Skip to main content

Life-Cycle Assessment (LCA) Analysis of Algal Fuels

  • Protocol
  • First Online:
Biofuels from Algae

Part of the book series: Methods in Molecular Biology ((MIMB,volume 1980))

Abstract

Life-cycle assessment (LCA) is one of the most attractive tools employed nowadays by environmental policy-makers as well as business decision-makers to ensure environmentally sustainable production/consumption of various goods/services. LCA is a systematic, rigorous, and standardized approach aimed at quantifying resources consumed/depleted, pollutants released, and the related environmental and health impacts through the course of consumption and production of goods/service. Algal fuels are no exception and their environmental sustainability could be well scrutinized using the LCA methodology. In line with that, this chapter is devoted to present guidelines on the technical aspects of LCA application in algal fuels while elaborating on major standards used, i.e., ISO 14040 and 14044 standards. Overall, LCA practitioners as well as technical experts dealing with algal fuels in both the public and private sectors could be the main target audience for these guidelines.

This is a preview of subscription content, log in via an institution to check access.

Access this chapter

Protocol
USD 49.95
Price excludes VAT (USA)
  • Available as PDF
  • Read on any device
  • Instant download
  • Own it forever
eBook
USD 89.00
Price excludes VAT (USA)
  • Available as EPUB and PDF
  • Read on any device
  • Instant download
  • Own it forever
Softcover Book
USD 119.99
Price excludes VAT (USA)
  • Compact, lightweight edition
  • Dispatched in 3 to 5 business days
  • Free shipping worldwide - see info
Hardcover Book
USD 179.99
Price excludes VAT (USA)
  • Durable hardcover edition
  • Dispatched in 3 to 5 business days
  • Free shipping worldwide - see info

Tax calculation will be finalised at checkout

Purchases are for personal use only

Institutional subscriptions

References

  1. Quinn JC, Davis R (2015) The potentials and challenges of algae based biofuels: a review of the techno-economic, life cycle, and resource assessment modeling. Bioresour Technol 184:444–452

    CAS  PubMed  Google Scholar 

  2. Hosseinzadeh-Bandbafha H, Tabatabaei M, Aghbashlo M et al (2018) A comprehensive review on the environmental impacts of diesel/biodiesel additives. Energ Conver Manage 174:579–614

    CAS  Google Scholar 

  3. United States (2007) Energy independence and security act of 2007. US Government Printing Office

    Google Scholar 

  4. Pragya N, Pandey KK (2016) Life cycle assessment of green diesel production from microalgae. Renew Energy 86:623–632

    CAS  Google Scholar 

  5. Yang J, Li X, Hu H et al (2011) Growth and lipid accumulation properties of a freshwater microalga, Chlorella ellipsoidea YJ1, in domestic secondary effluents. Appl Energy 88:3295–3299

    CAS  Google Scholar 

  6. Jorquera O, Kiperstok A, Sales EA et al (2010) Comparative energy life-cycle analyses of microalgal biomass production in open ponds and photobioreactors. Bioresour Technol 101:1406–1413

    CAS  PubMed  Google Scholar 

  7. Talebi AF, Tabatabaei M, Aghbashlo M (2018) Recent patents on biofuels from microalgae. In: Energy from microalgae. Springer, New York, pp 291–306

    Google Scholar 

  8. Hu Q, Sommerfeld M, Jarvis E et al (2008) Microalgal triacylglycerols as feedstocks for biofuel production: perspectives and advances. Plant J 54:621–639

    CAS  PubMed  Google Scholar 

  9. Talebi AF, Mohtashami SK, Tabatabaei M et al (2013) Fatty acids profiling: a selective criterion for screening microalgae strains for biodiesel production. Algal Res 2:258–267

    Google Scholar 

  10. Heilmann SM, Jader LR, Harned LA et al (2011) Hydrothermal carbonization of microalgae II. Fatty acid, char, and algal nutrient products. Appl Energy 88:3286–3290

    CAS  Google Scholar 

  11. Collet P, Hélias A, Lardon L et al (2015) Recommendations for life cycle assessment of algal fuels. Appl Energy 154:1089–1102

