1 Introduction

The application of fractional calculus is very broad, including characterization of me- chanics and electricity, earthquake analysis, the memory of many kinds of material, elec- tronic circuits, electrolysis chemical, etc. ([15]). In recent years, there has been a signif- icant development in solving differential equations involving fractional derivatives ([614] and the references therein).

In the left and right fractional derivatives \({}^{c} D_{a^{+}}^{\alpha}x\) and \({}^{c} D_{b^{-}}^{\alpha}x\), a is called a left base point and b a right base point. Both a and b are called base points of the fractional derivatives. A fractional differential equation (FDE) containing more than one base point is called a multiple base points FDE ([10]). In this paper, we study the following boundary value problem (BVP) of nonlinear multiple base points fractional differential equations with impulses:

figure a

where \(\alpha,\gamma,\delta\in (0,1)\), \(\alpha>\gamma\), \(\alpha>\delta\), \(\lambda>0\). \({}^{c}D^{\cdot}_{*}\) is the standard Caputo fractional derivative at the base points \(t=t_{k}\) (\(k=0,1,2,\ldots,m\)), that is, \({}^{c}D^{\cdot}_{*}|_{(t_{k},\,t_{k+1}]}x(t)={}^{c}D^{\cdot}_{t^{+}_{k}}x(t)\) for all \(t\in (t_{k},\,t_{k+1}]\), \(I_{0^{+}}^{\gamma}\) denotes the fractional integral of order γ, \(f: J \times\mathbb{R}\rightarrow\mathbb{R}\) is an appropriate function to be specified later. The impulsive moments \(\{t_{k}\}\) are given such that \(0 < t_{1} < \cdots< t_{m-1} < 1\), \(\Delta x(t_{k})\) represents the jump of function x at \(t_{k}\), which is defined by \(\Delta x(t_{k}) = x(t_{k}^{+})- x(t_{k}^{-})\), where \(x(t_{k}^{+})\), \(x(t_{k}^{-})\) represent the right and left limits of \(x(t)\) at \(t=t_{k}\) respectively, the constant \(I_{k}\) denotes the size of the jump.

In 1954, Barrett ([6]) applied the method of successive approximations to derive the existence of solutions to the fractional differential equations of order \(\alpha\in(0, 1)\) with constant coefficients. Recently, as mentioned in [13, 14] and the references therein, the existence results of the impulsive fractional differential equations with anti-periodic boundary conditions involving the Caputo differential operator of order \(\alpha\in(0,1)\) are obtained by the Mittag-Leffler functions. Inspired by the work of the above papers, the aim of the present paper is to establish some simple criteria for the existence of solutions of BVP (1.1)-(1.3).

The paper is organized as follows. In Section 2, we present some basic concepts, the notations about the fractional calculus and the properties of the Mittag-Leffler functions. In Section 3, we present the definition of solution for (1.1)-(1.3). In Section 4, by applying Krasnoselskii’s fixed point theorem, we verify the existence of solutions for problem (1.1)-(1.3). We give an example to illustrate the result in Section 5.

2 Preliminaries

In this paper, we denote by \(L^{p}(J,\mathbb{R})\) the Banach space of all Lebesgue measurable functions \(l: J\rightarrow\mathbb{R}\) with the norm \(\Vert l \Vert _{L^{p}}= (\int_{J} \vert l(t) \vert ^{p}\,dt )^{\frac {1}{p}}<\infty\) and by \(\operatorname{AC}([a,b], \mathbb{R})\) the space of all the absolutely continuous functions defined on \([a,b]\).

Definition 2.1

[2, 3]

The fractional integral of order q with the lower limit a for a function \(g(t)\in L^{1}([a, +\infty), \mathbb{R})\) is defined as

$$\bigl(I_{a^{+}}^{q}g\bigr) (t)=\frac{1}{\Gamma(q)} \int_{a}^{t} (t-s)^{q-1}g(s)\,ds, \quad t>a, q>0, $$

where \(\Gamma(\cdot)\) is the gamma function.

Definition 2.2

[2, 3]

If \(g(t)\in \operatorname{AC}^{n}([a,b], \mathbb{R})\), then the Riemann-Liouville fractional derivative \(({}^{L} D_{a^{+}}^{q}g)(t)\) of order q exists almost everywhere on \([a, b]\) and can be written as

$$\bigl({}^{L} D_{a^{+}}^{q}g\bigr) (t)= \frac{1}{\Gamma(n-q)}\frac{d^{n}}{dt^{n}} \int _{a}^{t}(t-s)^{n-q-1}g(s)\,ds,\quad t> a, n-1< q< n. $$

Definition 2.3

[2, 3]

If \(g(t)\in \operatorname{AC}^{n}([a,b], \mathbb{R})\), then the Caputo derivative \(({}^{c}D_{a^{+}}^{q}g)(t)\) of order q exists almost everywhere on \([a, b]\) and can be written as

$$\bigl({}^{c}D_{a^{+}}^{q}g\bigr) (t)= \Biggl( {}^{L} D_{a^{+}}^{q} \Biggl[g(s)-\sum _{k=0}^{n-1}\frac{g^{(k)}(a)}{k!}(s-a)^{k} \Biggr] \Biggr) (t), \quad t> a, n-1< q< n, $$

moreover, if \(g(a)=g'(a)=\cdots=g^{(n-1)}(a)=0\), then \(({}^{c}D_{a^{+}}^{q}g)(t)=({}^{L} D_{a^{+}}^{q}g)(t)\).

Remark 2.4

[2, 3]

The Caputo fractional derivative of order q for a function \(g\in C^{n}([a,b], \mathbb{R})\) is defined by

$$\bigl({}^{c}D_{a^{+}}^{q}g\bigr) (t)= \frac{1}{\Gamma(n-q)} \int_{a}^{t}\frac {g^{(n)}(s)}{(t-s)^{q-n+1}}\,ds, \quad t> a, n-1< q< n. $$

Definition 2.5

[2, 3]

For \(\alpha, \beta> 0\), \(z\in\mathbb{C}\), the classical Mittag-Leffler function \(E_{\alpha}(z)\) and the generalized Mittag-Leffler functions \(E_{\alpha, \beta}(z)\) are defined by

$$\begin{gathered} E_{\alpha}(z)=\sum_{k=0}^{\infty} \frac{z^{k}}{\Gamma(\alpha k+1)},\qquad E_{\alpha, \beta}(z)=\sum_{k=0}^{\infty} \frac{z^{k}}{\Gamma(\alpha k+\beta)},\\ E^{\rho}_{\alpha,\beta}(z)=\sum _{k=0}^{\infty}\frac{z^{k}}{\Gamma(\alpha k+\beta)}\frac{(\rho)_{k}}{k!}, \end{gathered} $$

where \((\rho)_{0} =1\) and \((\rho)_{k}=\rho(\rho+ 1) \cdots(\rho+k -1)\) for \(k\in \mathbb{N}\).

Clearly, \(E_{\alpha,1}(z)=E_{\alpha}(z)\).

Lemma 2.6

[2]

Let \(\nu, \beta, \alpha>0\). The usual derivatives of \(E_{\alpha}(z)\), \(E_{\alpha,\beta}(z)\) and the Riemann-Liouville integration of \(E_{\alpha}(-\lambda t^{\alpha})\) are expressed by

  1. (1)

    \({ (\frac{d}{dz} )^{n}[E_{\alpha,\beta}(z)]=n! E^{n+1}_{\alpha, \beta+\alpha n}(z)}\), \(n\in\mathbb{N}\);

  2. (2)

    \({ (\frac{d}{dz} )^{n}[E_{\alpha}(z)]=n! E^{n+1}_{\alpha , 1+\alpha n}(z)}\), \(n\in\mathbb{N}\);

  3. (3)

    \({ (\frac{d}{dt} )^{n}[t^{\beta-1}E_{\alpha, \beta }(-\lambda t^{\alpha})]=t^{\beta-n-1} E_{\alpha, \beta-n}(-\lambda t^{\alpha})}\), \(n\geq1\);

  4. (4)

    \({[I_{0^{+}}^{\beta}(s^{\nu-1}E_{\alpha, \nu}(-\lambda s^{\alpha }))](t):=\frac{1}{\Gamma(\beta)}\int_{0}^{t} (t-s)^{\beta-1}s^{\nu -1}E_{\alpha, \nu}(-\lambda s^{\alpha})\,ds=t^{\beta+\nu-1}E_{\alpha, \beta+\nu}(-\lambda t^{\alpha})}\).

