Environmental Earth Sciences - Call for Papers
NovCare - Novel Methods for Subsurface Characterization and Monitoring: From Theory to Practice
Guest Editors: Uta Sauer and Peter Dietrich
There is a pressing need to improve our understanding of the subsurface and to better to better monitor and characterize systems affected by natural and anthropogenic influences by applying several direct and indirect tools that have high accuracy and suitable resolution across a range of spatial and temporal scales. Subsurface monitoring should address these challenges through selecting and implementing a variety of monitoring tools that are both technically robust, minimal invasive and cost-effective and through providing an effective means of investigating near surface structures, identification and parameterization relevant physical–chemical–biological processes, characterization interactions between different scales and even to detect any unforeseen events such as gas leakages or sink holes. Some of these tools for subsurface characterization and monitoring have reached a highly sophisticated level as a result of decades of utilization in e.g. the oil and gas exploration and have been adapted to overcome the shortcoming and restrictions using these tool box to accurately and precisely monitor and characterize aquifers, soils, and watersheds. Such a tool box of several techniques may be used collaboratively with numerical models to help verify that subsurface processes and interactions are taking place as predicted. Therefore, the predictive capabilities of numerical models could be improved.
Further development of monitoring technologies, of strategies for investigation, sampling and interpretation as well as of novel approaches and models enabling a joint interpretation are essential to improve the effectiveness of such a tool box for subsurface monitoring. The purpose of the International Conference series Novcare (Novel Methods for Subsurface Characterization and Monitoring: From Theory to Practice) is showcasing such novel developments and highlights examples of field applications of relevant approaches such as geophysics, direct-push technology, hydrogeological and hydrogeochemical field methods, joint inversion of multi-method data, in-situ measurements, wireless sensor networks, and remote sensing techniques.