Skip to main content

Recent Advances in the Open Access Cheminformatics Toolkits, Software Tools, Workflow Environments, and Databases

  • Protocol
  • First Online:
Computer-Aided Drug Discovery

Abstract

Cheminformatics utilizes various computational techniques to solve a wide variety of drug discovery problems, including drug design and predictive toxicology. These computational exercises employ various toolkits/libraries, workflows, databases, etc. for their applications in lead optimization, virtual screening, chemical database mining, structure-activity/toxicity studies, etc. It is therefore important for such techniques to be freely available. Open-access resources permit free use and redistribution of a product via a free license, while open-source resources also provide source code that can be utilized to modify the product. In order to extract the knowledge from enormous amount of data that accumulates at a staggering rate, open-access or open-source cheminformatics packages also need to be efficient and user-friendly. In this chapter, we record the recent advances in freely available (including both open access and open source) cheminformatics toolkits, software (stand-alone and online applications), workflow environment, and databases. The objective of this chapter is to get the readers acquainted with the freely available resources, so that they can utilize those tools for solving different drug discovery challenges. We will start with the toolkit/libraries such as Chemistry Development Kit (CDK), Open Babel, RDKit, ChemmineR, Indigo, chemf, etc., which provide various functionalities that can aid researchers to develop their own cheminformatics software/applications. Next we will discuss various cheminformatics software tools, including iDrug, PharmDock, DecoyFinder, DemQSAR, Chembench, etc. which have recently been developed with a wide variety of applications. We will further discuss workflow environments, including Konstanz Information Miner (KNIME), Taverna, recent combinations, i.e., CDK-KNIME or CDK-Taverna and their contributions in the cheminformatics field. At the end, we will briefly touch various recent databases, such as QSAR DataBank, VAMMPIRE, CREDO, PubChem3D, MMsINC, etc., and their applications. The open-access resources covered in this chapter would enable the medicinal chemists and cheminformaticians to solve various problems encountered during their research.

This is a preview of subscription content, log in via an institution to check access.

Access this chapter

Protocol
USD 49.95
Price excludes VAT (USA)
  • Available as PDF
  • Read on any device
  • Instant download
  • Own it forever
eBook
USD 84.99
Price excludes VAT (USA)
  • Available as EPUB and PDF
  • Read on any device
  • Instant download
  • Own it forever
Softcover Book
USD 109.99
Price excludes VAT (USA)
  • Compact, lightweight edition
  • Dispatched in 3 to 5 business days
  • Free shipping worldwide - see info
Hardcover Book
USD 159.99
Price excludes VAT (USA)
  • Durable hardcover edition
  • Dispatched in 3 to 5 business days
  • Free shipping worldwide - see info

Tax calculation will be finalised at checkout

Purchases are for personal use only

Institutional subscriptions

References

  1. Steinbeck C, Han Y, Kuhn S, Horlacher O, Luttmann E, Willighagen E (2003) The Chemistry Development Kit (CDK): an open-source Java library for chemo- and bioinformatics. J Chem Inf Comput Sci 43:493–500

    Article  CAS  PubMed  Google Scholar 

  2. O'boyle NM, Banck M, James CA, Morley C, Vandermeersch T, Hutchison GR (2011) Open Babel: an open chemical toolbox. J Cheminform 3:33

    Article  PubMed  PubMed Central  Google Scholar 

  3. Landrum G (2013) RDKit: cheminformatics and machine learning software. rdkit.org

    Google Scholar 

  4. http://ggasoftware.com/opensource/indigo

  5. Guha R, Howard MT, Hutchison GR, Murray-Rust P, Rzepa H, Steinbeck C, Wegner J, Willighagen EL (2006) The blue obelisk interoperability in chemical informatics. J Chem Inf Model 46:991–998

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  6. O'Boyle NM, Guha R, Willighagen EL, Adams SE, Alvarsson J, Bradley J-C, Filippov IV, Hanson RM, Hanwell MD, Hutchison GR (2011) Open data, open source and open standards in chemistry: the Blue Obelisk five years on. J Cheminform 3:37