    CAS  Google Scholar 

  12. Fortier MOP, Roberts GW, Stagg-Williams SM, Sturm BSM (2017) Determination of the life cycle climate change impacts of land use and albedo change in algal biofuel production. Algal Res 28:270–281

    Google Scholar 

  13. Dutta S, Neto F, Coelho MC (2016) Microalgae biofuels: a comparative study on techno-economic analysis & life-cycle assessment. Algal Res 20:44–52

    Google Scholar 

  14. Roostaei J, Zhang Y (2017) Spatially explicit life cycle assessment: opportunities and challenges of wastewater-based algal biofuels in the United States. Algal Res 24:395–402

    Google Scholar 

  15. Cherubini F, Bird ND, Cowie A et al (2009) Energy-and greenhouse gas-based LCA of biofuel and bioenergy systems: key issues, ranges and recommendations. Resour Conserv Recycl 53:434–447

    Google Scholar 

  16. Clarens AF, Resurreccion EP, White MA, Colosi LM (2010) Environmental life cycle comparison of algae to other bioenergy feedstocks. Environ Sci Technol 44:1813–1819

    CAS  PubMed  Google Scholar 

  17. Resurreccion EP, Colosi LM, White MA, Clarens AF (2012) Comparison of algae cultivation methods for bioenergy production using a combined life cycle assessment and life cycle costing approach. Bioresour Technol 126:298–306

    CAS  PubMed  Google Scholar 

  18. Bauer SK, Grotz LS, Connelly EB, Colosi LM (2016) Reevaluation of the global warming impacts of algae-derived biofuels to account for possible contributions of nitrous oxide. Bioresour Technol 218:196–201

    CAS  PubMed  Google Scholar 

  19. Tabatabaei M, Tohidfar M, Jouzani GS et al (2011) Biodiesel production from genetically engineered microalgae: future of bioenergy in Iran. Renew Sustain Energy Rev 15:1918–1927

    CAS  Google Scholar 

  20. Martínez-Rocamora A, Solís-Guzmán J, Marrero M (2016) LCA databases focused on construction materials: a review. Renew Sustain Energy Rev 58:565–573

    Google Scholar 

  21. Collet P, Lardon L, Hélias A et al (2014) Biodiesel from microalgae—life cycle assessment and recommendations for potential improvements. Renew Energy 71:525–533

    CAS  Google Scholar 

  22. ISO (2006) 14044 International standard. Environmental management–life cycle assessment–principles and framework. International Organisation for Standardization, Geneva

    Google Scholar 

  23. Wu W, Wang P-H, Lee D-J, Chang J-S (2017) Global optimization of microalgae-to-biodiesel chains with integrated cogasification combined cycle systems based on greenhouse gas emissions reductions. Appl Energy 197:63–82

    CAS  Google Scholar 

  24. Bjørn A, Laurent A, Owsianiak M, Olsen SI (2018) Goal definition. In: Life cycle assessment. Springer, New York, pp 67–74

    Google Scholar 

  25. Albertí J, Brodhag C, Fullana-i-Palmer P (2019) First steps in life cycle assessments of cities with a sustainability perspective: a proposal for goal, function, functional unit, and reference flow. Sci Total Environ 646:1516–1527

    PubMed  Google Scholar 

  26. Carneiro MLNM, Pradelle F, Braga SL et al (2017) Potential of biofuels from algae: comparison with fossil fuels, ethanol and biodiesel in Europe and Brazil through life cycle assessment (LCA). Renew Sustain Energy Rev 73:632–653

    CAS  Google Scholar 

  27. Wolf M-A, Pant R, Chomkhamsri K, et al (2012) The international reference life cycle data system (ILCD) handbook-JRC reference reports

    Google Scholar 

  28. Jose S, Archanaa S (2017) Environmental and economic sustainability of algal lipid extractions: an essential approach for the commercialization of algal biofuels. In: Algal biofuels. Springer, New York, pp 281–313

    Google Scholar 

  29. European Commission (2010) ILCD handbook-general guide for life cycle assessment-detailed guidance. European Commission, Joint Research Centre. Inst Environ Sustain