As mentioned in ([14]), \(E_{\alpha}(-\lambda t^{\alpha})\) and \(E_{\alpha, \alpha}(-\lambda t^{\alpha})\) can be represented by

$$\begin{aligned}& E_{\alpha}\bigl(-\lambda t^{\alpha}\bigr) = \int_{0}^{\infty}e^{-\lambda t^{\alpha}\theta}\phi(\theta)\,d \theta, \end{aligned}$$
(2.1)
$$\begin{aligned}& E_{\alpha,\alpha}\bigl(-\lambda t^{\alpha}\bigr) = \alpha \int_{0}^{\infty}\theta e^{-\lambda t^{\alpha}\theta}\phi(\theta) \,d\theta, \end{aligned}$$
(2.2)

where

$$\phi(\theta)=\frac{1}{\pi}\sum_{n=1}^{\infty}(-1)^{n-1} \theta^{\alpha n-1}\frac{\Gamma(n\alpha+1)}{n!}\sin(n\pi\alpha),\quad0< \alpha< 1, \theta>0. $$

Moreover,

$$\begin{aligned} \int_{0}^{\infty}\theta^{\xi}\phi(\theta)\,d \theta=\frac{\Gamma (\xi+1)}{\Gamma(\alpha\xi+1)}\quad (\xi\geq0). \end{aligned}$$
(2.3)

Lemma 2.7

For \(\lambda>0\), \(\alpha, \beta, \theta_{1}, \theta_{2}\in(0, 1)\), \(\alpha \geq\theta_{2}\), the generalized Mittag-Leffler functions have the following properties:

  1. (1)

    \({\frac{d}{dt}[E_{\alpha}(-\lambda t^{\alpha})]=-\lambda t^{\alpha-1}E_{\alpha, \alpha}(-\lambda t^{\alpha})}\);

  2. (2)

    \({E_{\alpha,\alpha+\beta}(-\lambda t^{\alpha})=\frac{1}{\Gamma (\beta)}\int_{0}^{1} E_{\alpha,\alpha} (-\lambda t^{\alpha}u^{\alpha })u^{\alpha-1}(1-u)^{\beta-1}\,du}\);

  3. (3)

    \({E_{\alpha,\beta}(-\lambda t^{\alpha})=\frac{1}{\Gamma(\beta )}-\lambda t^{\alpha}E_{\alpha, \alpha+\beta}(-\lambda t^{\alpha})}\);

  4. (4)

    \({E_{\alpha,\theta_{1}+1}(-\lambda t^{\alpha})=\frac{1}{\Gamma (\theta_{1})}\int_{0}^{1} E_{\alpha}(-\lambda t^{\alpha}u^{\alpha })(1-u)^{\theta_{1}-1}\,du}\);

  5. (5)

    \({[{}^{c} D_{a^{+}}^{\theta_{2}}E_{\alpha}(-\lambda(s-a)^{\alpha})](t)=-\lambda(t-a)^{\alpha-\theta_{2}}E_{\alpha, \alpha-\theta _{2}+1}(-\lambda(t-a)^{\alpha})}\).

    In particular, when \(\alpha=\theta_{2}\), \([{}^{c} D_{a^{+}}^{\alpha}E_{\alpha}(-\lambda(s-a)^{\alpha})](t)=-\lambda E_{\alpha}(-\lambda(t-a)^{\alpha})\).

Proof

We denote the beta function by \(\mathbb{B}(\cdot, \cdot)\). From Lemma 2.6(2),

$$\begin{aligned} \begin{aligned}[b]\frac{d}{dt}\bigl[E_{\alpha}\bigl(-\lambda t^{\alpha}\bigr)\bigr]&=-\lambda \alpha t^{\alpha-1}E^{2}_{\alpha, 1+\alpha} \bigl(-\lambda t^{\alpha}\bigr) \\ &=-\lambda\alpha t^{\alpha-1}\sum_{k=0}^{\infty} \frac{(-\lambda t^{\alpha})^{k}(1+k)}{\Gamma(\alpha k+1+\alpha)} \\ &=-\lambda t^{\alpha-1}\sum_{k=0}^{\infty} \frac{(-\lambda t^{\alpha })^{k}}{\Gamma(\alpha k+\alpha)} \\ &=-\lambda t^{\alpha-1}E_{\alpha, \alpha}\bigl(-\lambda t^{\alpha} \bigr). \end{aligned} \end{aligned}$$

From [14], the second result holds. Moreover,

$$\begin{aligned}& \begin{aligned} E_{\alpha,\beta}\bigl(-\lambda t^{\alpha}\bigr)&=\sum _{k=0}^{\infty}\frac{(-\lambda t^{\alpha})^{k}}{\Gamma(\alpha k+\beta)} =\frac{1}{\Gamma(\beta)}- \lambda t^{\alpha}\sum_{k=1}^{\infty}\frac {(-\lambda t^{\alpha})^{k-1}}{\Gamma(\alpha k+\beta)} \\ &=\frac{1}{\Gamma(\beta)}-\lambda t^{\alpha}E_{\alpha, \alpha+\beta }\bigl(-\lambda t^{\alpha}\bigr), \end{aligned} \\& \begin{aligned} E_{\alpha,\theta_{1}+1}\bigl(-\lambda t^{\alpha}\bigr)&=\sum _{k=0}^{\infty}\frac {(-\lambda t^{\alpha})^{k}}{\Gamma(\alpha k+\theta_{1}+1)} =\frac{1}{\Gamma(\theta_{1})}\sum _{k=0}^{\infty}\frac{(-\lambda t^{\alpha })^{k} \mathbb{B}(\alpha k+1, \theta_{1})}{\Gamma(\alpha k+1)} \\ &=\frac{1}{\Gamma(\theta_{1})} \int_{0}^{1}\sum_{k=0}^{\infty}\frac{(-\lambda t^{\alpha}u^{\alpha})^{k}}{\Gamma(\alpha k+1)}(1-u)^{\theta_{1}-1}\,du \\ &=\frac{1}{\Gamma(\theta_{1})} \int_{0}^{1} E_{\alpha}\bigl(-\lambda t^{\alpha}u^{\alpha}\bigr) (1-u)^{\theta_{1}-1}\,du. \end{aligned} \end{aligned}$$

Applying Remark 2.4 and the fact \({\int _{a}^{t}(t-s)^{m_{1}-1}(s-a)^{m_{2}-1}\,ds=(t-a)^{m_{1}+m_{2}-1}\mathbb{B}(m_{1}, m_{2})}\), we have

$$\begin{aligned} \bigl[{}^{c} D_{a^{+}}^{\theta_{2}}E_{\alpha}\bigl(- \lambda(s-a)^{\alpha}\bigr)\bigr](t) =&\frac {1}{\Gamma(1-\theta_{2})} \int_{a}^{t} (t-s)^{-\theta_{2}}\frac{d}{ds} \Biggl(\sum_{k=0}^{\infty} \frac{(-\lambda(s-a)^{\alpha})^{k})}{\Gamma(\alpha k+1)} \Biggr)\,ds \\ =&\frac{1}{\Gamma(1-\theta_{2})}\sum_{k=1}^{\infty} \frac{(-\lambda )^{k}}{\Gamma(\alpha k)} \int_{a}^{t} (t-s)^{-\theta_{2}}(s-a)^{\alpha k-1} \,ds \\ =&-\lambda(t-a)^{\alpha-\theta_{2}}\sum_{k=1}^{\infty} \frac{(-\lambda )^{k-1}(t-a)^{\alpha(k-1)}}{\Gamma(\alpha k+1-\theta_{2})} \\ =&-\lambda(t-a)^{\alpha-\theta_{2}}E_{\alpha, \alpha-\theta _{2}+1}\bigl(-\lambda(t-a)^{\alpha}\bigr). \end{aligned}$$

 □

Lemma 2.8

[3]

If \(0<\alpha<2\), β is an arbitrary real number, \(\frac{\pi\alpha}{2} <\mu<\min\{\pi, \pi\alpha\}\), then

$$\bigl\vert E_{\alpha, \beta}(z) \bigr\vert \leq\frac{\mathcal {C}}{1+ \vert z \vert },\qquad\mu \leq \bigl\vert \operatorname{arg}(z) \bigr\vert \leq\pi,\qquad \vert z \vert \geq0, $$

where \(\mathcal{C}\) is a positive constant.