    Article  PubMed  PubMed Central  Google Scholar 

  7. Spjuth O, Helmus T, Willighagen EL, Kuhn S, Eklund M, Wagener J, Murray-Rust P, Steinbeck C, Wikberg JES (2007) Bioclipse: an open source workbench for chemo- and bioinformatics. BMC Bioinformatics 8:59

    Article  PubMed  PubMed Central  Google Scholar 

  8. Hanwell MD, Curtis DE, Lonie DC, Vandermeersch T, Zurek E, Hutchison GR (2012) Avogadro: an advanced semantic chemical editor, visualization, and analysis platform. J Cheminform 4:17

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  9. Guha R (2006) CDK descriptor calculator GUI. http://www.rguha.net/code/java/cdkdesc.html

  10. Steinbeck C, Hoppe C, Kuhn S, Floris M, Guha R, Willighagen EL (2006) Recent developments of the chemistry development kit (CDK)—an open-source java library for chemo- and bioinformatics. Curr Pharm Des 12:2111–2120

    Article  CAS  PubMed  Google Scholar 

  11. O'Boyle NM, Hutchison GR (2008) Cinfony—combining Open Source cheminformatics toolkits behind a common interface. Chem Cent J 2:24

    Article  PubMed  PubMed Central  Google Scholar 

  12. Rahman SA, Bashton M, Holliday GL, Schrader R, Thornton JM (2009) Small Molecule Subgraph Detector (SMSD) toolkit. J Cheminform 1:12

    Article  PubMed  PubMed Central  Google Scholar 

  13. Hildebrandt A, Dehof AK, Rurainski A, Bertsch A, Schumann M, Toussaint NC, Moll A, Stockel D, Nickels S, Mueller SC (2010) BALL-biochemical algorithms library 1.3. BMC Bioinformatics 11:531

    Article  PubMed  PubMed Central  Google Scholar 

  14. Hinselmann G, Rosenbaum L, Jahn A, Fechner N, Zell A (2011) jCompoundMapper: an open source Java library and command-line tool for chemical fingerprints. J Cheminform 3:3

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  15. Hock S, Riedl R (2012) chemf: a purely functional chemistry toolkit. J Cheminform 4:1–19

    Article  Google Scholar 

  16. Cao D-S, Xu Q-S, Hu Q-N, Liang Y-Z (2013) ChemoPy: freely available python package for computational biology and chemoinformatics. Bioinformatics 29:1092–1094

    Article  CAS  PubMed  Google Scholar 

  17. Cao Y, Charisi A, Cheng L-C, Jiang T, Girke T (2008) ChemmineR: a compound mining framework for R. Bioinformatics 24:1733–1734

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  18. Cao D-S, Xiao N, Xu Q-S, Chen AF (2014) Rcpi: R/Bioconductor package to generate various descriptors of proteins, compounds, and their interactions. Bioinformatics. doi:10.1093/bioinformatics/btu1624

    Google Scholar 

  19. http://wiki.chemkit.org/Main_Page

  20. Herraez A (2006) Biomolecules in the computer: Jmol to the rescue. Biochem Mol Biol Educ 34:255–261

    Article  CAS  PubMed  Google Scholar 

  21. Krause S, Willighagen E, Steinbeck C (2000) JChemPaint—using the collaborative forces of the internet to develop a free editor for 2D chemical structures. Molecules 5:93–98

    Article  CAS  Google Scholar 

  22. https://github.com/cdk/cdk/blob/master/AUTHORS

  23. Bashton M, Nobeli I, Thornton JM (2006) Cognate ligand domain mapping for enzymes. J Mol Biol 364:836–852

    Article  CAS  PubMed  Google Scholar 

  24. Rojas-Cherto M, Kasper PT, Willighagen EL, Vreeken RJ, Hankemeier T, Reijmers TH (2011) Elemental composition determination based on MSn. Bioinformatics 27:2376–2383

    Article  CAS  PubMed  Google Scholar 

  25. Steinbeck C (2001) SENECA: a platform-independent, distributed, and parallel system for computer-assisted structure elucidation in organic chemistry. J Chem Inf Comput Sci 41:1500–1507

    Article  CAS  PubMed  Google Scholar 

  26. Steinbeck C, Kuhn S (2004) NMRShiftDB—compound identification and structure elucidation support through a free community-built web database. Phytochemistry 65:2711–2717

