1 Introduction

Plankton, including phytoplankton and zooplankton, are an important food source for organisms in an aquatic environment. Phytoplankton perform a great service for the earth by absorbing the carbon dioxide from the surrounding environments and releasing the oxygen into the atmosphere [1, 2]. As a primary producer, phytoplankton are most favorable food sources for fish and other aquatic animals [3]. An obvious feature of the phytoplankton is a rapid appearance and disappearance resulting in the formation of bloom, which causes a great harm to the human health and zooplankton population [4, 5]. Therefore, it is necessary to investigate the effect of zooplankton and phytoplankton on the occurrence of bloom.

Many mathematical models have been formulated to describe the dynamical interaction between zooplankton and phytoplankton [610]. In [6], deterministic and stochastic models of nutrient-phytoplankton-zooplankton interaction are proposed to investigate the impact of toxin-producing phytoplankton upon persistence of the populations. The author of [7] formulated a toxin-producing phytoplankton-zooplankton model with stochastic perturbation and investigated the global stability of the positive equilibrium by means of constructing suitable Lyapunov functions. Chowdhury et al. [9] proposed a mathematical model of NTP-TPP-zooplankton with constant and variable zooplankton migration. The asymptotic dynamics of the system around the biologically feasible equilibria was explored through local stability analysis. The authors of [11] analyzed a mathematical model for the interactions between phytoplankton and zooplankton in a periodic environment and obtained the permanent condition.

As we know, population dispersal has a great effect on the dynamics [1217]. Hong et al. [12] investigated a single species model with intermittent unilateral diffusion in two patches. The global attractivity of positive periodic solution and the extinction of species were established by using Lyapunov function approach. Shao [16] formulated a delayed predator-prey system with impulsive diffusion between two patches:

$$ \left \{ \textstyle\begin{array}{@{}l@{\quad}l} \textstyle\begin{array}{@{}l} \frac{dx_{1}}{dt}=x_{1}(r_{1}-a_{1}x_{1}-b_{1}y),\\ \frac{dx_{2}}{dt}=x_{2}(r_{2}-a_{2}x_{2}),\\ \frac{dy}{dt}=y(-r_{3}+a_{3}x_{1}(t-\tau_{1})-b_{2}y(t-\tau_{2})), \end{array}\displaystyle & t\neq nT,\\ \textstyle\begin{array}{@{}l} \Delta x_{1}=d_{1}(x_{2}-x_{1}),\\ \Delta x_{2}=d_{2}(x_{1}-x_{2}), \Delta y=0, \end{array}\displaystyle & t=nT, \end{array}\displaystyle \right . $$
(1.1)

with the initial condition

$$\begin{aligned}& x_{1}(s)=\phi_{1}(s),\qquad x_{2}(s)= \phi_{2}(s),\qquad y(s)=\phi_{3}(s), \\& \quad\phi=(\phi_{1},\phi_{2},\phi_{3})\in C \bigl([-\tau, 0], R_{+}^{3} \bigr),\phi_{i}(0)>0,i=1,2,3, \end{aligned}$$

where phytoplankton are structured into two patches connected by impulsive diffusion. Wang and Jia [18] proposed a single species model with impulsive diffusion and pulsed harvesting at the different fixed time as follows:

$$ \left \{ \textstyle\begin{array}{@{}l@{\quad}l} \textstyle\begin{array}{@{}l} \frac{dx_{1}}{dt}=x_{1}(a_{1}-b_{1}x^{\theta_{1}}_{1}),\\ \frac{dx_{2}}{dt}=x_{2}(a_{2}-b_{2}x^{\theta_{2}}_{2}), \end{array}\displaystyle & t\neq(n+l-1)T, t\neq nT,\\ \textstyle\begin{array}{@{}l} \Delta x_{1}=-p_{1}x_{1},\\ \Delta x_{2}=-p_{2}x_{2}, \end{array}\displaystyle & t=(n+l-1)T,\\ \textstyle\begin{array}{@{}l} \Delta x_{1}=d_{1}(x_{2}-x_{1}),\\ \Delta x_{2}=d_{2}(x_{1}-x_{2}), \Delta y=0, \end{array}\displaystyle & t=nT, \end{array}\displaystyle \right . $$
(1.2)

where the system is composed of two patches connected by diffusion. \(x_{i}\) (\(i = 1, 2\)) is the density of species in the ith patch. Wang et al. [19] proposed a single species model with impulsive diffusion between two patches and obtained a globally stable positive periodic solution by using the discrete dynamical system generated by a monotone, concave map for the population. However, little information is available about the application of impulsive diffusion to plankton model. In this paper, we will formulate a nonlinear modeling of the interaction between phytoplankton and zooplankton with impulsive dispersal on the phytoplankton.

