Skip to main content

Encapsulation of Enzymes in Porous Capsules via Particle Templating

  • Protocol
  • First Online:

Part of the book series: Methods in Molecular Biology ((MIMB,volume 2100))

Abstract

The entrapment of enzymes in capsules is a smart strategy to concentrate them in confined spaces and control their exposure to outside environments. Enzymes can be caged in the interior of capsules during their formation (preloading) or postloaded within prefabricated and permeable hollow shells. On the other hand, enzymes can also be deposited within the shell or on the surface of the capsules. Each of these strategies has intrinsic limitations, and a common enemy is the undesired desorption of enzymes.

Here, we describe the formation of enzyme-loaded polymeric capsules prepared with the Layer-by-Layer method and the template-assisted entrapment of enzymes through coprecipitation (preloading) within calcium carbonate particles, as an example of an efficient preloading strategy, and draw attention at the key parameters that influence this immobilization method.

This is a preview of subscription content, log in via an institution.

Buying options

Protocol
USD   49.95
Price excludes VAT (USA)
  • Available as PDF
  • Read on any device
  • Instant download
  • Own it forever
eBook
USD   189.00
Price excludes VAT (USA)
  • Available as EPUB and PDF
  • Read on any device
  • Instant download
  • Own it forever
Softcover Book
USD   249.99
Price excludes VAT (USA)
  • Compact, lightweight edition
  • Dispatched in 3 to 5 business days
  • Free shipping worldwide - see info
Hardcover Book
USD   329.99
Price excludes VAT (USA)
  • Durable hardcover edition
  • Dispatched in 3 to 5 business days
  • Free shipping worldwide - see info

Tax calculation will be finalised at checkout

Purchases are for personal use only

Learn about institutional subscriptions

Springer Nature is developing a new tool to find and evaluate Protocols. Learn more

Change history

  • 20 March 2020

    Chapter 12 was inadvertently published with the contributing authors listed as Mihaela Badea, Akhtar Hayat, and Jean-Louis Marty, whereas it should have been printed as Audrey Sassolas, Akhtar Hayat, and Jean-Louis Marty. This correction has been updated in the book.

References

  1. Kantner K, Rejman J, Kraft KVL, Soliman MG, Zyuzin MV, Escudero A, Del Pino P, Parak WJ (2018) Laterally and temporally controlled intracellular staining by light-triggered release of encapsulated fluorescent markers. Chemistry 24(9):2098–2102

    Article  CAS  Google Scholar 

  2. Dergunov SA, Khabiyev AT, Shmakov SN, Kim MD, Ehterami N, Weiss MC, Birman VB, Pinkhassik E (2016) Encapsulation of homogeneous catalysts in porous polymer nanocapsules produces fast-acting selective nanoreactors. ACS Nano 10(12):11397–11406

    Article  CAS  Google Scholar 

  3. Lvov Y, Antipov AA, Mamedov A, Möhwald H, Sukhorukov GB (2001) Urease encapsulation in nanoorganized microshells. Nano Lett 1(3):125–128

    Article  CAS  Google Scholar 

  4. Sakr OS, Borchard G (2013) Encapsulation of enzymes in Layer-by-Layer (LbL) structures: latest advances and applications. Biomacromolecules 14(7):2117–2135

    Article  CAS  Google Scholar 

  5. Ott A, Yu X, Hartmann R, Rejman J, Schütz A, Ochs M, Parak WJ, Carregal-Romero S (2015) Light-addressable and degradable silica capsules for delivery of molecular cargo to the cytosol of cells. Chem Mat 27:1929–1942

    Article  CAS  Google Scholar 

  6. Hussain SZ, Zyuzin MV, Hussain I, Parak WJ, Carregal-Romero S (2016) Catalysis by multifunctional polyelectrolyte capsules. RSC Adv 6(85):81569–81577

    Article  CAS  Google Scholar 

  7. Liang Z, Wang C, Tong Z, Ye W, Ye S (2005) Bio-catalytic nanoparticles with urease immobilized in multilayer assembled through layer-by-layer technique. React Funct Polym 63(1):85–94

    Article  CAS  Google Scholar 

  8. Chang F-P, Hung Y, Chang J-H, Lin C-H, Mou C-Y (2014) Enzyme encapsulated hollow silica nanospheres for intracellular biocatalysis. ACS Appl Mater Interfaces 6(9):6883–6890

    Article  CAS  Google Scholar 

  9. González-Domínguez E, Comesaña-Hermo M, Mariño-Fernández R, rodríguez-González B, Arenal R, Salgueiriño V, Moldes D, Othman AM, Pérez-Lorenzo M, Correa-Duarte MA (2016) Hierarchical nanoplatforms for high-performance enzyme biocatalysis under denaturing conditions. ChemCatChem 8(7):1264–1268