Lemma 2.9

Let \(\alpha, \beta\in(0, 1)\), \(\lambda>0\). Then the functions \(E_{\alpha}\), \(E_{\alpha,\alpha}\) and \(E_{\alpha,\alpha+\beta}\) are nonnegative and have the following properties:

  1. (i)

    For any \(t\in J\), \(E_{\alpha}(-\lambda t^{\alpha})\leq1\), \(E_{\alpha,\alpha}(-\lambda t^{\alpha})\leq\frac{1}{\Gamma(\alpha)}\), \(E_{\alpha,\alpha+\beta}(-\lambda t^{\alpha})\leq\frac{1}{\Gamma(\alpha +\beta)}\), \(E_{\alpha,\beta}(-\lambda t^{\alpha})\leq\frac{1}{\Gamma(\beta)}\), moreover, \(E_{\alpha}(0)=1\). In particular,

    $$\begin{aligned} E_{\alpha,\alpha-\delta}\bigl(-\lambda t^{\alpha}\bigr)\leq \frac {1}{\Gamma(\alpha-\delta)},\qquad \bigl\vert E_{\alpha,\alpha-\delta }\bigl(-\lambda t^{\alpha}\bigr) \bigr\vert \leq\mathcal{C}. \end{aligned}$$
    (2.4)
  2. (ii)

    For any \(t_{1}, t_{2}\in J\),

    $$\begin{aligned}& \bigl\vert E_{\alpha}\bigl(-\lambda t_{2}^{\alpha}\bigr)-E_{\alpha}\bigl(-\lambda t_{1}^{\alpha}\bigr) \bigr\vert = O\bigl( \vert t_{2}-t_{1} \vert ^{\alpha}\bigr),\quad\textit{as } t_{2}\rightarrow t_{1}, \\& \bigl\vert E_{\alpha,\alpha}\bigl(-\lambda t_{2}^{\alpha}\bigr)-E_{\alpha,\alpha }\bigl(-\lambda t_{1}^{\alpha}\bigr) \bigr\vert = O\bigl( \vert t_{2}-t_{1} \vert ^{\alpha}\bigr),\quad\textit{as } t_{2}\rightarrow t_{1}, \\& \bigl\vert E_{\alpha,\alpha-\delta}\bigl(-\lambda t_{2}^{\alpha}\bigr)-E_{\alpha ,\alpha-\delta}\bigl(-\lambda t_{1}^{\alpha}\bigr) \bigr\vert = O\bigl( \vert t_{2}-t_{1} \vert ^{\alpha}\bigr),\quad\textit{as } t_{2}\rightarrow t_{1}. \end{aligned}$$

Proof

(i) From (2.1), we get \(E_{\alpha}(-\lambda t^{\alpha})=\int_{0}^{\infty}e^{-\lambda t^{\alpha}\theta}\phi(\theta)\,d\theta\leq \int_{0}^{\infty}\phi(\theta)\,d\theta=1\).

By (2.2), we find \(E_{\alpha,\alpha}(-\lambda t^{\alpha})=\alpha \int_{0}^{\infty}\theta e^{-\lambda t^{\alpha}\theta}\phi(\theta)\,d\theta\leq \frac{1}{\Gamma(\alpha)}\).

Using Lemma 2.7(2), one sees

$$\begin{aligned} E_{\alpha,\alpha+\beta}\bigl(-\lambda t^{\alpha}\bigr)=\frac{1}{\Gamma(\beta)} \int _{0}^{1} E_{\alpha,\alpha} \bigl(-\lambda t^{\alpha}u^{\alpha}\bigr)u^{\alpha -1}(1-u)^{\beta-1}\,du \leq\frac{1}{\Gamma(\alpha+\beta)}. \end{aligned}$$

Noting \(E_{\alpha,\alpha+\beta}(-\lambda t^{\alpha})>0\) and Lemma 2.7(3), we have \(E_{\alpha,\beta}(-\lambda t^{\alpha})\leq\frac {1}{\Gamma(\beta)}\). Taking \(\beta=\alpha-\delta\) in \(E_{\alpha,\beta}(-\lambda t^{\alpha})\leq \frac{1}{\Gamma(\beta)}\), we obtain \(E_{\alpha,\alpha-\delta}(-\lambda t^{\alpha})\leq\frac{1}{\Gamma(\alpha-\delta)}\). By Lemma 2.8, we get \(\vert E_{\alpha,\alpha-\delta}(-\lambda t^{\alpha}) \vert \leq\mathcal{C}\).

(ii) For \(0\leq t_{1}< t_{2}\leq1\), using the Lagrange mean value theorem and the fact \(\vert t_{2}^{\alpha}-t_{1}^{\alpha} \vert \leq (t_{2}-t_{1})^{\alpha}\), (2.1), (2.2) and (2.3), we find

$$\begin{aligned}& \begin{aligned} \bigl\vert E_{\alpha}\bigl(-\lambda t_{2}^{\alpha}\bigr)-E_{\alpha}\bigl(-\lambda t_{1}^{\alpha}\bigr) \bigr\vert &= \int_{0}^{\infty}\bigl\vert e^{-\lambda t_{2}^{\alpha}\theta }-e^{-\lambda t_{1}^{\alpha}\theta} \bigr\vert \phi(\theta)\,d\theta\leq \lambda(t_{2}-t_{1})^{\alpha} \int_{0}^{\infty}\theta\phi(\theta)\,d\theta \\ &=\frac{\lambda(t_{2}-t_{1})^{\alpha}}{\Gamma(\alpha+1)}:=O\bigl( \vert t_{2}-t_{1} \vert ^{\alpha}\bigr),\quad\text{as } t_{2}\rightarrow t_{1}, \end{aligned} \\& \begin{aligned} \bigl\vert E_{\alpha,\alpha}\bigl(-\lambda t_{2}^{\alpha}\bigr)-E_{\alpha,\alpha }\bigl(-\lambda t_{1}^{\alpha}\bigr) \bigr\vert &=\alpha \int_{0}^{\infty}\bigl\vert e^{-\lambda t_{2}^{\alpha}\theta}-e^{-\lambda t_{1}^{\alpha}\theta} \bigr\vert \theta\phi(\theta)\,d\theta \\ &\leq\frac{2\lambda\alpha(t_{2}-t_{1})^{\alpha}}{\Gamma(2\alpha +1)}:=O\bigl( \vert t_{2}-t_{1} \vert ^{\alpha}\bigr),\quad\text{as } t_{2}\rightarrow t_{1}, \end{aligned} \end{aligned}$$

by Lemma 2.7(3), Lemma 2.9(i) and Lemma 2.7(2), one has

$$\begin{aligned}& \bigl\vert E_{\alpha, \alpha-\delta}\bigl(-\lambda t_{2}^{\alpha}\bigr)-E_{\alpha, \alpha-\delta}\bigl(-\lambda t_{1}^{\alpha}\bigr) \bigr\vert \\& \quad = \lambda \bigl\vert t_{2}^{\alpha}E_{\alpha, 2\alpha-\delta}\bigl(- \lambda t_{2}^{\alpha}\bigr)-t_{1}^{\alpha}E_{\alpha, 2\alpha-\delta} \bigl(-\lambda t_{1}^{\alpha}\bigr) \bigr\vert \\& \quad \leq \lambda \bigl[ \vert t_{2}-t_{1} \vert ^{\alpha}E_{\alpha, 2\alpha-\delta}\bigl(-\lambda t_{2}^{\alpha}\bigr)+t_{1}^{\alpha} \bigl\vert E_{\alpha, 2\alpha-\delta}\bigl(-\lambda t_{2}^{\alpha}\bigr)-E_{\alpha, 2\alpha-\delta }\bigl(-\lambda t_{1}^{\alpha}\bigr) \bigr\vert \bigr] \\& \quad \leq \frac{\lambda}{\Gamma(2\alpha-\delta)} \vert t_{2}-t_{1} \vert ^{\alpha} \\& \qquad {}+\frac{\lambda}{\Gamma(\alpha-\delta)} \int_{0}^{1} \bigl\vert E_{\alpha, \alpha}\bigl(- \lambda t_{2}^{\alpha}u^{\alpha}\bigr)-E_{\alpha, \alpha } \bigl(-\lambda t_{1}^{\alpha}u^{\alpha}\bigr) \bigr\vert u^{\alpha-1}(1-u)^{\alpha -\delta-1}\,du \\& \quad := O\bigl( \vert t_{2}-t_{1} \vert ^{\alpha}\bigr),\quad\text{as } t_{2}\rightarrow t_{1}. \\ & \end{aligned}$$
(2.5)