The outline of this paper is as follows: a delayed phytoplankton-zooplankton model with impulsive diffusion is presented in Section 2. In addition, some important lemmas are also given in Section 2. In Sections 3 and 4, we obtain the sufficient conditions for global attractivity of zooplankton-extinction periodic solution and the permanence of the system. Finally, we give some numerical simulations and a brief discussion.

2 Development model and preliminaries

Although phytoplankton are single-celled organisms, they play an important role in the marine ecosystem. To describe the complex effect of the phytoplankton on zooplankton, Roy et al. [20] considered a significant number of species of phytoplankton that have the ability to produce toxic or inhibitory compounds and they formulated the following model:

$$ \left \{ \textstyle\begin{array}{@{}l} \frac{dP_{1}}{dt}=P_{1}\{r_{1}(1-\frac{P_{1}+\alpha_{1}P_{2}}{K})-\frac {w_{1}Z}{D_{1}+P_{1}}\},\\ \frac{dP_{2}}{dt}=P_{2}\{r_{2}(1-\frac{P_{2}+\alpha_{2}P_{1}}{K})-\frac {w_{2}Z}{D_{2}+P_{2}}\},\\ \frac{dZ}{dt}=Z\{\frac{\xi_{1}P_{1}}{D_{1}+P_{1}}-\frac{\xi_{2}P_{2}}{D_{2}+P_{2}}-c\}. \end{array}\displaystyle \right . $$
(2.1)

Motivated by [16, 18, 19], we are concerned with the effects of the phytoplankton-impulsive diffusion in two patches on the dynamics of a phytoplankton-zooplankton system,

$$ \left \{ \textstyle\begin{array}{@{}l@{\quad}l} \textstyle\begin{array}{@{}l} \frac{dP_{1}}{dt}= P_{1}(r_{1}-a_{1}P_{1}^{\theta_{1}})-\alpha_{1}P_{1}Z,\\ \frac{dP_{2}}{dt}=P_{2}(r_{2}- a_{2}P_{2}^{\theta_{2}})-\alpha_{2} P_{2}Z ,\\ \frac{dZ}{dt}= Z( \varrho_{1}P_{1}+\varrho_{2}P_{2}-a_{3}Z(t-\tau)-\mu- \frac {\beta P_{2}}{K+P_{2}}), \end{array}\displaystyle & t\neq nT,\\ \textstyle\begin{array}{@{}l} \Delta P_{1}=d(P_{2}-P_{1}),\\ \Delta P_{2}=d(P_{1}-P_{2}), \Delta Z=0, \end{array}\displaystyle & t= nT, \end{array}\displaystyle \right . $$
(2.2)

with the initial condition

$$ \begin{aligned} &P_{1}(s)=\phi_{1}(s), \qquad P_{2}(s)=\phi_{2}(s),\qquad Z(s)=\phi_{3}(s), \\ &\quad\phi=(\phi_{1},\phi_{2},\phi_{3})\in C \bigl([-\tau, 0], R_{+}^{3} \bigr), \phi_{i}(0)>0,i=1,2,3, \end{aligned} $$
(2.3)

where \(P_{1}(t)\) denotes the concentration of the nontoxic phytoplankton (NPP) and \(P_{2}(t)\) is the concentration of the toxin-producing phytoplankton (TPP). \(Z(t)\) is the concentration of the zooplankton. \(r_{1}\) and \(r_{2}\) are the intrinsic growth rates of NTP and TPP population, respectively. \(\theta_{i}\) (\(i=1,2\)) present nonlinear measure of intra-species interference. \(a_{i}\) (\(i=1,2\)) are the coefficients of intra-specific competition. \(\alpha_{i}\) (\(i=1,2\)) denote the capturing rates of the zooplankton. \(\frac{\varrho_{i}}{\alpha_{i}}\) (\(i=1,2\)) denote the conversion rate of nutrient into the production rate of the zooplankton. The term \(-a_{3}Z(t-\tau)\) denotes the negative feedback of zooplankton crowding. T is the impulsive diffusion because of the external perturbation. d (\(0< d<1\)) is the diffusion rate. μ is the death rate of zooplankton. The term \(\frac{\beta P}{K+P_{2}}\) (\(\beta>0\), \(K>0\)) contributes to the death of zooplankton population, where K is a half-saturation constant, β denotes the rate of toxin liberation by toxin-producing phytoplankton. \(\Delta P_{i}(t^{+})=P_{i}(t^{+})-P_{i}(t)\) (\(i=1,2\)), \(\Delta Z(t^{+})=Z(t^{+})-Z(t)\), \(n\in N\).