    Article  Google Scholar 

  10. Benítez-Mateos AI, Llarena I, Sánchez-Iglesias A, López-Gallego F (2018) Expanding one-pot cell-free protein synthesis and immobilization for O on-demand manufacturing of biomaterials. ACS Synthetic Bio 7(3):875–884

    Article  Google Scholar 

  11. Were LM, Bruce BD, Davidson PM, Weiss J (2003) Size, stability, and entrapment efficiency of phospholipid nanocapsules containing polypeptide antimicrobials. J Agric Food Chem 51(27):8073–8079

    Article  CAS  Google Scholar 

  12. Wilkerson JW, Yang SO, Funk PJ, Stanley SK, Bundy BC (2018) Nanoreactors: strategies to encapsulate enzyme biocatalysts in virus-like particles. New Biotechnol 44:59–63

    Article  CAS  Google Scholar 

  13. Tsang SC, Yu CH, Gao X, Tam K (2006) Silica-encapsulated nanomagnetic particle as a new recoverable biocatalyst carrier. J Phys Chem B 110(34):16914–16922

    Article  CAS  Google Scholar 

  14. Ariga K, Ji Q, Hill JP (2010) Enzyme-encapsulated Layer-by-Layer assemblies: current status and challenges toward ultimate nanodevices. Modern techniques for nano- and microreactors/−reactions. Springer, Berlin, pp 51–87

    Google Scholar 

  15. Walde P, Ichikawa S (2001) Enzymes inside lipid vesicles: preparation, reactivity and applications. Biomol Eng 18(4):143–177

    Article  CAS  Google Scholar 

  16. Yoshimoto M, Sakamoto H, Yoshimoto N, Kuboi R, Nakao K (2007) Stabilization of quaternary structure and activity of bovine liver catalase through encapsulation in liposomes. Enzym Microb Technol 41(6):849–858

    Article  CAS  Google Scholar 

  17. Zhang R, Feng L, Dong Z, Wang L, Liang C, Chen J, Ma Q, Zhang R, Chen Q, Wang Y, Liu Z Glucose & oxygen exhausting liposomes for combined cancer starvation and hypoxia-activated therapy. Biomaterials 162:123–131

    Google Scholar 

  18. Colletier JP, Chaize B, Winterhalter M, Fournier D (2002) Protein encapsulation in liposomes: efficiency depends on interactions between protein and phospholipid bilayer. BMC Biotechnol 2(9)

    Google Scholar 

  19. Chen C, Han D, Cai C, Tang X (2010) An overview of liposome lyophilization and its future potential. J Control Release 142(3):299–311

    Article  CAS  Google Scholar 

  20. Caruso F, Trau D, Möhwald H, Renneberg R (2000) Enzyme encapsulation in layer-by-layer engineered polymer multilayer capsules. Langmuir 16(4):1485–1488

    Article  CAS  Google Scholar 

  21. López-Gallego F, Yate L (2015) Selective biomineralization of Co3(PO4)2-sponges triggered by His-tagged proteins: efficient heterogeneous biocatalysts for redox processes. Chem Commun 51(42):8753–8756

    Article  Google Scholar 

  22. Petrov AP, Volodkin DV, Sukhorukov GB (2005) Protein-calcium carbonate coprecipitation: a tool for protein encapsulation. Biotechnol Prog 21(3):918–925

    Article  CAS  Google Scholar 

  23. Parakhonskiy BV, Yashchenok AM, Konrad M, Skirtach AG (2014) Colloidal micro- and nano-particles as templates for polyelectrolyte multilayer capsules. Adv Colloid Interf Sci 207:253–264

    Article  CAS  Google Scholar 

  24. Parakhonskiy BV, Haase A, Antolini R (2012) Sub-micrometer vaterite containers: synthesis, substance loading, and release. Angew Chem Int Ed 51(5):1195–1197

    Article  CAS  Google Scholar 

  25. Parakhonskiy B, Zyuzin MV, Yashchenok A, Carregal-Romero S, Rejman J, Möhwald H, Parak WJ, Skirtach AG (2015) The influence of the size and aspect ratio of anisotropic, porous CaCO3 particles on their uptake by cells. J Nanobiotechnol 13(1):53

    Article  Google Scholar 

  26. Harimech PK, Hartmann R, Rejman J, del_Pino P, Rivera_Gil P, Parak WJ (2015) Encapsulated enzymes with integrated fluorescence-control of enzymatic activity. J Mater Chem B 3(14):2801–2807

    Article  CAS  Google Scholar 

  27. Volodkin DV, Petrov AI, Prevot M, Sukhorukov GB (2004) Matrix polyelectrolyte microcapsules: new system for macromolecule encapsulation. Langmuir 20(8):3398–3406