 □

Lemma 2.10

[2]

The solution to the Cauchy problem

$$\begin{aligned} \textstyle\begin{cases} {}^{c} D_{a^{+}}^{\alpha}x(t)+\lambda x(t)=f(t),\\ x(a)=b_{1},\quad b_{1}\in\mathbb{R}, \end{cases}\displaystyle \end{aligned}$$

with \(0<\alpha<1\) has the form

$$ x(t)=b_{1}E_{\alpha}\bigl(-\lambda(t-a)^{\alpha}\bigr)+ \int_{a}^{t}(t-s)^{\alpha -1}E_{\alpha,\alpha} \bigl(-\lambda(t-s)^{\alpha}\bigr)f(s)\,ds. $$

Theorem 2.11

Krasnoselskii’s fixed point theorem

Let \(\mathcal{M}\) be a closed convex and nonempty subset of a Banach space X. Let \(\mathcal{A}\), \(\mathcal{B}\) be two operators such that (i) \(\mathcal{A}x+\mathcal{B}y\in\mathcal{M}\) whenever \(x, y\in\mathcal{M}\), (ii) \(\mathcal{A}\) is compact and continuous, (iii) \(\mathcal{B}\) is a contraction mapping. Then there exists a \(z\in\mathcal{M}\) such that \(z=\mathcal{A}z+\mathcal{B}z\).

3 Solutions for BVP

Setting \(J_{0}=[0, t_{1}]\), \(J_{k}=(t_{k}, t_{k+1}]\), \(k=1,\ldots, m-1\), \(J_{m}=[t_{m}, 1]\), and we define \(X=\{x:[0,1]\rightarrow\mathbb{R}: x\vert_{J_{k}}\in C(J_{k}, \mathbb{R}) \text{ and there exist } x(t_{k}^{+}) \text{ and } x(t_{k}^{-}), \text{with } x(t_{k}^{-})=x(t_{k}), k=1,\ldots,m-1\}\) with the norm

$$\Vert x \Vert _{1}:=\sup_{k=0, 1, \ldots,m}\sup _{t \in J_{k}} \bigl\vert x(t) \bigr\vert . $$

Obviously, X is a real Banach space.

In this paper, we consider the following assumption.

(H1):

\(f:J\times\mathbb{R}\rightarrow\mathbb{R}\) satisfies \(f(\cdot ,x):J\rightarrow\mathbb{R}\) is measurable for all \(x\in\mathbb{R}\) and \(f(t,\cdot):\mathbb{R}\rightarrow\mathbb{R}\) is continuous for a.e. \(t\in J\), and there exists a function \(\mu\in L^{\frac {1}{q_{1}}}(J,\mathbb{R}^{+})\) (\(0< q_{1}<\min\{\frac{\alpha}{2}, \alpha-\delta\} \)) such that \(\vert f(t,x) \vert \leq\mu(t)\).

Definition 3.1

A function \(x:J\rightarrow\mathbb{R}\) is said to be a solution of (1.1)-(1.3) if

  1. (1)

    \(x\in \operatorname{AC}(J_{k}, \mathbb{R})\);

  2. (2)

    x satisfies the equation \({}^{c} D_{t_{k}^{+}}^{\alpha} x(t)+\lambda x(t)= f(t, x(t))\) on \(J_{k}\);

  3. (3)

    for \(k=1,2,\ldots,m-1\), \(\Delta x(t_{k})=I_{k}\), and \({x(0)+I^{\gamma}_{0^{+}}x(\eta)=0}\), \(x(1)+{}^{c} D_{t_{m}^{+}}^{\delta}x(1)=0\).

Next, we present the following lemmas.

Lemma 3.2

For any \(\tau_{2}, \tau_{1}\in J_{k}\) (\(k=0,1,2,\ldots,m\)) and \(\tau_{2}<\tau_{1}\),

$$\int_{t_{k}}^{\tau_{2}}\bigl[(\tau_{2}-s)^{\alpha-1}-( \tau_{1}-s)^{\alpha-1}\bigr]\mu (s)\,ds\rightarrow0, \quad\textit{as } \tau_{2}\rightarrow\tau_{1}. $$

Proof

It follows from the Hölder inequality that

$$\begin{aligned}& \biggl\vert \int_{t_{k}}^{\tau_{2}}\bigl[(\tau_{2}-s)^{\alpha-1}-( \tau _{1}-s)^{\alpha-1}\bigr]\mu(s)\,ds \biggr\vert \\& \quad \leq \Vert \mu \Vert _{L^{\frac{1}{q_{1}}}} \biggl[ \int _{t_{k}}^{\tau_{2}} \bigl\vert (\tau_{2}-s)^{\alpha-1}-( \tau_{1}-s)^{\alpha -1} \bigr\vert ^{\frac{1}{1-q_{1}}}\,ds \biggr]^{1-q_{1}} \\& \quad = (1-\alpha) \Vert \mu \Vert _{L^{\frac{1}{q_{1}}}} \biggl( \int _{t_{k}}^{\tau_{2}} \biggl\vert \int_{\tau_{2}}^{\tau_{1}}(\zeta-s)^{\alpha -2}\,d\zeta \biggr\vert ^{\frac{1}{1-q_{1}}}\,ds \biggr) ^{1-q_{1}} \\& \quad \leq \overline{M} \biggl[ \int_{t_{k}}^{\tau_{2}}\bigl((\tau_{2}-s)^{\theta}-( \tau _{1}-s)^{\theta}\bigr)\,ds \biggr]^{1-q_{1}} \\& \quad = \frac{\overline{M}}{(1+\theta)^{1-q_{1}}} \bigl[(\tau_{1}-\tau_{2})^{1+\theta}-( \tau_{1}-t_{k})^{1+\theta} +(\tau_{2}-t_{k})^{1+\theta} \bigr]^{1-q_{1}} \\& \quad \rightarrow 0, \quad\text{as } \tau_{2}\rightarrow\tau_{1}, \end{aligned}$$

where \(\overline{M}>0\) is a constant and \({\theta=\frac{\alpha-1-q_{1}}{1-q_{1}}\in(-1, 0)}\). □

For \(y>q_{1}\) and \(t_{i-1}\in J\) (\(i=1,\ldots,m+1\)), from the Hölder inequality, we have

$$\begin{aligned} \int_{t_{i-1}}^{t_{i}}(t_{i}-s)^{y-1} \mu(s)\,ds \leq& \biggl( \int _{t_{i-1}}^{t_{i}}(t_{i}-s)^{\frac{y-1}{1-q_{1}}} \,ds \biggr)^{1-q_{1}} \Vert \mu \Vert _{L^{\frac{1}{q_{1}}}}= \zeta_{y}(t_{i}-t_{i-1})^{y-q_{1}}, \end{aligned}$$
(3.1)

where \({\zeta_{y}= (\frac{1-q_{1}}{y-q_{1}} )^{1-q_{1}} \Vert \mu \Vert _{L^{\frac{1}{q_{1}}}}}\).