    Article  CAS  PubMed  Google Scholar 

  27. Yap CW (2011) PaDEL-descriptor: an open source software to calculate molecular descriptors and fingerprints. J Comput Chem 32:1466–1474

    Article  CAS  PubMed  Google Scholar 

  28. http://cdk.sourceforge.net/old_web/software.html

  29. http://www.rdkit.org/docs/Overview.html

  30. http://www.rdkit.org/docs/Overview.html#the-contrib-directory

  31. http://rdkit.org/RDKit_Docs.current.pdf

  32. http://sourceforge.net/projects/openbabel/files/stats/timeline?dates=2001-11-25+to+2014-11-14

  33. http://scholar.google.co.in/scholar?hl=en&as_sdt=0,5&q=openbabel

  34. http://www.eyesopen.com/toolkits

  35. http://www.eyesopen.com/academic

  36. http://openbabel.org/

  37. O'Boyle NM, Morley C, Hutchison GR (2008) Pybel: a Python wrapper for the OpenBabel cheminformatics toolkit. Chem Cent J 2:5

    Article  PubMed  PubMed Central  Google Scholar 

  38. http://creativecommons.org/licenses/by/3.0/

  39. Pavlov D, Rybalkin M, Karulin B, Kozhevnikov M, Savelyev A, Churinov A (2011) Indigo: universal cheminformatics API. J Cheminform 3:P4

    Article  PubMed Central  Google Scholar 

  40. http://jcompoundmapper.sourceforge.net/

  41. http://www.scala-lang.org/

  42. https://github.com/stefan-hoeck/chemf

  43. Jarvis RM, Broadhurst D, Johnson H, O'Boyle NM, Goodacre R (2006) PYCHEM: a multivariate analysis package for python. Bioinformatics 22:2565–2566

    Article  CAS  PubMed  Google Scholar 

  44. Wang Y, Backman TWH, Horan K, Girke T (2013) fmcsR: mismatch tolerant maximum common substructure searching in R. Bioinformatics 29:2792–2794

    Article  CAS  PubMed  Google Scholar 

  45. Cao Y, Jiang T, Girke T (2010) Accelerated similarity searching and clustering of large compound sets by geometric embedding and locality sensitive hashing. Bioinformatics 26:953–959

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  46. Hoksza D, Skoda P, Vorsilak M, Svozil D (2014) Molpher: a software framework for systematic chemical space exploration. J Cheminform 3:32

    Google Scholar 

  47. Schling B (2011) The boost C++ libraries. XML Press, Laguna Hills, CA

    Google Scholar 

  48. Hu B, Lill MA (2014) PharmDock: a pharmacophore-based docking program. J Cheminform 6:1–14

    Article  Google Scholar 

  49. Plewczynski D, Lazniewski M, Augustyniak R, Ginalski K (2011) Can we trust docking results? Evaluation of seven commonly used programs on PDBbind database. J Comput Chem 32:742–755

    Article  CAS  PubMed  Google Scholar 

  50. Li X, Li Y, Cheng T, Liu Z, Wang R (2010) Evaluation of the performance of four molecular docking programs on a diverse set of protein–ligand complexes. J Comput Chem 31:2109–2125

    Article  PubMed  Google Scholar 

  51. Cereto-Massague A, Ojeda MJ, Joosten RP, Valls C, Mulero M, Salvado MJ, Arola-Arnal A, Arola L, Garcia-Vallve S, Pujadas G (2013) The good, the bad and the dubious: VHELIBS, a validation helper for ligands and binding sites. J Cheminform 5:36

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  52. Sehnal D, Varekova RS, Berka K, Pravda L, Navratilova V, Banas P, Ionescu C-M, Otyepka M, Koca J (2013) MOLE 2.0: advanced approach for analysis of biomacromolecular channels. J Cheminform 5:39

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  53. Petrek M, Kosinova P, Koca J, Otyepka M (2007) MOLE: a Voronoi diagram-based explorer of molecular channels, pores, and tunnels. Structure 15:1357–1363

    Article  CAS  PubMed  Google Scholar 

  54. Yaffe E, Fishelovitch D, Wolfson HJ, Halperin D, Nussinov R (2008) MolAxis: efficient and accurate identification of channels in macromolecules. Proteins 73:72–86

