/10.1371/journal.pone.0033225

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  27. Rombouts WJ, Ploemacher RE (2003) Primary murine MSC show highly efficient homing to the bone marrow but lose homing ability following culture. Leukemia 17(1):160–170. https://doi.org/10.1038/sj.leu.2402763

    Article  CAS  PubMed  Google Scholar 

  28. Kyriakou C, Rabin N, Pizzey A, Nathwani A, Yong K (2008) Factors that influence short-term homing of human bone marrow-derived mesenchymal stem cells in a xenogeneic animal model. Haematologica 93(10):1457–1465. https://doi.org/10.3324/haematol.12553

    Article  CAS  PubMed  Google Scholar 

  29. Miura M, Miura Y, Padilla-Nash HM, Molinolo AA, Fu B, Patel V, Seo BM, Sonoyama W, Zheng JJ, Baker CC, Chen W, Ried T, Shi S (2006) Accumulated chromosomal instability in murine bone marrow mesenchymal stem cells leads to malignant transformation. Stem Cells 24(4):1095–1103. https://doi.org/10.1634/stemcells.2005-0403

    Article  PubMed  Google Scholar 

  30. Janzen V, Forkert R, Fleming HE, Saito Y, Waring MT, Dombkowski DM, Cheng T, DePinho RA, Sharpless NE, Scadden DT (2006) Stem-cell ageing modified by the cyclin-dependent kinase inhibitor p16INK4a. Nature 443(7110):421–426. https://doi.org/10.1038/nature05159

    Article  CAS  PubMed  Google Scholar 

  31. Mimeault M, Batra SK (2009) Recent insights into the molecular mechanisms involved in aging and the malignant transformation of adult stem/progenitor cells and their therapeutic implications. Ageing Res Rev 8(2):94–112. https://doi.org/10.1016/j.arr.2008.12.001

    Article  CAS  PubMed  Google Scholar 

  32. Jung Y, Bauer G, Nolta JA (2012) Concise review: induced pluripotent stem cell-derived mesenchymal stem cells: progress toward safe clinical products. Stem Cells 30(1):42–47. https://doi.org/10.1002/stem.727

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  33. Okano H, Nakamura M, Yoshida K, Okada Y, Tsuji O, Nori S, Ikeda E, Yamanaka S, Miura K (2013) Steps toward safe cell therapy using induced pluripotent stem cells. Circ Res 112(3):523–533. https://doi.org/10.1161/CIRCRESAHA.111.256149

    Article  CAS  PubMed  Google Scholar 

  34. Frobel J, Hemeda H, Lenz M, Abagnale G, Joussen S, Denecke B, Saric T, Zenke M, Wagner W (2014) Epigenetic rejuvenation of mesenchymal stromal cells derived from induced pluripotent stem cells. Stem Cell Reports 3(3):414–422. https://doi.org/10.1016/j.stemcr.2014.07.003

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  35. Sheyn D, Ben-David S, Shapiro G, De Mel S, Bez M, Ornelas L, Sahabian A, Sareen D, Da X, Pelled G, Tawackoli W, Liu Z, Gazit D, Gazit Z (2016) Human iPSCs differentiate into functional MSCs and repair bone defects. Stem Cells Transl Med 5(11):1447–1460. https://doi.org/10.5966/sctm.2015-0311

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  36. Chen YS, Pelekanos RA, Ellis RL, Horne R, Wolvetang EJ, Fisk NM (2012) Small molecule mesengenic induction of human induced pluripotent stem cells to generate mesenchymal stem/stromal cells. Stem Cells Transl Med 1(2):83–95. https://doi.org/10.5966/sctm.2011-0022

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  37. Klein D, Benchellal M, Kleff V, Jakob HG, Ergun S (2013) Hox genes are involved in vascular wall-resident multipotent stem cell differentiation into smooth muscle cells. Sci Rep 3:2178. https://doi.org/10.1038/srep02178

    Article  PubMed  PubMed Central  Google Scholar 

  38. Yamaguchi M (2005) Analysis of neurogenesis using transgenic mice expressing GFP with nestin gene regulatory regions. Chem Senses 30(Suppl 1):i117–i118. https://doi.org/10.1093/chemse/bjh142

