Skip to main content
  • Book
  • © 2008

Motion Planning in Medicine: Optimization and Simulation Algorithms for Image-Guided Procedures

  • Combines ideas from robotics, physically-based modeling, and operations research to develop new motion planning and optimization algorithms for image-guided medical procedures

Part of the book series: Springer Tracts in Advanced Robotics (STAR)

Buy it now

Buying options

eBook USD 129.00
Price excludes VAT (USA)
  • Available as PDF
  • Read on any device
  • Instant download
  • Own it forever
Softcover Book USD 169.00
Price excludes VAT (USA)
  • Compact, lightweight edition
  • Dispatched in 3 to 5 business days
  • Free shipping worldwide - see info

Tax calculation will be finalised at checkout

Other ways to access

This is a preview of subscription content, log in via an institution to check for access.

Table of contents (8 chapters)

  1. Front Matter

  2. Introduction

    • Ron Alterovitz, Ken Goldberg
    Pages 1-10
  3. Physically-Based Simulation of Soft Tissue Deformations

    • Ron Alterovitz, Ken Goldberg
    Pages 11-25
  4. Conclusion

    • Ron Alterovitz, Ken Goldberg
    Pages 107-113
  5. Back Matter

About this book

The monograph written by Ron Alterovitz and Ken Goldberg combines ideas from robotics, physically-based modeling, and operations research to develop new motion planning and optimization algorithms for image-guided medical procedures. A challenge clinicians commonly face is compensating for errors caused by soft tissue deformations that occur when imaging devices or surgical tools physically contact soft tissue. A number of methods are presented which can be applied to a variety of medical procedures, from biopsies to anaesthesia injections to radiation cancer treatment. They can also be extended to address problems outside the context of medical robotics, including nonholonomic motion planning for mobile robots in field or manufacturing environments. 

Reviews

From the reviews:

“This monograph is intended for researchers interested in medical robotics where images are used to guide a surgical device around anatomical obstacles to reach a clinical target or attain a clinical goal. Three key algorithmic problems are addressed, compensation for deformations that may occur when surgical devices contact soft tissue, uncertainty in the response of surgical devices to command actions, and path optimization to achieve the specific goal while minimizing negative side effects.” (IEEE Control Systems Magazine, Vol. 30, April, 2010)

Bibliographic Information

Buy it now

Buying options

eBook USD 129.00
Price excludes VAT (USA)
  • Available as PDF
  • Read on any device
  • Instant download
  • Own it forever
Softcover Book USD 169.00
Price excludes VAT (USA)
  • Compact, lightweight edition
  • Dispatched in 3 to 5 business days
  • Free shipping worldwide - see info

Tax calculation will be finalised at checkout

Other ways to access