For convenience, we first give some lemmas.

Lemma 2.1

All the solutions \((P_{1}(t),P_{2}(t), Z(t))\) of system (2.2) with the initial conditions are positive for all \(t\geq0\).

Lemma 2.2

Let \((P_{1}(t),P_{2}(t), Z(t))\) be any solution of system (2.2), there exists a constant \(M>0\), such that \(P_{i}(t)\leq M\) (\(i=1,2\)) and \(Z(t)\leq M\) for t large enough.

Proof

Define \(V(t)= \frac{\theta_{1}}{\varrho_{1}}P_{1}(t)+\frac{\varrho_{2}}{\alpha_{2}} P_{2}(t)+Z(t)\). When \(t\neq nT\), we have

$$\begin{aligned}[b] D^{+}V +\mu V(t)&\leq \frac{\varrho_{1}}{\alpha_{1}}\bigl((r_{1}+ \mu)P_{1}-a_{1}P_{1}^{\theta_{1}}\bigr)+ \frac{\varrho _{2}}{\alpha_{2}}\bigl((r_{2}+\mu)P_{2}-a_{2}P_{2}^{\theta_{2}} \bigr) \\ &\leq\frac{(r_{1}+\mu) \theta_{1}\varrho_{1}}{\alpha_{1}(\theta_{1}+1)}\biggl(\frac{r_{1}+\mu}{a_{1}(\theta _{1}+1)}\biggr)^{\frac{1}{\theta_{1}}}+ \frac{(r_{2}+\mu) \theta_{2}\varrho_{2}}{\alpha_{2}(\theta_{2}+1)}\biggl(\frac{r_{2}+\mu}{a_{2}(\theta _{2}+1)}\biggr)^{\frac{1}{\theta_{2}}} \stackrel{\Delta}{=}\xi. \end{aligned} $$

For \(t=nT\), \(V(nT^{+}) \leq V(nT)\), hence we obtain

$$V(t)\leq V\bigl(0^{+}\bigr)e^{-\mu t}+\frac{\xi}{\mu}\bigl(1-e^{-\mu t} \bigr)\rightarrow \frac{\xi}{\mu} $$

as \(t\rightarrow\infty\), which shows \(V(t)\) is uniformly ultimately bounded. Thus, we have \(P_{i}(t)\leq M\) (\(i=1,2\)), \(Z(t)\leq M\).

Consider the following system:

$$ \left \{ \textstyle\begin{array}{@{}l@{\quad}l} \textstyle\begin{array}{@{}l} \frac{dP_{1}}{dt}= P_{1}(r_{1}-a_{1}P_{1}^{\theta_{1}}),\\ \frac{dP_{2}}{dt}=P_{2}(r_{2}-a_{2}P_{2}^{\theta_{2}}), \end{array}\displaystyle & t\neq nT,\\ \textstyle\begin{array}{@{}l} \Delta P_{1}=d(P_{2}-P_{1}),\\ \Delta P_{2}=d(P_{1}-P_{2}), \end{array}\displaystyle & t= nT. \end{array}\displaystyle \right . $$
(2.4)

Integrating system (2.4) on \((nT,(n+1)T]\), we have

$$\begin{aligned} &P_{i}(t)=\biggl( P_{1}^{-\theta_{i}}\bigl(nT^{+} \bigr)e^{-r_{i}\theta_{i}(t-nT)}+\frac{a_{i}}{r_{i}}\bigl( 1-e^{-r_{i}\theta_{i}(t-nT)}\bigr) \biggr)^{-\frac{1}{\theta_{i}}}, \\ &\quad t\in\bigl(nT,(n+1)T\bigr],i=1,2. \end{aligned}$$
(2.5)

Similar to [18], we derive the difference equation at the impulsive moment according to system (2.5).