For brevity, we define

$$\bigl(Q_{k}^{\varsigma} x\bigr) (t):= \int_{t_{k}}^{t} (t-s)^{\varsigma-1} E_{\alpha ,\varsigma} \bigl(-\lambda(t-s)^{\alpha}\bigr) f\bigl(s,x(s)\bigr)\,ds, $$

then, for \(t\in(t_{k}, t_{k+1}]\), from (3.1) and Lemma 2.9(i), we obtain

$$\begin{aligned}& \bigl\vert \bigl(Q_{k}^{\alpha}x\bigr) (t) \bigr\vert \leq \int_{t_{k}}^{t}\frac{(t-s)^{\alpha-1}\mu(s)}{\Gamma(\alpha)}\,ds \leq \zeta_{\alpha}\frac{(t-t_{k})^{\alpha-q_{1}}}{\Gamma(\alpha)}, \end{aligned}$$
(3.2)
$$\begin{aligned}& \bigl\vert \bigl(Q_{k}^{\alpha-\delta}x\bigr) (t) \bigr\vert \leq \mathcal{C} \int_{t_{k}}^{t}(t-s)^{\alpha-\delta-1}\mu(s)\,ds \leq \mathcal{C}\zeta_{\alpha-\delta}(t-t_{k})^{\alpha-\delta-q_{1}}, \end{aligned}$$
(3.3)

which means that \((t-s)^{\alpha-1}E_{\alpha,\alpha}(-\lambda (t-s)^{\alpha})f(s, x(s))\) and \((t-s)^{\alpha-\delta-1}E_{\alpha,\alpha -\delta}(-\lambda(t-s)^{\alpha})f(s, x(s))\) are Lebesgue integrable with respect to \(s\in[t_{k}, t_{k+1}]\) for all \(t\in[t_{k}, t_{k+1}]\) and \(x\in X\).

Lemma 3.3

For any \(k=0,1,2,\ldots,m\), \((Q_{k}^{\alpha}x)(t)\in C(J_{k}, \mathbb{R})\), \((Q_{k}^{\alpha-\delta} x)(t)\in C(J_{k}, \mathbb{R})\).

Proof

For any \(h>0\), \(t_{k}< t< t+h< t_{k+1}\), by (H1), Lemma 2.9(i), (ii), Lemma 3.2 and (3.1), we get

$$\begin{aligned}& \bigl\vert \bigl(Q_{k}^{\alpha}x\bigr) (t+h)- \bigl(Q_{k}^{\alpha}x\bigr) (t) \bigr\vert \\& \quad \leq \int_{t_{k}}^{t} \bigl\vert (t+h-s)^{\alpha-1}-(t-s)^{\alpha-1} \bigr\vert E_{\alpha,\alpha}\bigl(-\lambda(t+h-s)^{\alpha}\bigr) \bigl\vert f\bigl(s,x(s)\bigr) \bigr\vert \,ds \\& \qquad {} + \int_{t_{k}}^{t}(t-s)^{\alpha-1} \bigl\vert E_{\alpha,\alpha}\bigl(-\lambda (t+h-s)^{\alpha}\bigr)-E_{\alpha,\alpha} \bigl(-\lambda(t-s)^{\alpha}\bigr) \bigr\vert \bigl\vert f\bigl(s,x(s) \bigr) \bigr\vert \,ds \\& \qquad {} + \int_{t}^{t+h}(t+h-s)^{\alpha-1}E_{\alpha,\alpha} \bigl(-\lambda (t+h-s)^{\alpha}\bigr) \bigl\vert f\bigl(s,x(s)\bigr) \bigr\vert \,ds \\& \quad \leq \int_{t_{k}}^{t}\frac{ \vert (t+h-s)^{\alpha-1}-(t-s)^{\alpha -1} \vert }{\Gamma(\alpha)}\mu(s)\,ds+O \bigl(h^{\alpha}\bigr) \int _{t_{k}}^{t}(t-s)^{\alpha-1}\mu(s)\,ds \\& \qquad {} + \int_{t}^{t+h}\frac{(t+h-s)^{\alpha-1}}{\Gamma(\alpha)}\mu(s)\,ds \\& \quad \rightarrow 0,\quad\text{as } h\rightarrow0. \end{aligned}$$

Similarly, noting (2.4) and (2.5), we find \((Q_{k}^{\alpha -\delta} x)(t)\in C(J_{k}, \mathbb{R})\). □

Lemma 3.4

Assume that (H1) holds. Then \((Q_{k}^{\alpha}x)(t)\in \operatorname{AC}([t_{k}, t_{k+1}], \mathbb{R})\), for \(x\in X\), \(k=0,1,\ldots,m\).

Proof

For every finite collection \(\{(a_{i}, b_{i})\}_{1\leq i\leq n}\) on \([t_{k}, t_{k+1}]\) with \(\sum_{i=1}^{n}(b_{i}-a_{i})\rightarrow0\), noting (3.1), Lemma 3.2 and Lemma 2.9(ii), we have

$$\begin{aligned}& \sum_{i=1}^{n} \bigl\vert \bigl(Q_{k}^{\alpha} x\bigr) (b_{i})- \bigl(Q_{k}^{\alpha} x\bigr) (a_{i}) \bigr\vert \\& \quad \leq \sum_{i=1}^{n} \biggl\vert \int_{a_{i}}^{b_{i}}(b_{i}-s)^{\alpha-1}E_{\alpha ,\alpha} \bigl(-\lambda(b_{i}-s)^{\alpha}\bigr)f\bigl(s, x(s)\bigr)\,ds \biggr\vert \\& \qquad {} + \sum_{i=1}^{n} \int_{t_{k}}^{a_{i}} \bigl\vert \bigl[(b_{i}-s)^{\alpha -1}-(a_{i}-s)^{\alpha-1} \bigr]E_{\alpha,\alpha}\bigl(-\lambda(b_{i}-s)^{\alpha}\bigr)f \bigl(s, x(s)\bigr) \bigr\vert \,ds \\& \qquad {} +\sum_{i=1}^{n} \int_{t_{k}}^{a_{i}}(a_{i}-s)^{\alpha-1} \bigl\vert E_{\alpha ,\alpha}\bigl(-\lambda(b_{i}-s)^{\alpha}\bigr)-E_{\alpha,\alpha}\bigl(-\lambda (a_{i}-s)^{\alpha}\bigr) \bigr\vert \bigl\vert f\bigl(s, x(s)\bigr) \bigr\vert \,ds \\& \quad \leq \sum_{i=1}^{n} \int_{a_{i}}^{b_{i}}\frac{(b_{i}-s)^{\alpha-1} \mu (s)}{\Gamma(\alpha)}\,ds+ \frac{1}{\Gamma(\alpha)}\sum_{i=1}^{n} \int _{t_{k}}^{a_{i}} \bigl[(a_{i}-s)^{\alpha-1}-(b_{i}-s)^{\alpha-1} \bigr] \mu(s)\,ds \\& \qquad {} +\sum_{i=1}^{n} \int_{t_{k}}^{a_{i}}(a_{i}-s)^{\alpha-1} \mu(s)\,ds\cdot O\bigl( \vert b_{i}-a_{i} \vert ^{\alpha}\bigr) \\& \quad \leq \frac{\zeta_{\alpha}}{\Gamma(\alpha)}\sum_{i=1}^{n}(b_{i}-a_{i})^{\alpha-q_{1}} +\frac{1}{\Gamma(\alpha)}\sum_{i=1}^{n} \int_{t_{k}}^{a_{i}} \bigl[(a_{i}-s)^{\alpha-1}-(b_{i}-s)^{\alpha-1} \bigr] \mu(s)\,ds \\& \qquad {} +\zeta_{\alpha}\sum_{i=1}^{n}O \bigl( \vert b_{i}-a_{i} \vert ^{\alpha}\bigr) \\& \quad \rightarrow 0. \end{aligned}$$

Hence, \((Q_{k}^{\alpha}x)(t)\) is absolutely continuous on \([t_{k}, t_{k+1}]\). Furthermore, for almost all \(t\in[t_{k}, t_{k+1}]\), \([ {}^{c} D_{t_{k}^{+}}^{\alpha }(Q_{k}^{\alpha}x)(s) ](t)\) and \([ {}^{c} D_{t_{k}^{+}}^{\delta }(Q_{k}^{\alpha}x)(s) ](t)\) exist. □

