Skip to main content

Engineering Mutation Clones in Mammalian Cells with CRISPR/Cas9

  • Protocol
  • First Online:
Immune Mediators in Cancer

Part of the book series: Methods in Molecular Biology ((MIMB,volume 2108))

Abstract

CRISPR, Clustered Regularly Interspaced Short Palindromic Repeat, as a powerful genome engineering system has been widely accepted and employed in gene editing of a vast range of cell types. Comparing to zinc finger nucleases (ZFNs) or transcription-activator-like effector nucleases (TALENs), CRISPR shows less complicated process and higher efficiency. With the development of different CRISPR systems, it can be used not only to knock out a gene, but also to make precise modifications, activate or repress target genes with epigenetic modifications, and even for genome-wide screening. Here we will describe the procedure of generating stable cell lines with a knock-in mutation created by CRISPR. Specifically, this protocol demonstrated how to apply CRISPR to create the point mutation of R249 to S249 on TP53 exon 7 in human embryonic stem cells (hESC) H9 line, which includes three major steps: (1) design CRISPR system targeting TP53 genomic region, (2) deliver the system to H9 hESC and clone selection, and (3) examination and selection of positive clones.

This is a preview of subscription content, log in via an institution to check access.

Access this chapter

Protocol
USD 49.95
Price excludes VAT (USA)
  • Available as PDF
  • Read on any device
  • Instant download
  • Own it forever
eBook
USD 99.00
Price excludes VAT (USA)
  • Available as EPUB and PDF
  • Read on any device
  • Instant download
  • Own it forever
Softcover Book
USD 129.99
Price excludes VAT (USA)
  • Compact, lightweight edition
  • Dispatched in 3 to 5 business days
  • Free shipping worldwide - see info
Hardcover Book
USD 199.99
Price excludes VAT (USA)
  • Durable hardcover edition
  • Dispatched in 3 to 5 business days
  • Free shipping worldwide - see info

Tax calculation will be finalised at checkout

Purchases are for personal use only

Institutional subscriptions

References

  1. Bibikova M et al (2001) Stimulation of homologous recombination through targeted cleavage by chimeric nucleases. Mol Cell Biol 21(1):289–297

    Article  CAS  Google Scholar 

  2. Zhang F et al (2011) Efficient construction of sequence-specific TAL effectors for modulating mammalian transcription. Nat Biotechnol 29(2):149–153

    Article  Google Scholar 

  3. Miller JC et al (2011) A TALE nuclease architecture for efficient genome editing. Nat Biotechnol 29(2):143–148

    Article  CAS  Google Scholar 

  4. Xu A et al (2018) Establishment of a human embryonic stem cell line with homozygous TP53 R248W mutant by TALEN mediated gene editing. Stem Cell Res 29:215–219

    Article  CAS  Google Scholar 

  5. Zhou R et al (2018) A homozygous p53 R282W mutant human embryonic stem cell line generated using TALEN-mediated precise gene editing. Stem Cell Res 27:131–135

    Article  CAS  Google Scholar 

  6. Mojica FJ, Juez G, Rodriguez-Valera F (1993) Transcription at different salinities of Haloferax mediterranei sequences adjacent to partially modified PstI sites. Mol Microbiol 9(3):613–621

    Article  CAS  Google Scholar 

  7. Mojica FJ et al (2005) Intervening sequences of regularly spaced prokaryotic repeats derive from foreign genetic elements. J Mol Evol 60(2):174–182

    Article  CAS  Google Scholar 

  8. Pourcel C, Salvignol G, Vergnaud G (2005) CRISPR elements in Yersinia pestis acquire new repeats by preferential uptake of bacteriophage DNA, and provide additional tools for evolutionary studies. Microbiology 151(Pt 3):653–663

    Article  CAS  Google Scholar 

  9. Bolotin A et al (2005) Clustered regularly interspaced short palindrome repeats (CRISPRs) have spacers of extrachromosomal origin. Microbiology 151(Pt 8):2551–2561

    Article  CAS  Google Scholar 

  10. Jansen R et al (2002) Identification of genes that are associated with DNA repeats in prokaryotes. Mol Microbiol 43(6):1565–1575

    Article  CAS  Google Scholar 

  11. Marraffini LA, Sontheimer EJ (2008) CRISPR interference limits horizontal gene transfer in staphylococci by targeting DNA. Science 322(5909):1843–1845

    Article  CAS  Google Scholar 

  12. Deveau H et al (2008) Phage response to CRISPR-encoded resistance in Streptococcus thermophilus. J Bacteriol 190(4):1390–1400

    Article  CAS  Google Scholar 

  13. Horvath P et al (2008) Diversity, activity, and evolution of CRISPR loci in Streptococcus thermophilus. J Bacteriol 190(4):1401–1412

    Article  CAS  Google Scholar 

  14. Deltcheva E et al (2011) CRISPR RNA maturation by trans-encoded small RNA and host factor RNase III. Nature 471(7340):602–607

    Article  CAS  Google Scholar 

  15. Gasiunas G et al (2012) Cas9-crRNA ribonucleoprotein complex mediates specific DNA cleavage for adaptive immunity in bacteria. Proc Natl Acad Sci U S A 109(39):E2579–E2586

    Article  CAS  Google Scholar 

  16. Jinek M et al (2012) A programmable dual-RNA-guided DNA endonuclease in adaptive bacterial immunity. Science 337(6096):816–821

    Article  CAS  Google Scholar 

  17. Cong L et al (2013) Multiplex genome engineering using CRISPR/Cas systems. Science 339(6121):819–823

    Article  CAS  Google Scholar 

  18. Tu J et al (2018) Generation of human embryonic stem cell line with heterozygous RB1 deletion by CRIPSR/Cas9 nickase. Stem Cell Res 28:29–32

    Article  CAS  Google Scholar 

  19. Huo Z et al (2019) Generation of a heterozygous p53 R249S mutant human embryonic stem cell line by TALEN-mediated genome editing. Stem Cell Res 34:101360

    Article  CAS  Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Ruiying Zhao .

Editor information

Editors and Affiliations

Rights and permissions

Reprints and permissions

Copyright information

© 2020 Springer Science+Business Media, LLC, part of Springer Nature

About this protocol

Check for updates. Verify currency and authenticity via CrossMark

Cite this protocol

Huo, Z., Tu, J., Lee, DF., Zhao, R. (2020). Engineering Mutation Clones in Mammalian Cells with CRISPR/Cas9. In: Vancurova, I., Zhu, Y. (eds) Immune Mediators in Cancer. Methods in Molecular Biology, vol 2108. Humana, New York, NY. https://doi.org/10.1007/978-1-0716-0247-8_29

Download citation

  • DOI: https://doi.org/10.1007/978-1-0716-0247-8_29

  • Published:

  • Publisher Name: Humana, New York, NY

  • Print ISBN: 978-1-0716-0246-1

  • Online ISBN: 978-1-0716-0247-8

  • eBook Packages: Springer Protocols

Publish with us

Policies and ethics