$$ \left \{ \textstyle\begin{array}{@{}l} P_{1}(n+1)T^{+}= (\frac{P_{1}^{\theta_{1}}(nT^{+})}{\beta_{1}+\gamma_{1} P_{1}^{\theta_{1}}(nT^{+})})^{\frac{1}{\theta_{1}}}+d((\frac{P_{2}^{\theta _{2}}(nT^{+})}{\beta_{2}+\gamma_{2} P_{2}^{\theta_{2}}(nT^{+})})^{\frac{1}{\theta_{2}}} -(\frac{P_{1}^{\theta_{1}}(nT^{+})}{\beta_{1}+\gamma_{1} P_{1}^{\theta _{1}}(nT^{+})})^{\frac{1}{\theta_{1}}}),\\ P_{2}(n+1)T^{+}=(\frac{P_{2}^{\theta_{2}}(nT^{+})}{\beta_{2}+\gamma_{2} P_{2}^{\theta_{2}}(nT^{+})})^{\frac{1}{\theta_{2}}}+d((\frac{P_{1}^{\theta _{1}}(nT^{+})}{\beta_{1}+\gamma_{1} P_{1}^{\theta_{1}}(nT^{+})})^{\frac{1}{\theta_{1}}} -(\frac{P_{2}^{\theta_{2}}(nT^{+})}{\beta_{2}+\gamma_{2} P_{2}^{\theta_{2}}(nT^{+})})^{\frac{1}{\theta_{2}}}), \end{array}\displaystyle \right . $$
(2.6)

where \(\beta_{i}=e^{-r_{i}\theta_{i}T}<1\), \(\gamma_{i}=\frac{a_{i}}{r_{i}}(1-e^{-r_{i}\theta_{i}T}), i=1,2\). Equation (2.6) presents the phytoplankton concentration between patches after diffusion at the moment \(t=nT\).

To investigate the dynamics of system (2.6), we define a continuous map \(F: R_{+}^{2}\rightarrow R_{+}^{2}\),

$$ \left \{ \textstyle\begin{array}{@{}l} F_{1}(x)= (\frac{x_{1}^{\theta_{1}}}{\beta_{1}+\gamma_{1} x_{1}^{\theta_{1}} })^{\frac{1}{\theta_{1}}}+d((\frac{x_{2}^{\theta_{2}}}{\beta_{2}+\gamma_{2} x_{2}^{\theta_{2}} })^{\frac{1}{\theta_{2}}} -(\frac{x_{1}^{\theta_{1}}}{\beta_{1}+\gamma_{1} x_{1}^{\theta_{1}} })^{\frac {1}{\theta_{1}}}),\\ F_{2}(x)=(\frac{x_{2}^{\theta_{2}}}{\beta_{2}+\gamma_{2} x_{2}^{\theta_{2}} })^{\frac{1}{\theta_{2}}}+d((\frac{x_{1}^{\theta_{1}}}{\beta_{1}+\gamma_{1} x_{1}^{\theta_{1}} })^{\frac{1}{\theta_{1}}} -(\frac{x_{2}^{\theta_{2}}}{\beta_{2}+\gamma_{2} x_{2}^{\theta_{2}} })^{\frac{1}{\theta_{2}}}). \end{array}\displaystyle \right . $$
(2.7)

 □

Lemma 2.3

[18]

There exists a unique positive fixed point \(q=(q_{1},q_{2})\) of map F and for any \(x=(x_{1},x_{2})\), we have \(F(x)\rightarrow q\) as \(n\rightarrow\infty\), which implies \(q=(q_{1},q_{2})\) is globally asymptotically stable. Therefore, system (2.4) has a positive periodic solution \((P_{1}^{*}(t),P_{2}^{*}(t))\), where

$$ P_{i}^{*}(t)=\biggl(\frac{a_{i}}{r_{i}}+\biggl(\frac{1}{q_{i}^{\theta_{i}}}- \frac {a_{i}}{r_{i}}\biggr)e^{-r_{i}\theta_{i}(t-nT)}\biggr)^{-\frac{1}{\theta_{i}}},\quad t\in \bigl(nT,(n+1)T\bigr],i=1,2. $$
(2.8)

Thus, system (2.2) has a zooplankton-extinction periodic solution \((P_{1}^{*}(t),P_{2}^{*}(t),0)\).

Lemma 2.4

[16]

Let us consider the following equality:

$$ \frac{dx}{dt}\leq x(t) \bigl(a-bx(t-\tau)\bigr), $$
(2.9)

where \(a,b,\tau>0, x(t)>0\) for \(t\in[-\tau,0]\). Then we obtain \(\frac{a}{b}e^{a-ae^{a\tau}}\leq x(t)\leq \frac{a}{b}e^{a\tau}\) for t large enough.