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  55. Yaffe E, Fishelovitch D, Wolfson HJ, Halperin D, Nussinov R (2008) MolAxis: a server for identification of channels in macromolecules. Nucleic Acids Res 36:W210–W215

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  56. Chovancova E, Pavelka A, Benes P, Strnad O, Brezovsky J, Kozlikova B, Gora A, Sustr V, Klvana M, Medek P (2012) CAVER 3.0: a tool for the analysis of transport pathways in dynamic protein structures. PLoS Comput Biol 8:e1002708

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  57. Khashan R (2012) FragVLib a free database mining software for generating “Fragment-based Virtual Library” using pocket similarity search of ligand-receptor complexes. J Cheminform 4:1–6

    Article  Google Scholar 

  58. Ekins S, Clark AM, Sarker M (2013) TB Mobile: a mobile app for anti-tuberculosis molecules with known targets. J Cheminform 5:13

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  59. Bienfait B, Ertl P (2013) JSME: a free molecule editor in JavaScript. J Cheminform 5:24

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  60. Gutlein M, Karwath A, Kramer S (2012) CheS-Mapper—chemical space mapping and visualization in 3D. J Cheminform 4:7

    Article  PubMed  PubMed Central  Google Scholar 

  61. Le Guilloux V, Arrault A, Colliandre L, Bourg SP, Vayer P, Morin-Allory L (2012) Mining collections of compounds with Screening Assistant 2. J Cheminform 4:1–16

    Article  Google Scholar 

  62. Sud M, Fahy E, Subramaniam S (2012) Template-based combinatorial enumeration of virtual compound libraries for lipids. J Cheminform 4:23

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  63. Cereto-Massague A, Guasch L, Valls C, Mulero M, Pujadas G, Garcia-Vallve S (2012) DecoyFinder: an easy-to-use python GUI application for building target-specific decoy sets. Bioinformatics 28:1661–1662

    Article  CAS  PubMed  Google Scholar 

  64. Huang N, Shoichet BK, Irwin JJ (2006) Benchmarking sets for molecular docking. J Med Chem 49:6789–6801

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  65. Irwin JJ (2008) Community benchmarks for virtual screening. J Comput Aided Mol Des 22:193–199

    Article  CAS  PubMed  Google Scholar 

  66. Wallach I, Lilien R (2011) Virtual decoy sets for molecular docking benchmarks. J Chem Inf Model 51:196–202

    Article  CAS  PubMed  Google Scholar 

  67. Durant JL, Leland BA, Henry DR, Nourse JG (2002) Reoptimization of MDL keys for use in drug discovery. J Chem Inf Comput Sci 42:1273–1280

    Article  CAS  PubMed  Google Scholar 

  68. Kerber A, Laue R, Gruner T, Meringer M (1998) MOLGEN 4.0. MATCH Commun Math Comput Chem 37:205–208

    Google Scholar 

  69. Peironcely JE, Rojas-Cherto M, Fichera D, Reijmers TH, Coulier L, Faulon J-L, Hankemeier T (2012) OMG: open molecule generator. J Cheminform 4:21

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  70. Brefo-Mensah EK, Palmer M (2012) mol2chemfig, a tool for rendering chemical structures from molfile or SMILES format to LATEX code. J Cheminform 4:24

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  71. Lawson KR, Lawson J (2012) LICSS—a chemical spreadsheet in microsoft excel. J Cheminform 4:1–7

    Article  Google Scholar 

  72. Wilhelm J-H (2011) MyChemise: a 2D drawing program that uses morphing for visualisation purposes. J Cheminform 3:53

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  73. Tosco P, Balle T, Shiri F (2011) Open3DALIGN: an open-source software aimed at unsupervised ligand alignment. J Comput Aided Mol Des 25:777–783

    Article  CAS  PubMed  Google Scholar 

  74. Norgan AP, Coffman PK, Kocher J-P, Katzmann DJ, Sosa CP (2011) Multilevel parallelization of AutoDock 4.2. J Cheminform 3:12

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  75. Demir-Kavuk O, Bentzien J, Muegge I, Knapp E-W (2011) DemQSAR: predicting human volume of distribution and clearance of drugs. J Comput Aided Mol Des 25:1121–1133