Lemma 3.5

Assume that (H1) holds. Then, for \(x\in X\), \(k=0,1,\ldots,m\),

$$\begin{aligned}& \bigl[ {}^{c} D_{t_{k}^{+}}^{\alpha}\bigl(Q_{k}^{\alpha}x \bigr) (s) \bigr](t) = f\bigl(t, x(t)\bigr)-\lambda\bigl(Q_{k}^{\alpha}x \bigr) (t), \quad\textit{a.e. } t\in J_{k}, \\& \bigl[ {}^{c} D_{t_{k}^{+}}^{\delta}\bigl(Q_{k}^{\alpha}x \bigr) (s) \bigr](t) = \bigl(Q_{k}^{\alpha -\delta}x\bigr) (t), \quad \textit{a.e. } t\in J_{k}. \end{aligned}$$

Proof

According to Lemma 2.6(4), we can see that

$$\begin{aligned}& \begin{aligned} \int_{s}^{t}(t-\tau)^{-\alpha}( \tau-s)^{\alpha-1}E_{\alpha, \alpha }\bigl(-\lambda(\tau-s)^{\alpha}\bigr) \,d\tau&= \int_{0}^{t-s}(t-s-\tau)^{-\alpha } \tau^{\alpha-1}E_{\alpha, \alpha}\bigl(-\lambda\tau^{\alpha}\bigr)\,d\tau \\ &=\Gamma(1-\alpha)E_{\alpha}\bigl(-\lambda(t-s)^{\alpha}\bigr), \end{aligned} \\& \begin{aligned} \int_{s}^{t}(t-\tau)^{-\delta}( \tau-s)^{\alpha-1}E_{\alpha, \alpha }\bigl(-\lambda(\tau-s)^{\alpha}\bigr) \,d\tau&= \int_{0}^{t-s}(t-s-\tau)^{-\delta } \tau^{\alpha-1}E_{\alpha, \alpha}\bigl(-\lambda\tau^{\alpha}\bigr)\,d\tau \\ &=\Gamma(1-\delta) (t-s)^{\alpha-\delta}E_{\alpha, \alpha-\delta +1}\bigl(- \lambda(t-s)^{\alpha}\bigr). \end{aligned} \end{aligned}$$

Moreover, noting Lemma 2.6(1) and Lemma 2.7(1), we obtain

$$\begin{aligned}& \bigl[{}^{L} D_{t_{k}^{+}}^{\alpha} \bigl(Q_{k}^{\alpha}x\bigr) (s) \bigr](t) \\& \quad = \frac{1}{\Gamma(1-\alpha)}\frac{d}{dt} \int_{t_{k}}^{t}(t-s)^{-\alpha} \biggl[ \int_{t_{k}}^{s}(s-\tau)^{\alpha-1}E_{\alpha, \alpha} \bigl(-\lambda(s-\tau )^{\alpha}\bigr)f\bigl(\tau, x(\tau)\bigr)\,d\tau \biggr]\,ds \\& \quad = \frac{1}{\Gamma(1-\alpha)}\frac{d}{dt} \int_{t_{k}}^{t} f\bigl(\tau, x(\tau )\bigr)\,d\tau \int_{\tau}^{t}(t-s)^{-\alpha}(s- \tau)^{\alpha-1}E_{\alpha, \alpha}\bigl(-\lambda(s-\tau)^{\alpha}\bigr) \,d\tau \\& \quad = \frac{d}{dt} \int_{t_{k}}^{t} E_{\alpha}\bigl(-\lambda(t- \tau)^{\alpha}\bigr)f\bigl(\tau , x(\tau)\bigr)\,d\tau \\& \quad = f\bigl(t, x(t)\bigr)-\lambda\bigl(Q_{k}^{\alpha}x\bigr) (t), \quad\text{a.e. } t\in [t_{k}, t_{k+1}], \end{aligned}$$
(3.4)

and by Lemma 2.6(3), one gets

$$\begin{aligned}& \bigl[{}^{L} D_{t_{k}^{+}}^{\delta} \bigl(Q_{k}^{\alpha}x\bigr) (s) \bigr](t) \\& \quad = \frac{1}{\Gamma(1-\delta)}\frac{d}{dt} \int_{t_{k}}^{t} f\bigl(\tau, x(\tau )\bigr)\,d\tau \int_{\tau}^{t}(t-s)^{-\delta}(s- \tau)^{\alpha-1}E_{\alpha, \alpha}\bigl(-\lambda(s-\tau)^{\alpha}\bigr) \,ds \\& \quad = \frac{d}{dt} \int_{t_{k}}^{t} (t-\tau)^{\alpha-\delta}E_{\alpha, \alpha -\delta+1} \bigl(-\lambda(t-\tau)^{\alpha}\bigr)f\bigl(\tau, x(\tau)\bigr)\,d\tau \\& \quad = \int_{t_{k}}^{t} (t-\tau)^{\alpha-\delta-1}E_{\alpha, \alpha-\delta } \bigl(-\lambda(t-\tau)^{\alpha}\bigr)f\bigl(\tau, x(\tau)\bigr)\,d\tau \\& \quad = \bigl(Q_{k}^{\alpha -\delta} x\bigr) (t), \quad\text{a.e. } t \in[t_{k}, t_{k+1}]. \end{aligned}$$
(3.5)

Noting (3.2) and (3.3), we have \({ (Q_{k}^{\alpha}x)(t_{k}^{+})=0} \) and \({ (Q_{k}^{\alpha-\delta}x)(t_{k}^{+})=0}\). Then, from Definition 2.3, with \(g(t)\) replaced by \((Q_{k}^{\alpha}x)(t)\) and \((Q_{k}^{\alpha-\delta}x)(t)\), and applying (3.4) and (3.5), we derive

$$\bigl[ {}^{c} D_{t_{k}^{+}}^{\alpha}\bigl(Q_{k}^{\alpha}x \bigr) (s) \bigr](t)= \bigl[ {}^{L} D_{t_{k}^{+}}^{\alpha} \bigl(Q_{k}^{\alpha}x\bigr) (s) \bigr](t)=f\bigl(t, x(t)\bigr)- \lambda \bigl(Q_{k}^{\alpha}x\bigr) (t) $$

and \([ {}^{c} D_{t_{k}^{+}}^{\delta}(Q_{k}^{\alpha}x)(s) ](t)=(Q_{k}^{\alpha-\delta}x)(t)\). This completes the proof. □

Lemma 3.6

Assume that (H1) holds. Then \({ [I^{\gamma}_{0^{+}}(Q^{\alpha}_{0} x)(s) ](t) =(Q^{\alpha+\gamma}_{0} x)(t)}\).

Proof

It follows from (3.2) that \((Q^{\alpha}_{0} x)(t)\) is Lebesgue integrable, noting Lemma 2.6(4), we have

$$\begin{aligned}& \bigl[I^{\gamma}_{0^{+}}\bigl(Q^{\alpha}_{0} x \bigr) (s) \bigr](t) \\& \quad = \frac{1}{\Gamma(\gamma)} \int_{0}^{t}(t-s)^{\gamma-1} \biggl( \int_{0}^{s}(s-\tau )^{\alpha-1}E_{\alpha, \alpha} \bigl(-\lambda(s-\tau)^{\alpha}\bigr)f\bigl(\tau,x(\tau )\bigr)\,d\tau \biggr)\,ds \\& \quad = \frac{1}{\Gamma(\gamma)} \int_{0}^{t}f\bigl(\tau,x(\tau)\bigr)\,d\tau \int_{0}^{t-\tau }(t-\tau-s)^{\gamma-1}{s}^{\alpha-1}E_{\alpha, \alpha} \bigl(-\lambda {s}^{\alpha}\bigr)\,ds \\& \quad = \int_{0}^{t}(t-\tau)^{\alpha+\gamma-1}E_{\alpha, \alpha+\gamma} \bigl(-\lambda (t-\tau)^{\alpha}\bigr)f\bigl(\tau,x(\tau)\bigr)\,d\tau= \bigl(Q^{\alpha+\gamma}_{0} x\bigr) (t). \end{aligned}$$