3 Global attractivity of the zooplankton-extinction periodic solution

Theorem 3.1

The zooplankton-extinction periodic solution \((P_{1}^{*}(t),P_{2}^{*}(t),0)\) is globally attractive if \({\sum_{i=1}^{i=1}}\varrho_{i}(\frac{a_{i}}{r_{i}}+(\frac {1}{q_{i}^{\theta_{i}}}-\frac{a_{i}}{r_{i}})e^{-r_{i}\theta_{i}T})^{-\frac{1}{\theta _{i}}}<\mu \) holds.

Proof

From the first two equations of system (2.1), we have

$$ \begin{aligned} \frac{dP_{1}}{dt}\leq P_{1}(r_{1}-a_{1}P_{1}^{\theta_{1}}),\\ \frac{dP_{2}}{dt}\leq P_{2}(r_{2}-a_{2}P_{2}^{\theta_{2}}). \end{aligned} $$
(3.1)

We consider the comparison system as follows:

$$ \left \{ \textstyle\begin{array}{@{}l@{\quad}l} \textstyle\begin{array}{@{}l} \frac{du_{1}}{dt}= u_{1}(r_{1}-a_{1}u_{1}^{\theta_{1}}),\\ \frac{du_{2}}{dt}=u_{2}(r_{2}-a_{2}u_{2}^{\theta_{2}}), \end{array}\displaystyle & t\neq nT,\\ \textstyle\begin{array}{@{}l} \Delta u_{1}=d(u_{2}-P_{1}),\\ \Delta u_{2}=d(u_{1}-u_{2}), \end{array}\displaystyle & t= nT. \end{array}\displaystyle \right . $$
(3.2)

From Lemma 2.3, we see that system (3.2) has a periodic solution \((u_{1}^{*}(t),u_{2}^{*}(t))\),

$$ u_{i}^{*}(t)=\biggl(\frac{a_{i}}{r_{i}}+\biggl(\frac{1}{q_{i}^{\theta_{i}}}- \frac {a_{i}}{r_{i}}\biggr)e^{-r_{i}\theta_{i}(t-nT)}\biggr)^{-\frac{1}{\theta_{i}}},\quad t\in \bigl(nT,(n+1)T\bigr],i=1,2, $$
(3.3)

which is globally asymptotically stable. There exist an integer \(k_{1}>0\) and \(\varepsilon_{1}>0\) such that \(P_{i}(t)\leq u_{i}(t)\leq u^{*}_{i}(t)+\varepsilon\) for \(kT \leq t\leq(k+1)T\), that is,

$$\begin{aligned} &P_{i}(t)\leq u^{*}_{i}(t)+\varepsilon\leq\biggl( \frac{a_{i}}{r_{i}}+\biggl(\frac{1}{q_{i}^{\theta_{i}}}-\frac {a_{i}}{r_{i}} \biggr)e^{-r_{i}\theta_{i}T}\biggr)^{-\frac{1}{\theta_{i}}}+\varepsilon \stackrel{\Delta}{=} \kappa_{i} \\ &\quad (i=1,2), kT\leq t\leq (k+1)T,k>k_{1}>0. \end{aligned}$$
(3.4)

Again from system (2.2), we have

$$ \frac{dZ}{dt}\leq Z\bigl(\varrho_{1}\kappa_{1}+ \varrho_{2}\kappa_{2}-\mu-a_{3}Z(t-\tau)\bigr), \quad t>k_{1}T+\tau. $$
(3.5)

From the condition of the Theorem 3.1, we have \(\theta_{1}\kappa_{1}+ \theta_{2}\kappa_{2}<\mu\) for ε small enough. From system (3.4) and Lemma 2.4, we easily obtain \(Z(t)\leq0\) using the comparison theorem of impulsive differential equations. Again from the positivity of \(Z(t)\), we derive \(\lim_{t\rightarrow\infty}Z(t)=0\). Therefore, there exists an integer \(k_{2}>k_{1}\) such that \(Z(t)<\varepsilon_{1}\) for \(t>k_{2}T\).