    Google Scholar 

  30. Singh A, Olsen SI (2011) A critical review of biochemical conversion, sustainability and life cycle assessment of algal biofuels. Appl Energy 88:3548–3555

    CAS  Google Scholar 

  31. Bradley T, Maga D, Antón S (2015) Unified approach to life cycle assessment between three unique algae biofuel facilities. Appl Energy 154:1052–1061

    Google Scholar 

  32. Kendall A, Yuan J (2013) Comparing life cycle assessments of different biofuel options. Curr Opin Chem Biol 17:439–443

    CAS  PubMed  Google Scholar 

  33. Collet P, Spinelli D, Lardon L et al (2014) Life-cycle assessment of microalgal-based biofuels. In: Biofuels from algae. Elsevier, Amsterdam, pp 287–312

    Google Scholar 

  34. Börjesson P, Tufvesson LM (2011) Agricultural crop-based biofuels-resource efficiency and environmental performance including direct land use changes. J Clean Prod 19:108–120

    Google Scholar 

  35. Stranddorf HK, Hoffmann L, Schmidt A (2005) LCA guideline: update on impact categories, normalisation and weighting in LCA. Selected EDIP97-data

    Google Scholar 

  36. Ramaswamy V, Boucher O, Haigh J et al (2001) Radiative forcing of climate. Clim Change 349

    Google Scholar 

  37. Fugiel A, Burchart-Korol D, Czaplicka-Kolarz K, Smoli ski A (2017) Environmental impact and damage categories caused by air pollution emissions from mining and quarrying sectors of European countries. J Clean Prod 143:159–168

    CAS  Google Scholar 

  38. Zaimes GG, Khanna V (2014) The role of allocation and coproducts in environmental evaluation of microalgal biofuels: how important? Sustainable Energy Technol Assess 7:247–256

    Google Scholar 

  39. Zhang Y, Colosi LM (2013) Practical ambiguities during calculation of energy ratios and their impacts on life cycle assessment calculations. Energy Policy 57:630–633

    Google Scholar 

  40. Endres C, Falter C, Roth A, et al (2012) Renewable aviation fuels-assessment of three selected fuel production pathways. Deutsche Gesellschaft für Luft-und Raumfahrt-Lilienthal-Oberth eV

    Google Scholar 

  41. Brentrup F, Küsters J, Kuhlmann H, Lammel J (2004) Environmental impact assessment of agricultural production systems using the life cycle assessment methodology: I. Theoretical concept of a LCA method tailored to crop production. Eur J Agron 20:247–264

    Google Scholar 

  42. Burchart-Korol D, Fugiel A, Czaplicka-Kolarz K, Turek M (2016) Model of environmental life cycle assessment for coal mining operations. Sci Total Environ 562:61–72

    CAS  PubMed  Google Scholar 

  43. Shoemaker JK, Schrag DP (2013) The danger of overvaluing methane’s influence on future climate change. Clim Change 120:903–914

    CAS  Google Scholar 

  44. Beal CM, Gerber LN, Sills DL et al (2015) Algal biofuel production for fuels and feed in a 100-ha facility: a comprehensive techno-economic analysis and life cycle assessment. Algal Res 10:266–279

    Google Scholar 

  45. Arvesen A, Hertwich EG (2015) More caution is needed when using life cycle assessment to determine energy return on investment (EROI). Energy Policy 76:1–6

    Google Scholar 

  46. Hall CAS, Balogh S, Murphy DJR (2009) What is the minimum EROI that a sustainable society must have? Energies 2:25–47

    Google Scholar 

  47. Malça J, Freire F (2006) Renewability and life-cycle energy efficiency of bioethanol and bio-ethyl tertiary butyl ether (bioETBE): assessing the implications of allocation. Energy 31:3362–3380

    Google Scholar 

  48. Campbell PK, Beer T, Batten D (2011) Life cycle assessment of biodiesel production from microalgae in ponds. Bioresour Technol 102:50–56

    CAS  PubMed  Google Scholar 

  49. Penman J, Gytarsky M, Hiraishi T et al (2003) Good practice guidance for land use, land-use change and forestry. Good practice guidance for land use, land-use change and forestry. Institute for Global Environmental Strategies (IGES) for The Intergovernmental Panel on Climate Change (IPCC), Hayama