    Article  CAS  PubMed  Google Scholar 

  76. Jimmy R, Laurence M, Serge P (2009) Shape: automatic conformation prediction of carbohydrates using a genetic algorithm. J Cheminform 1:1–7

    Article  Google Scholar 

  77. Rijnbeek M, Steinbeck C (2010) OrChem: an open source chemistry search engine for Oracle. J Cheminform 2:P28

    Article  PubMed Central  Google Scholar 

  78. Gramatica P, Chirico N, Papa E, Cassani S, Kovarich S (2013) QSARINS: a new software for the development, analysis, and validation of QSAR MLR models. J Comput Chem 34:2121–2132

    Article  CAS  Google Scholar 

  79. http://www.vega-qsar.eu/index.php

  80. http://www.oecd.org/chemicalsafety/risk-assessment/theoecdqsartoolbox.htm

  81. http://www.chemaxon.com/free-software/

  82. http://teqip.jdvu.ac.in/QSAR_Tools/

  83. Wang X, Chen H, Yang F, Gong J, Li S, Pei J, Liu X, Jiang H, Lai L, Li H (2014) iDrug: a web-accessible and interactive drug discovery and design platform. J Cheminform 6:1–8

    Article  Google Scholar 

  84. Oprisiu I, Novotarskyi S, Tetko IV (2013) Modeling of non-additive mixture properties using the Online CHEmical database and Modeling environment (OCHEM). J Cheminform 5:4

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  85. Walker T, Grulke CM, Pozefsky D, Tropsha A (2010) Chembench: a cheminformatics workbench. Bioinformatics 26:3000–3001

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  86. Zhang L, Zhu H, Oprea T, Golbraikh A, Tropsha A (2008) QSAR modeling of the blood-brain barrier permeability for diverse organic compounds. Pharm Res 25:1902–1914

    Article  CAS  PubMed  Google Scholar 

  87. Breiman L (2001) Random forests. Mach Learn 1:5–32

    Article  Google Scholar 

  88. Wishart DS, Knox C, Guo AC, Shrivastava S, Hassanali M, Stothard P, Chang Z, Woolsey J (2006) DrugBank: a comprehensive resource for in silico drug discovery and exploration. Nucleic Acids Res 34:D668–D672

    Article  CAS  PubMed  Google Scholar 

  89. Olah M, Mracec M, Ostopovici L, Rad R, Bora A, Hadaruga N, Olah I, Banda M, Simon Z, Mracec M (2004) WOMBAT: world of molecular bioactivity. Chemoinf. Drug Disc., Wiley-VCH, New York, 223–239

    Google Scholar 

  90. Bradley J-C, Lancashire RJ, Lang ASID, Williams AJ (2009) The Spectral Game: leveraging Open Data and crowdsourcing for education. J Cheminform 1:1–10

    Article  Google Scholar 

  91. http://www.acdlabs.com/resources/ilab/

  92. Tiwari A, Sekhar AKT (2007) Workflow based framework for life science informatics. Comput Biol Chem 31:305–319

    Article  CAS  PubMed  Google Scholar 

  93. http://accelrys.com/products/pipeline-pilot/

  94. http://www.inforsense.com/

  95. Warr WA (2012) Scientific workflow systems: Pipeline pilot and KNIME. J Comput Aided Mol Des 26:1–4

    Google Scholar 

  96. Tan W, Madduri R, Nenadic A, Soiland-Reyes S, Sulakhe D, Foster I, Goble CA (2010) CaGrid Workflow Toolkit: a taverna based workflow tool for cancer grid. BMC Bioinformatics 11:542

    Article  PubMed  PubMed Central  Google Scholar 

  97. http://www.myexperiment.org/

  98. Kuhn T, Willighagen EL, Zielesny A, Steinbeck C (2010) CDK-Taverna: an open workflow environment for cheminformatics. BMC Bioinformatics 11:159

    Article  PubMed  PubMed Central  Google Scholar 

  99. http://cdktaverna2.ts-concepts.de/wiki/index.php?title=Main_Page

  100. Truszkowski A, Jayaseelan KV, Neumann S, Willighagen EL, Zielesny A, Steinbeck C (2011) New developments on the cheminformatics open workflow environment CDK-Taverna. J Cheminform 3:54