From the first equations of system (2.2), we have

$$ \left \{ \textstyle\begin{array}{@{}l} \frac{dP_{1}}{dt}\geq P_{1}(r_{1}-\alpha_{1}\varepsilon_{1}- a_{1}P_{1}^{\theta_{1}}),\\ \frac{dP_{2}}{dt}\geq P_{2}(r_{2}-\alpha_{2}\varepsilon_{1}- a_{2}P_{2}^{\theta_{2}}). \end{array}\displaystyle \right . $$
(3.6)

Integrating the comparison system, we have

$$ \left \{ \textstyle\begin{array}{@{}l@{\quad}l} \textstyle\begin{array}{@{}l} \frac{du_{3}}{dt}= u_{3}(r_{1}-\alpha_{1}\varepsilon_{1}-a_{1}u_{3}^{\theta_{1}}),\\ \frac{du_{4}}{dt}=u_{4}(r_{2}-\alpha_{2}\varepsilon_{1}-a_{2}u_{4}^{\theta_{2}}), \end{array}\displaystyle & t\neq nT,\\ \textstyle\begin{array}{@{}l} \Delta u_{3}=d(u_{4}-u_{3}),\\ \Delta u_{4}=d(u_{3}-u_{4}), \end{array}\displaystyle & t= nT. \end{array}\displaystyle \right . $$
(3.7)

From Lemma 2.3, we get system (3.7) has a periodic solution \((u^{*}_{3}(t),u^{*}_{4}(t))\) as follows:

$$\begin{aligned} &u^{*}_{i}(t)=\biggl(\frac{a_{i}}{r_{i}-\alpha_{i}\varepsilon_{1}}+\biggl(\frac {1}{{q_{*}}_{i}^{\theta_{i}}}- \frac{a_{i}}{r_{i}-\alpha_{i}\varepsilon _{1}}\biggr)e^{-(r_{i}-\alpha_{i}\varepsilon_{1})\theta_{i}(t-nT)} \biggr)^{-\frac{1}{\theta_{i}}},\\ &\quad t \in\bigl(nT,(n+1)T\bigr]\ (i=3,4), \end{aligned}$$

which is globally asymptotically stable and \({q_{*}}_{i}\) can be computed similar to Lemma 2.3.

By the comparison theorem of impulsive different equations, for any \(\varepsilon_{2}>0\), there exists an integer \(k_{3}\) (\(k_{3}>k_{2}\)) such that \(P_{1}(t)\geq u^{*}_{3}(t)-\varepsilon_{2}\) and \(P_{2}(t)>u^{*}_{4}(t)-\varepsilon_{2}\), \(kT< t<(k+1)T\), \(k>k_{3}\).

Let \(\varepsilon_{1}\rightarrow0\), we have \(P_{i}(t)\rightarrow P^{*}_{i}(t),i=1,2\). Therefore, the zooplankton-extinction periodic solution \((P_{1}^{*}(t),P_{2}^{*}(t),0)\) is globally attractive if \(\sum_{i=1}^{i=1}\varrho_{i}(\frac{a_{i}}{r_{i}}+(\frac {1}{q_{i}^{\theta_{i}}}-\frac{a_{i}}{r_{i}})e^{-r_{i}\theta_{i}T})^{-\frac{1}{\theta _{i}}}<\mu \) holds. The proof is completed. □

4 Permanence

In this section, we investigate system (2.2) is permanent if the zooplankton population is above a certain threshold level for sufficiently large time.

Theorem 4.1

System (2.2) is permanent if \(\theta_{1}a_{1}+\theta_{2}a_{2}>\mu+\frac{\beta M}{K+M}\) holds, where M is a positive constant.

Proof

Let \((P_{1}(t),P_{2}(t),Z(t))\) be any solution of system (2.2) with initial value (2.3). From Lemma 2.2, we obtain \(P_{1}(t)< M,P_{2}(t)< M, Z(t)< M\) for \(t\rightarrow\infty\). Next, we need to prove there exists a positive constant \(m>0\) such that \(P_{i}(t)>m\) (\(i=1,2\)) and \(Z(t)>m\) as \(t\rightarrow\infty\).