    Article  CAS  PubMed  Google Scholar 

  39. Yamaguchi M, Saito H, Suzuki M, Mori K (2000) Visualization of neurogenesis in the central nervous system using nestin promoter-GFP transgenic mice. Neuroreport 11(9):1991–1996

    Article  CAS  PubMed  Google Scholar 

  40. Stanurova J, Neureiter A, Hiber M, de Oliveira KH, Stolp K, Goetzke R, Klein D, Bankfalvi A, Klump H, Steenpass L (2016) Angelman syndrome-derived neurons display late onset of paternal UBE3A silencing. Sci Rep 6:30792. https://doi.org/10.1038/srep30792

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  41. Voelkel C, Galla M, Maetzig T, Warlich E, Kuehle J, Zychlinski D, Bode J, Cantz T, Schambach A, Baum C (2010) Protein transduction from retroviral gag precursors. Proc Natl Acad Sci U S A 107(17):7805–7810. https://doi.org/10.1073/pnas.0914517107

    Article  PubMed  PubMed Central  Google Scholar 

  42. Warlich E, Kuehle J, Cantz T, Brugman MH, Maetzig T, Galla M, Filipczyk AA, Halle S, Klump H, Scholer HR, Baum C, Schroeder T, Schambach A (2011) Lentiviral vector design and imaging approaches to visualize the early stages of cellular reprogramming. Mol Ther 19(4):782–789. https://doi.org/10.1038/mt.2010.314

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  43. Ramos-Mejia V, Montes R, Bueno C, Ayllon V, Real PJ, Rodriguez R, Menendez P (2012) Residual expression of the reprogramming factors prevents differentiation of iPSC generated from human fibroblasts and cord blood CD34+ progenitors. PLoS One 7(4):e35824. https://doi.org/10.1371/journal.pone.0035824

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  44. Muller-Kuller U, Ackermann M, Kolodziej S, Brendel C, Fritsch J, Lachmann N, Kunkel H, Lausen J, Schambach A, Moritz T, Grez M (2015) A minimal ubiquitous chromatin opening element (UCOE) effectively prevents silencing of juxtaposed heterologous promoters by epigenetic remodeling in multipotent and pluripotent stem cells. Nucleic Acids Res 43(3):1577–1592. https://doi.org/10.1093/nar/gkv019

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  45. Hoffmann D, Schott JW, Geis FK, Lange L, Muller FJ, Lenz D, Zychlinski D, Steinemann D, Morgan M, Moritz T, Schambach A (2017) Detailed comparison of retroviral vectors and promoter configurations for stable and high transgene expression in human induced pluripotent stem cells. Gene Ther 24(5):298–307. https://doi.org/10.1038/gt.2017.20

    Article  CAS  PubMed  Google Scholar 

  46. Zhang F, Santilli G, Thrasher AJ (2017) Characterization of a core region in the A2UCOE that confers effective anti-silencing activity. Sci Rep 7(1):10213. https://doi.org/10.1038/s41598-017-10222-3

    Article  CAS  PubMed  PubMed Central  Google Scholar 

Download references

Acknowledgments

The Jürgen Manchot Stiftung (Düsseldorf, Germany) supported this work.

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Diana Klein .

Editor information

Editors and Affiliations

Rights and permissions

Reprints and permissions

Copyright information

© 2020 Springer Science+Business Media, LLC, part of Springer Nature

About this protocol

Check for updates. Verify currency and authenticity via CrossMark

Cite this protocol

Steens, J., Klump, H., Klein, D. (2020). In Vitro Generation of Vascular Wall–Typical Mesenchymal Stem Cells (VW-MSC) from Murine Induced Pluripotent Stem Cells Through VW-MSC–Specific Gene Transfer. In: Kioussi, C. (eds) Stem Cells and Tissue Repair . Methods in Molecular Biology, vol 2155. Humana, New York, NY. https://doi.org/10.1007/978-1-0716-0655-1_7

Download citation

  • DOI: https://doi.org/10.1007/978-1-0716-0655-1_7

  • Published:

  • Publisher Name: Humana, New York, NY

  • Print ISBN: 978-1-0716-0654-4

  • Online ISBN: 978-1-0716-0655-1

  • eBook Packages: Springer Protocols

Publish with us

Policies and ethics