    Google Scholar 

  50. Njakou Djomo S, Ceulemans R (2012) A comparative analysis of the carbon intensity of biofuels caused by land use changes. Gcb Bioenergy 4:392–407

    Google Scholar 

  51. Hauschild MZ, Bjørn A (2018) LCA cookbook. In: Life cycle assessment. Springer, New York, pp 963–1048

    Google Scholar 

  52. Fieschi M, Pretato U (2018) Role of compostable tableware in food service and waste management. A life cycle assessment study. Waste Manag 73:14–25

    PubMed  Google Scholar 

  53. Roigé Montornés N (2014) Structural and environmental optimization of D.W.T.D.N. trenches. Bachelor’s thesis, Polytechnic University of Catalonia, Barcelona

    Google Scholar 

  54. Johnsen FM, Løkke S (2013) Review of criteria for evaluating LCA weighting methods. Int J Life Cycle Assess 18:840–849

    CAS  Google Scholar 

  55. Masoni P, Zamagni A (2011) Guidance document for performing LCAs on fuel cells and H2 technologies. Project deliverable for fuel cell and hydrogen-joint undertaking

    Google Scholar 

  56. Itsubo N (2000) Screening life cycle impact assessment with weighting methodology based on simplified damage functions. Int J Life Cycle Assess 5:273

    CAS  Google Scholar 

  57. Manfredi S, Allacker K, Pelletier N et al (2015) Comparing the European Commission product environmental footprint method with other environmental accounting methods. Int J Life Cycle Assess 20:389–404

    Google Scholar 

  58. Lee KM (1999) A weighting method for the Korean eco-indicator. Int J Life Cycle Assess 4:161–165

    CAS  Google Scholar 

  59. Reinhardt R, Pautzke F, Schröter M, Wiemers M (2017) A case study of sustainable manufacturing strategy: comparative LCA of wheel hub engine for solar car application. In: Research and education in mechatronics (REM), 2017 international conference on. IEEE, pp 1–6

    Google Scholar 

  60. Davis J, De Menna F, Unger N et al (2017) Generic strategy LCA and LCC: guidance for LCA and LCC focused on prevention, valorisation and treatment of side flows from the food supply chain. SP Sveriges Tekniska Forskningsinstitut, Borås, p 111. ISBN 978-91-88349-84-2

    Google Scholar 

  61. Enfont Sampietro O (2014) Assessment of LCA methodology for engineering sustainability education. Master’s thesis, Polytechnic University of Catalonia, Barcelona

    Google Scholar 

  62. Kaklauskas A (2016) Analysis of the life cycle of a built environment. Nova Science Publishers, New Yok

    Google Scholar 

  63. Passell H, Dhaliwal H, Reno M et al (2013) Algae biodiesel life cycle assessment using current commercial data. J Environ Manage 129:103–111

    CAS  PubMed  Google Scholar 

Download references

Acknowledgements

Authors would like to thank Biofuel Research Team (BRTeam) for supporting this work.

Author information

Authors and Affiliations

Authors

Corresponding authors

Correspondence to Meisam Tabatabaei or Mortaza Aghbashlo .

Editor information

Editors and Affiliations

Rights and permissions

Reprints and permissions

Copyright information

© 2019 Springer Science+Business Media New York

About this protocol

Check for updates. Verify currency and authenticity via CrossMark

Cite this protocol

Hosseinzadeh-Bandbafha, H., Tabatabaei, M., Aghbashlo, M., Sulaiman, A., Ghassemi, A. (2019). Life-Cycle Assessment (LCA) Analysis of Algal Fuels. In: Spilling, K. (eds) Biofuels from Algae. Methods in Molecular Biology, vol 1980. Humana, New York, NY. https://doi.org/10.1007/7651_2018_204

Download citation

  • DOI: https://doi.org/10.1007/7651_2018_204

  • Published:

  • Publisher Name: Humana, New York, NY

  • Print ISBN: 978-1-4939-9415-1

  • Online ISBN: 978-1-4939-9416-8

  • eBook Packages: Springer Protocols

Publish with us

Policies and ethics