From system (3.4), we have \(P_{i}(t)\leq \kappa_{i}\) (\(i=1,2\)) for t large enough. According to system (2.2), we have \(\frac{dZ}{dt}\leq Z(t)(\varrho_{1}\kappa_{1}+\varrho_{2}\kappa_{2}-\mu-a_{3}Z(t-\tau) )\). According to Lemma 2.4, we derive

$$ Z(t)\leq \frac{(\varrho_{1}\kappa_{1}+\varrho_{2}\kappa_{2}-\mu) }{a_{3}}e^{(\varrho_{1}\kappa_{1}+\varrho_{2}\kappa_{2}-\mu)\tau} \stackrel{\Delta}{=}\vartheta. $$
(4.1)

From system (2.2), we get

$$ \left \{ \textstyle\begin{array}{@{}l} \frac{dP_{1}}{dt}\geq P_{1}(r_{1}-a_{1}P_{1}^{\theta_{1}}-\alpha_{1}P_{1}\vartheta),\\ \frac{dP_{2}}{dt}\geq P_{2}(r_{2}-a_{2}P_{2}^{\theta_{2}}-\alpha_{2}\vartheta). \end{array}\displaystyle \right . $$
(4.2)

We consider the comparison system:

$$ \left \{ \textstyle\begin{array}{@{}l@{\quad}l} \textstyle\begin{array}{@{}l} \frac{dv_{1}}{dt}= v_{1}(r_{1}-\alpha_{1}\vartheta-a_{1}v_{1}^{\theta_{1}}),\\ \frac{dv_{2}}{dt}=v_{2}(r_{2}-\alpha_{2}\vartheta-a_{2}v_{2}^{\theta_{2}}), \end{array}\displaystyle & t\neq nT,\\ \textstyle\begin{array}{@{}l} \Delta v_{1}=d(v_{2}-v_{1}),\\ \Delta v_{2}=d(v_{1}-v_{2}), \end{array}\displaystyle & t= nT. \end{array}\displaystyle \right . $$
(4.3)

From Lemma 2.3, we know that system (4.3) has a periodic solution \((v^{*}_{1}(t),v^{*}_{2}(t))\) as follows:

$$ v^{*}_{i}(t)=\biggl(\frac{a_{i}}{r_{i}-\alpha_{i}\vartheta}+\biggl(\frac{1}{{\overline {q}}_{i}^{\theta_{i}}}- \frac{a_{i}}{r_{i}-\alpha_{i}\vartheta}\biggr) e^{-(r_{i}-\alpha_{i}\vartheta)\theta_{i}(t-nT)}\biggr)^{-\frac{1}{\theta _{i}}},\quad i=1,2, $$
(4.4)

which is globally asymptotically stable, where \(\overline{q}_{i}\) can be obtained similar to Lemma 2.3. We obtain \(P_{i}(t)\geq v_{i}(t)\) (\(i=1,2\)) for \(nT< t\leq(n+1)T\) by using the comparison theorem of the impulsive differential equations. Thus, there exists \(\varepsilon_{3}>0\) such that

$$ P_{i}(t)\geq\biggl(\frac{a_{i}}{r_{i}-\alpha_{i}\vartheta}+\biggl(\frac{1}{{\overline {q}}_{i}^{\theta_{i}}}- \frac{a_{i}}{r_{i}-\alpha_{i}\vartheta}\biggr) e^{-(r_{i}-\alpha_{i}\vartheta)\theta_{i}(t-nT)}\biggr)^{-\frac{1}{\theta _{i}}}- \varepsilon_{3}\stackrel{\Delta}{=}m_{i}\quad(i=1,2) $$
(4.5)

for t large enough.

In the following, we will show there exists a positive constant \(m_{3}>0\) such that \(Z(t)\geq m_{3}\) as \(t\rightarrow\infty\).

Again from system (2.2), we get

$$ \frac{dZ}{dt}\geq Z\biggl(\varrho_{1}m_{1}+ \varrho_{2}m_{2}-\mu-\frac{\beta M}{K+M}-a_{3}Z(t- \tau)\biggr). $$
(4.6)

Considering the following comparison system:

$$ \frac{dw}{dt}= w\biggl(\varrho_{1}m_{1}+ \varrho_{2}m_{2}-\mu-\frac{\beta M}{K+M}-a_{3}w(t- \tau)\biggr), $$
(4.7)

we get

$$ Z(t)\geq w(t)\geq \frac{A}{a_{3}}e^{A-Ae^{A\tau}}, $$
(4.8)

where \(A=\varrho_{1}m_{1}+\varrho_{2}m_{2}-\mu-\frac{\beta M}{K+M}\).