 □

As a consequence of Lemmas 3.4-3.6, by directly computation, we get the following result. For brevity, we define

$$\begin{aligned}& \widetilde{c} := -\frac{(Q_{0}^{\alpha+\gamma}x)(\eta)}{1+\eta^{\gamma}E_{\alpha,\gamma+1}(-\lambda\eta^{\alpha})}, \\& (P_{0}x) (t) := \widetilde{c}E_{\alpha}\bigl(-\lambda t^{\alpha}\bigr), \\& (P_{i}x) (t) := \bigl[(P_{i-1}x) (t_{i})+ \bigl(Q_{i-1}^{\alpha}x\bigr) (t_{i})+I_{i} \bigr]E_{\alpha}\bigl(-\lambda(t-t_{i})^{\alpha}\bigr),\quad i=1,\ldots,m-1, \\& (P_{m}x) (t) := -\frac{ [(Q_{m}^{\alpha}x)(1)+(Q_{m}^{\alpha-\delta} x)(1) ]E_{\alpha}(-\lambda(t-t_{m})^{\alpha})}{E_{\alpha}(-\lambda (1-t_{m})^{\alpha})-\lambda(1-t_{m})^{\alpha-\delta}E_{\alpha, \alpha-\delta +1}(-\lambda(1-t_{m})^{\alpha})}. \end{aligned}$$

Lemma 3.7

A function x is a solution of (1.1)-(1.3) if and only if x is a solution of the following equation:

$$ x(t)= \textstyle\begin{cases} (P_{0}x)(t)+(Q_{0}^{\alpha}x)(t),& \textit{for } t\in J_{0},\\ (P_{1}x)(t)+(Q_{1}^{\alpha}x)(t),& \textit{for } t\in J_{1},\\ \cdots\\ (P_{m-1}x)(t)+(Q_{m-1}^{\alpha}x)(t),& \textit{for } t\in J_{m-1}, \\ (P_{m}x)(t)+(Q_{m}^{\alpha}x)(t),& \textit{for } t\in J_{m}. \end{cases} $$
(3.6)

Proof

(Necessity) For \(t\in J_{0}\), it follows from Lemma 2.10 that \(x(t)=a_{0} E_{\alpha}(-\lambda t^{\alpha})+(Q_{0}^{\alpha}x)(t)\). Obviously, \(x(0)=a_{0}\). Moreover, from Lemma 2.6(4) (taking \(\beta:=\gamma\), \(\nu:=1\)) and Lemma 3.6, we have

$$I^{\gamma}_{0^{+}}x(\eta)=a_{0}\eta^{\gamma}E_{\alpha,\gamma+1}\bigl(-\lambda\eta ^{\alpha}\bigr)+\bigl(Q_{0}^{\alpha+\gamma}x \bigr) (\eta). $$

Using the condition \(x(0)+I^{\gamma}_{0^{+}}x(\eta)=0\), we obtain \(a_{0}=\widetilde{c}\), then, for \(t\in J_{0}\),

$$x(t)=(P_{0}x) (t)+\bigl(Q_{0}^{\alpha}x\bigr) (t). $$

For \(t\in J_{1}\), \(x(t)=a_{1} E_{\alpha}(-\lambda(t-t_{1})^{\alpha})+(Q_{1}^{\alpha}x)(t)\), since \({x(t_{1}^{+})=a_{1}= (P_{0}x)(t_{1})+(Q_{0}^{\alpha}x)(t_{1})+I_{1}}\), then, for \(t\in J_{1}\),

$$x(t)=(P_{1}x) (t)+\bigl(Q_{1}^{\alpha}x\bigr) (t). $$

Repeating the above process, we find

$$x(t)=(P_{k}x) (t)+\bigl(Q_{k}^{\alpha}x\bigr) (t),\quad t\in J_{k}, k=0,1,\ldots,m-1. $$

For \(t\in J_{m}=[t_{m},1]\), \({x(t)=a_{m} E_{\alpha}(-\lambda(t-t_{m})^{\alpha})+(Q_{m}^{\alpha}x)(t)}\).

Noting Lemma 2.7(5) and Lemma 3.5, we get

$$\begin{aligned} {}^{c} D_{t_{m}^{+}}^{\delta}x(t) =&-\lambda a_{m} (t-t_{m})^{\alpha-\delta} E_{\alpha, \alpha-\delta+1}\bigl(- \lambda(t-t_{m})^{\alpha}\bigr)+\bigl(Q_{m}^{\alpha-\delta}x \bigr) (t). \end{aligned}$$

From \(x(1)+{}^{c} D_{t_{m}^{+}}^{\delta}x(1)=0\), one can obtain

$$a_{m}=-\frac{(Q_{m}^{\alpha}x)(1)+(Q_{m}^{\alpha-\delta} x)(1)}{E_{\alpha }(-\lambda(1-t_{m})^{\alpha})-\lambda(1-t_{m})^{\alpha-\delta}E_{\alpha, \alpha-\delta+1}(-\lambda(1-t_{m})^{\alpha})}. $$

Now, \(x(t)=(P_{m}x)(t)+(Q_{m}^{\alpha}x)(t)\).

(Sufficiency) Let \(x(t)\) satisfy (3.6). Noting Lemma 2.7(5) and Lemma 3.5, \(({}^{c}D_{t_{k}^{+}}^{\alpha}x)(t)\) exists and \({}^{c}D_{t_{k}^{+}}^{\alpha}x(t)+\lambda x(t)=f(t, x(t))\) for \(t\in J_{k}\) (\(k=0,1,\ldots,m\)). Moreover, for \(k=1,2,\ldots,m-1\),

$$\begin{aligned} x\bigl(t_{k}^{+}\bigr)-x\bigl(t_{k}^{-}\bigr) =&(P_{k} x) (t_{k})+\bigl(Q_{k}^{\alpha}x\bigr) (t_{k})-(P_{k-1} x) (t_{k})-\bigl(Q_{k-1}^{\alpha}x \bigr) (t_{k}) \\ =&(P_{k-1} x) (t_{k})+\bigl(Q_{k-1}^{\alpha}x \bigr) (t_{k})+I_{k}-(P_{k-1} x) (t_{k})- \bigl(Q_{k-1}^{\alpha}x\bigr) (t_{k}) \\ =&I_{k}. \end{aligned}$$

The boundary conditions of (1.3) are clearly satisfied, that is, \(x(t)\) satisfies (1.1)-(1.3). □

4 Existence result

In this section, we deal with the existence of solution for the problem (1.1)-(1.3). To this end, we consider the following assumption.

(H2):

There exists a function \(\psi\in L^{\frac{1}{q_{2}}}(J,\mathbb {R}^{+})\) (\(q_{2}\in(0, \alpha)\)) such that

$$\bigl\vert f(t,x)-f(t,y) \bigr\vert \leq\psi(t) \vert x-y \vert . $$

For convenience, we introduce the following notation:

$$\begin{aligned}& c_{\alpha} = \frac{1}{\Gamma(\alpha)} \biggl(\frac{1-q_{1}}{\alpha -q_{1}} \biggr)^{1-q_{1}} \Vert \mu \Vert _{L^{\frac {1}{q_{1}}}},\qquad M_{\alpha}= \frac{1}{\Gamma(\alpha)} \biggl(\frac {1-q_{2}}{\alpha-q_{2}} \biggr)^{1-q_{2}} \Vert \psi \Vert _{L^{\frac {1}{q_{2}}}}, \\& T_{0} = \frac{c_{\alpha+\gamma}}{1+\eta^{\gamma}E_{\alpha,\gamma +1}(-\lambda\eta^{\alpha})}, \\& T_{i} = T_{i-1}+c_{\alpha}+ \vert I_{i} \vert ,\quad i=1,2,\ldots, m-1, \\& T_{m} = \frac{c_{\alpha}+\mathcal{C}\zeta_{\alpha-\delta}}{ \vert E_{\alpha}(-\lambda(1-t_{m})^{\alpha})-\lambda(1-t_{m})^{\alpha-\delta }E_{\alpha, \alpha-\delta+1}(-\lambda(1-t_{m})^{\alpha}) \vert }. \end{aligned}$$

Clearly, \(T_{0}< T_{1}<\cdots<T_{m-1}\).

Theorem 4.1

Assume that (H1) and (H2) are satisfied, then the problem (1.1)-(1.3) has at least a solution \(x\in X\) if \(M_{\alpha}<1\).

