Skip to main content

Modern Aspects of Electrochemistry 40

  • Book
  • © 2007

Overview

  • Covers a broad range of topics in Electrochemistry in an authoritative manner by internationally renowned specialists
  • Includes supplementary material: sn.pub/extras

Part of the book series: Modern Aspects of Electrochemistry (MAOE, volume 40)

This is a preview of subscription content, log in via an institution to check access.

Access this book

eBook USD 89.00
Price excludes VAT (USA)
  • Available as PDF
  • Read on any device
  • Instant download
  • Own it forever
Softcover Book USD 119.99
Price excludes VAT (USA)
  • Compact, lightweight edition
  • Dispatched in 3 to 5 business days
  • Free shipping worldwide - see info
Hardcover Book USD 169.99
Price excludes VAT (USA)
  • Durable hardcover edition
  • Dispatched in 3 to 5 business days
  • Free shipping worldwide - see info

Tax calculation will be finalised at checkout

Other ways to access

Licence this eBook for your library

Institutional subscriptions

Table of contents (6 chapters)

Keywords

About this book

This volume begins with a tribute to Dr. Brian E. Conway by Dr. John O'M. Bockris, which is followed by six chapters. The topics covered are state of the art Polymer Electrolyte Membrane (PEM) fuel cell bipolar plates; use of graphs in electrochemical reaction networks; nano materials in lithium ion batteries; direct methanol fuel cells (two chapters); and the last chapter presents simulation of polymer electrolyte fuel cell catalyst layers. David and Valerie Bloomfield begin the first chapter with a discussion of the difficulties encountered when confronting bipolar plate development and state that the problems stem from the high corrosive nature of phosphoric acid. The water problems are mitigated but the oxidation problems increase. Bipolar plates are still not cheap, reliable or durable. In Chapter 2, Thomas Z. Fahidy reviews analysis of variance (ANOVA) and includes one way, two way, three way classification, and Latin squares observation methods. He moves on to a discussion of the applications of the analysis of covariance (ANCOVA) and goes over certain variables such as velocity, velocity and pressure drop, and product yields in a batch and flow electrolyzer. His conclusion is that proper statistical techniques are time savers which can save the experimenter and the process analyst considerable time and effort in trying to optimize the size ofstatistically meaningful experiments.

Editors and Affiliations

  • Department of Chemical Engineering, University of South Carolina, Columbia, USA

    Ralph E. White

  • University of Patras, Patras, Greece

    C. G. Vayenas

  • Colorado

    Maria E. Gamboa-Aldeco

Bibliographic Information

Publish with us