From system (4.5), we derive

$$ m_{i}>{\overline{q}}_{i}^{\theta_{i}}- \varepsilon_{3}\quad(i=1,2) $$
(4.9)

for t large enough. From system (4.9) and the condition

$$\theta_{1}a_{1}+\theta_{2}a_{2}>\mu+ \frac{\beta M}{K+M}, $$

we obtain \(\varrho_{1}m_{1}+\varrho_{2}m_{2}-\mu-\frac{\beta M}{K+M}>0\). Therefore, there exists \(\varepsilon_{4}>0\) such that \(Z(t)\geq \frac{A}{a_{3}}e^{A-Ae^{A\tau}}-\varepsilon_{4}\stackrel{\Delta}{=}m_{3}\) as \(t\rightarrow\infty\). Define \(m=\min\{m_{1},m_{2},m_{3}\}\), we have \(P_{1}(t)\geq m,P_{2}(t)\geq m, Z(t)\geq m\) holding for \(t\rightarrow\infty\). The proof is completed. □

5 Discussion

To investigate the effect of the phytoplankton diffusion on the dynamics, we formulate a phytoplankton-zooplankton model with impulsive diffusion. By using impulsive differential equations, we prove the zooplankton-extinction is globally attractive if \(\sum_{i=1}^{i=1}\theta_{i} (\frac{a_{i}}{r_{i}}+(\frac{1}{q_{i}^{\theta_{i}}}-\frac {a_{i}}{r_{i}})e^{-r_{i}\theta_{i}T})^{-\frac{1}{\theta_{i}}}<\mu \), which is simulated in Figure 1 with parameters \(r_{1}=1.5\), \(a_{1}=0.2\), \(\alpha_{1}=0.5, \theta_{1}=0.8, \theta_{2}=0.3, r_{2}=6, a_{2}=0.1\), \(\alpha_{2}=0.1, \beta=0.7, \varrho_{1}=0.1, \varrho_{2}=0.1, \tau=0, a_{3}=0.8, K=3, \mu=0.8, d=0.01,T=2.42\). The phytoplankton and zooplankton coexist when \(\theta_{1}a_{1}+\theta_{2}a_{2}>\mu+\frac{\beta M}{K+M}\). Let parameters be \(r_{1}=1.5, a_{1}=0.2, \alpha_{1}=0.8, \theta_{1}=0.8, \theta_{2}=0.3\), \(r_{2}=6, a_{2}=0.1, \alpha_{2}=0.1, \beta=0.5, \varrho_{1}=0.1, \varrho_{2}=0.1, \tau=0, a_{3}=0.2, K=3, \mu=0.2, d=0.01\), we can see the phytoplankton and zooplankton oscillate in an impulsive period, which shows phytoplankton and zooplankton are permanent (see Figure 2).

Figure 1
figure 1

Time series and phase portrait of the zooplankton-extinction periodic solution of system ( 2.2 ) with the parameters \(\pmb{r_{1}=1.5}\) , \(\pmb{a_{1}=0.2}\) , \(\pmb{\alpha_{1}=0.5}\) , \(\pmb{\theta_{1}=0.8}\) , \(\pmb{\theta_{2}=0.3}\) , \(\pmb{r_{2}=6}\) , \(\pmb{a_{2}=0.1}\) , \(\pmb{\alpha_{2}=0.1}\) , \(\pmb{\beta=0.7}\) , \(\pmb{\varrho_{1}=0.1}\) , \(\pmb{\varrho_{2}=0.1}\) , \(\pmb{\tau=0}\) , \(\pmb{a_{3}=0.8}\) , \(\pmb{K=3}\) , \(\pmb{\mu=0.8}\) , \(\pmb{d=0.01}\) , \(\pmb{T=2.42}\) .

Figure 2
figure 2

Time series and phase portrait of the permanence of system ( 2.2 ) with the parameters \(\pmb{r_{1}=1.5}\) , \(\pmb{a_{1}=0.2}\) , \(\pmb{\alpha_{1}=0.5}\) , \(\pmb{\theta_{1}=0.8}\) , \(\pmb{\theta_{2}=0.3}\) , \(\pmb{r_{2}=6}\) , \(\pmb{a_{2}=0.1}\) , \(\pmb{\alpha_{2}=0.1}\) , \(\pmb{\beta=0.7}\) , \(\pmb{\varrho_{1}=0.1}\) , \(\pmb{\varrho_{2}=0.1}\) , \(\pmb{\tau=0}\) , \(\pmb{a_{3}=0.8}\) , \(\pmb{K=3}\) , \(\pmb{\mu=0.8}\) , \(\pmb{d=0.01}\) , \(\pmb{T=2.42}\) .