Proof

Define an operator \(\mathcal{F}: X\rightarrow X\) by

$$ (\mathcal{F} x) (t)= \textstyle\begin{cases} (P_{0}x)(t)+(Q_{0}^{\alpha}x)(t),& t\in J_{0},\\ (P_{1}x)(t)+(Q_{1}^{\alpha}x)(t),& t\in J_{1},\\ \cdots\\ (P_{m-1}x)(t)+(Q_{m-1}^{\alpha}x)(t),& t\in J_{m-1},\\ (P_{m}x)(t)+(Q_{m}^{\alpha}x)(t),& t\in J_{m}. \end{cases} $$
(4.1)

From Lemma 2.9(ii) and Lemma 3.3, we see that \(\mathcal{F}:X\rightarrow X\) is clearly well defined.

Similar to (3.2) and (3.3), combining with Lemma 2.9(i) and (2.4), one can get

$$ \begin{gathered} \bigl\vert \bigl(Q_{0}^{\alpha+\gamma}x\bigr) (t) \bigr\vert \leq c_{\alpha+\gamma},\qquad \bigl\vert \bigl(Q_{m}^{\alpha-\delta}x \bigr) (t) \bigr\vert \leq\mathcal{C}\zeta_{\alpha-\delta},\\ \bigl\vert \bigl(Q_{k}^{\alpha }x\bigr) (t) \bigr\vert \leq c_{\alpha}, \quad k=0,1,\ldots,m. \end{gathered} $$
(4.2)

Setting \(B_{r}=\{x\in X: \Vert x \Vert _{1}\leq r\}\), where \(r\geq \max\{T_{m}, T_{m-1}\}+c_{\alpha}\), we shall prove \((P_{i}x)(t)+(Q_{i}^{\alpha}y)(t)\in B_{r}\) for any \(x, y\in B_{r}\) and \(t\in J_{i}\) (\(i=0,1,\ldots, m\)).

By Lemma 2.9(i) and (4.2), we have

$$\begin{aligned} \bigl\vert (P_{0}x) (t)+\bigl(Q_{0}^{\alpha}y \bigr) (t) \bigr\vert \leq& \frac {c_{\alpha+\gamma}}{1+\eta^{\gamma}E_{\alpha,\gamma+1}(-\lambda\eta ^{\alpha})}+c_{\alpha}= T_{0}+c_{\alpha}\leq r. \end{aligned}$$

For \(t\in J_{1}\), one has

$$\begin{aligned} \bigl\vert (P_{1}x) (t)+\bigl(Q_{1}^{\alpha}y\bigr) (t) \bigr\vert \leq& \bigl\vert (P_{0} x) (t_{1})+ \bigl(Q_{0}^{\alpha}x\bigr) (t_{1})+I_{1} \bigr\vert + \bigl\vert \bigl(Q_{1}^{\alpha }y\bigr) (t) \bigr\vert \\ \leq&T_{0}+c_{\alpha}+ \vert I_{1} \vert +c_{\alpha}= T_{1}+c_{\alpha}\leq r. \end{aligned}$$

Repeating the above process, for \(t\in J_{i}\) (\(i=2,\ldots,m-1\)), we find

$$\bigl\vert (P_{i}x) (t)+\bigl(Q_{i}^{\alpha}y \bigr) (t) \bigr\vert \leq T_{i}+c_{\alpha}\leq r. $$

For \(t\in J_{m}\), one sees

$$\bigl\vert (P_{m}x) (t)+\bigl(Q_{m}^{\alpha}y \bigr) (t) \bigr\vert \leq T_{m}+c_{\alpha }\leq r. $$

Now, we can see that \((P_{i}x)(t)+(Q_{i}^{\alpha}y)(t)\in B_{r}\) for any \(t\in J_{i}\) (\(i=0,1,\ldots, m\)) and \(x, y\in B_{r}\).

Similar to (3.1), for \(t\in J_{i}\), \(i=0,1,\ldots,m\), one gets

$$\begin{aligned} \bigl\vert \bigl(Q_{i}^{\alpha}x\bigr) (t)- \bigl(Q_{i}^{\alpha}y\bigr) (t) \bigr\vert \leq& \int _{t_{i}}^{t} (t-s)^{\alpha-1} E_{\alpha,\alpha}\bigl(-\lambda(t-s)^{\alpha}\bigr) \bigl\vert f \bigl(s,x(s)\bigr)-f\bigl(s,y(s)\bigr) \bigr\vert \,ds \\ \leq& \frac{1}{\Gamma(\alpha)} \int_{t_{i}}^{t} (t-s)^{\alpha-1} \psi (s)\,ds \Vert x-y \Vert _{1}\leq M_{\alpha} \Vert x-y \Vert _{1}. \end{aligned}$$

This implies that \(Q_{i}^{\alpha}\) (\(i=0,1,\ldots,m\)) is a contraction mapping.

Let \(\{x_{n}\}\) be a sequence such that \(x_{n}\rightarrow x\) in X, then there exists \(\varepsilon>0\) such that \(\Vert x_{n}-x \Vert _{1}\leq\varepsilon\) for n sufficiently large. By (H2), we obtain

$$\bigl\vert f\bigl(t,x_{n}(t)\bigr)-f\bigl(t,x(t)\bigr) \bigr\vert \leq \psi(t)\varepsilon. $$

Moreover, f satisfies (H1), for almost every \(t\in J\), we get \(f(t,x_{n}(t))\rightarrow f(t,x(t))\) as \(n\rightarrow\infty\). It follows from the Lebesgue dominated convergence theorem that

$$\bigl\Vert (P_{i} x_{n})-(P_{i} x) \bigr\Vert _{1}\rightarrow0,\quad \text{as } n\rightarrow\infty. $$

Now we can see that \(P_{i}\) (\(i=0,1,\ldots,m\)) is continuous.

Moreover, by Lemma 2.9(ii) and (4.2), \(\{P_{i}x: x\in B_{r}\} \) is an equicontinuous and uniformly bounded set. Therefore, \(P_{i}\) is a completely continuous operator on \(B_{r}\vert_{J_{i}}\) (\(i=0,1,\ldots,m\)). Now, it follows from Theorem 2.11 that problem (1.1)-(1.3) has at least a solution \(x\in B_{r}\). □

5 Application

In this section, we give an example to illustrate the usefulness of our main result.

Example 5.1

Consider the following impulsive boundary problem of fractional order:

$$ \textstyle\begin{cases} {}^{c}D_{*}^{\frac{1}{2}}x(t)+5x(t)={\frac{1}{6\sqrt[14]{t}}\sin(3+ \vert x(t) \vert ),\quad\text{a.e. } t\in(0,1]\setminus\{\frac {1}{4}\}},\\ {\Delta x (\frac{1}{4} )=2},\\ {x(0)+I^{\frac{1}{3}}_{0^{+}}x(\frac{1}{10})=0},\qquad {x(1)+{}^{c} D_{{\frac{1}{3}}^{+}}^{\frac{1}{4}}x(1)=0}. \end{cases} $$
(5.1)

Corresponding to (1.1)-(1.3), we have \(\alpha=\frac {1}{2}\), \(\gamma=\frac{1}{3}\), \(\delta=\frac{1}{4}\), \(\lambda=5\), \(m=2\), \(t_{1}=\frac{1}{4}\), \(t_{2}=\frac{1}{3}\), \(\eta=\frac{1}{10}\), \(f(t, x(t))=\frac{1}{6\sqrt[14]{t}}\sin(3+ \vert x(t) \vert )\), \(I_{1}=2\).

It is easy to see that \(\vert f(t, x(t)) \vert \leq \nu(t)\) and \(\vert f(t, x(t))-f(t, y(t)) \vert \leq\psi (t) \vert x(t)-y(t) \vert \), where \({\nu(t)=\psi(t)=\frac{1}{6\sqrt[14]{t}}\in L^{\frac{1}{q}} ([0, 1])}(q=\frac{1}{7})\) and \(\Vert \psi \Vert _{L^{7}}= \frac {2^{\frac{1}{7}}}{6}\). By direct computation, we find that

$$\begin{aligned} M_{\alpha}=\frac{1}{\Gamma(\alpha)} \biggl(\frac{1-q}{\alpha-q} \biggr)^{1-q} \Vert \psi \Vert _{L^{\frac{1}{q}}}=\frac{ 1}{3\sqrt {\pi}} \biggl(\frac{6}{5}\biggr)^{\frac{6}{7}}\approx0.22< 1. \end{aligned}$$

Now, due to the fact that all the assumptions of Theorem 4.1 hold, problem (5.1) has at least a solution.