    Article  PubMed  PubMed Central  Google Scholar 

  101. Fiannaca A, La Rosa M, Di Fatta G, Gaglio S, Rizzo R, Urso A (2014) The BioDICE Taverna plugin for clustering and visualization of biological data: a workflow for molecular compounds exploration. J Cheminform 6:1–6

    Article  Google Scholar 

  102. Beisken S, Meinl T, Wiswedel B, de Figueiredo LF, Berthold MR, Steinbeck C (2013) KNIME-CDK: workflow-driven cheminformatics. BMC Bioinformatics 14:257

    Article  PubMed  PubMed Central  Google Scholar 

  103. Ruusmann V, Sild S, Maran U (2014) QSAR DataBank—an approach for the digital organization and archiving of QSAR model information. J Cheminform 6:25

    Article  PubMed  PubMed Central  Google Scholar 

  104. Weber J, Achenbach J, Moser D, Proschak E (2013) VAMMPIRE: a matched molecular pairs database for structure-based drug design and optimization. J Med Chem 56:5203–5207

    Article  CAS  PubMed  Google Scholar 

  105. Bolton E, Chen J, Kim S, Han L, He S, Shi W, Simonyan V, Sun Y, Thiessen PA, Wang J (2011) PubChem3D: a new resource for scientists. J Cheminform 3:32

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  106. Masciocchi J, Frau G, Fanton M, Sturlese M, Floris M, Pireddu L, Palla P, Cedrati F, Rodriguez P, Moro S (2009) MMsINC: a large-scale chemoinformatics database. Nucleic Acids Res 37:D284–D290

    Article  CAS  PubMed  Google Scholar 

  107. Schreyer A, Blundell T (2009) CREDO: a protein-ligand interaction database for drug discovery. Chem Biol Drug Des 73:157–167

    Article  CAS  PubMed  Google Scholar 

  108. Seiler KP, George GA, Happ MP, Bodycombe NE, Carrinski HA, Norton S, Brudz S, Sullivan JP, Muhlich J, Serrano M (2008) ChemBank: a small-molecule screening and cheminformatics resource database. Nucleic Acids Res 36:D351–D359

    Article  CAS  PubMed  Google Scholar 

  109. Chen J, Swamidass SJ, Dou Y, Bruand J, Baldi P (2005) ChemDB: a public database of small molecules and related chemoinformatics resources. Bioinformatics 21:4133–4139

    Article  CAS  PubMed  Google Scholar 

  110. Girke T, Cheng L-C, Raikhel N (2005) ChemMine. A compound mining database for chemical genomics. Plant Physiol 138:573–577

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  111. Milne GWA, Nicklaus MC, Driscoll JS, Wang S, Zaharevitz D (1994) National Cancer Institute drug information system 3D database. J Chem Inf Comput Sci 34:1219–1224

    Article  CAS  PubMed  Google Scholar 

  112. Pence HE, Williams A (2010) ChemSpider: an online chemical information resource. J Chem Educ 87:1123–1124

    Article  CAS  Google Scholar 

  113. Irwin JJ, Shoichet BK (2005) ZINC—a free database of commercially available compounds for virtual screening. J Chem Inf Model 45:177–182

    Article  CAS  PubMed  PubMed Central  Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Kunal Roy .

Editor information

Editors and Affiliations

Rights and permissions

Reprints and permissions

Copyright information

© 2014 Springer Science+Business Media New York

About this protocol

Cite this protocol

Ambure, P., Aher, R.B., Roy, K. (2014). Recent Advances in the Open Access Cheminformatics Toolkits, Software Tools, Workflow Environments, and Databases. In: Zhang, W. (eds) Computer-Aided Drug Discovery. Methods in Pharmacology and Toxicology. Humana Press, New York, NY. https://doi.org/10.1007/7653_2014_35

Download citation

  • DOI: https://doi.org/10.1007/7653_2014_35

  • Published:

  • Publisher Name: Humana Press, New York, NY

  • Print ISBN: 978-1-4939-3519-2

  • Online ISBN: 978-1-4939-3521-5

  • eBook Packages: Springer Protocols

Publish with us

Policies and ethics