    Article  CAS  Google Scholar 

  28. Skirtach A, Yashchenok A, Möhwald H (2011) Encapsulation, release and applications of LbL polyelectrolyte multilayer capsules. Chem Commun 47(48):12736–12746

    Article  CAS  Google Scholar 

  29. Donath E, Sukhorukov GB, Caruso F, Davis SA, Möhwald H (1998) Novel hollow polymer shells by colloid-templated assembly of polyelectrolytes. Angew Chem Int Ed 37(16):2202–2205

    Article  CAS  Google Scholar 

  30. Milkova V, Radeva T (2013) Effect of ionic strength and molecular weight on electrical properties and thickness of polyelectrolyte bi-layers. Colloids Surf A Physicochem Eng Asp 424:52–58

    Article  CAS  Google Scholar 

  31. Schönhoff M, Ball V, Bausch AR, Dejugnat C, Delorme N, Glinel K, Klitzing RV, Steitz R (2007) Hydration and internal properties of polyelectrolyte multilayers. Colloids Surf A Physicochem Eng Asp 303(1–2):14–29

    Article  Google Scholar 

  32. Steitz R, Leiner V, Siebrecht R, Klitzing R (2000) Influence of the ionic strength on the structure of polyelectrolyte films at the solid/liquid interface. Colloids Surf A Physicochem Eng Asp 163(1):63–70

    Article  CAS  Google Scholar 

  33. Karamitros CS, Yashchenok AM, Möhwald H, Skirtach AG, Konrad M (2013) Preserving catalytic activity and enhancing biochemical stability of the therapeutic enzyme asparaginase by biocompatible multi layered polyelectrolyte microcapsules. Biomacromolecules 14(12):4398–4406

    Article  CAS  Google Scholar 

  34. Mahajan RV, Kumar V, Rajendran V, Saran S, Ghosh PC, Saxena RK (2014) Purification and characterization of a novel and robust L-asparaginase having low-glutaminase activity from bacillus licheniformis: in vitro evaluation of anti-cancerous properties. PLoS One 9(6):e99037

    Article  Google Scholar 

  35. Volodkin DV, Larionova NI, Sukhorukov GB (2004) Protein encapsulation via porous CaCO3 microparticles templating. Biomacromolecules 5(5):1962–1972

    Article  CAS  Google Scholar 

  36. Svenskaya YI, Fattah H, Inozemtseva OA, Ivanova AG, Shtykov SN, Gorin DA, Parakhonskiy BV (2018) Key parameters for size- and shape-controlled synthesis of vaterite particles. Cryst Growth Des 18(1):331–337

    Article  CAS  Google Scholar 

  37. Beck R, Andreassen J-P (2010) Spherulitic growth of calcium carbonate. Cryst Growth Des 10(7):2934–2947

    Article  CAS  Google Scholar 

  38. Ochs M, Carregal-Romero S, Rejman J, Braeckmans K, De Smedt SC, Parak WJ (2012) Light-addressable capsules as caged compound matrix for controlled triggering of cytosolic reactions. Angew Chem Int Ed 52(2):695–699

    Article  Google Scholar 

  39. Trushina DB, Bukreeva TV, Antipina MN (2016) Size-controlled synthesis of vaterite calcium carbonate by the mixing method: aiming for nanosized method. Cryst Growth Des 16(3):1311–1319.40

    Article  CAS  Google Scholar 

  40. Krzyzanek V, Sporenberg N, Keller U, Guddorf J, Reichelt R, Schönhoff M (2011) Polyelectrolyte multilayer capsules: nanostructure and visualisation of nanopores in the wall. Soft Matter 7(15):7034–7041

    Article  CAS  Google Scholar 

Download references

Acknowledgments

MVZ acknowledges the President’s Scholarship SP-1576.2018.4 and the Russian Science Foundation for funding (Grant N 19-75-00039).

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Susana Carregal-Romero .

Editor information

Editors and Affiliations

Rights and permissions

Reprints and permissions

Copyright information

© 2020 Springer Science+Business Media, LLC, part of Springer Nature

About this protocol

Check for updates. Verify currency and authenticity via CrossMark

Cite this protocol

Zyuzin, M.V., Ramos-Cabrer, P., Carregal-Romero, S. (2020). Encapsulation of Enzymes in Porous Capsules via Particle Templating. In: Guisan, J., Bolivar, J., López-Gallego, F., Rocha-Martín, J. (eds) Immobilization of Enzymes and Cells. Methods in Molecular Biology, vol 2100. Humana, New York, NY. https://doi.org/10.1007/978-1-0716-0215-7_15

Download citation

  • DOI: https://doi.org/10.1007/978-1-0716-0215-7_15

  • Published:

  • Publisher Name: Humana, New York, NY

  • Print ISBN: 978-1-0716-0214-0

  • Online ISBN: 978-1-0716-0215-7

  • eBook Packages: Springer Protocols

Publish with us

Policies and ethics