1 Introduction

The periodicity is a very important property in the study of the impulsive differential equations [1, 2]. However, not all natural phenomena can be described alone by periodicity. Some differential equations often exhibit certain symmetries rather than periodicity. For example, consider the system

$$ \dot{x}=f(t,x), $$
(1)

where \(f:R^{1}\times R^{n}\rightarrow R^{n}\) is continuous, and for some \(Q\in GL_{n}(R)\) (general linear group), satisfies the following affine symmetry:

$$ f(t+T,x)=Qf \bigl(t,Q^{-1}x \bigr). $$

We call it a \((Q,T)\)-affine-periodic system. For this \((Q,T)\)-affine-periodic system, we are concerned with the existence of \((Q,T)\)-affine-periodic solutions \(x(t)\) with

$$ x(t+T)=Qx(t), \quad \forall t. $$

It should be pointed out that when \(Q=I\) (identity matrix) or \(Q=-I\), the solutions are just the pure periodic solutions or antiperiodic ones; when \(Q\in SO_{n}\) (special orthogonal group), the solutions correspond to the solutions with Q-rotating symmetry, particularly to some special quasi-periodic solutions. So the interest to particular kinds of periodic solutions that we are going to study is not purely theoretical. The antiperiodicity property or some quasi-periodicity property, which is obviously a particular case of affine-periodic solutions, has drawn wide attention from physicists and astronomers [3, 4].

Recently, these conceptions and existence results of the solutions have been introduced and proved by Li and his coauthors; see [5] for Levinson’s problem, [6] for Lyapunov function type theorems, [7] for averaging methods of affine-periodic solutions, and [8] for some dissipative dynamical systems. The aim of this paper is to touch such a topic for affine-periodic solutions of nonlinear impulsive differential equations.

The paper is organized as follows. We first change the affine-periodic solutions problem to the boundary value problem in Sect. 2. In Sect. 3, when \(\operatorname{det}(I-Q)\neq0\), we give an unique affine-periodic solution by using the Banach contraction mapping principle. Furthermore, via the topological degree theory, we prove the existence of affine-periodic solutions for nonlinear impulsive system when \(\operatorname{det}(I-Q)=0\) in Sect. 4. We give two examples by numerical simulation in Sect. 5.

2 Nonlinear impulsive differential system

In this paper, we investigate the following system:

$$ \begin{aligned} &\dot{x}=f(t,x), \quad t\neq t_{k} , t\in R, \\ &\Delta x=I_{k}(x), \quad t=t _{k},k \in Z. \end{aligned}$$
(2)

The system satisfies the following hypotheses H:

  1. (1)

    \(f(\cdot)\in C(R\times R^{n},R^{n})\) and \(f(t+T,x)= Qf(t,Q^{-1}x)\) for some \(G\in SO_{n}(R)\).

  2. (2)

    \(I_{k}(\cdot)\in C(R^{n},R^{n})\), \(t_{k}< t_{k+1}\) (\(k \in Z\)).

  3. (3)

    There exists \(q\in N\) such that \(I_{k+q}(x)=Q I_{k}(Q^{-1}x)\) and \(t_{k+q}=t_{k}+T\) (\(k \in Z\)).

In system (2), the continuous part corresponds to a nonlinear \((Q,T)\)-affine-periodic system. The discrete component models the affine-periodic impulsive change of \(x(t)\).

Lemma 2.1

The existence of Q-affine-periodic solutions of equation (2) is equivalent to the existence of the boundary value problem (2) with \(x(T)=Qx(0)\).

Proof

Let \(x(t)\) be a solution of equation (2) defined on \(t\in[0,T]\). Then

$$ u(t)= \textstyle\begin{cases} x(t),& t\in(0,T], \\ Q^{j}x(t-jT),& t\in(jT,jT+T], \end{cases} $$
(3)

is a Q-affine-periodic solution of (2). Indeed, if \(t\in(jT,jT+T]\) and \(t\neq t_{k}\), then \(t-jT \in(0,T]\), and

$$ \begin{aligned}[b] \frac{d u(t)}{dt} &=Q^{j} \frac{dx(t-jT)}{dt} \\ &=Q^{j}f \bigl(t-jT,x(t-jT) \bigr) \\ &=Q^{j}\cdot Q^{-j}f \bigl(t,Q^{j}x(t-jT) \bigr) \\ &=f \bigl(t,u(t) \bigr), \end{aligned} $$
(4)

and if \(t_{k}\in(jT,jT+T]\), then \(t_{k-jq}=t_{k}-jT\in(0,T]\) and

$$ \begin{aligned}[b] \Delta u(t_{k})&=Q^{j}\Delta x(t_{k}-jT) \\ &=Q^{j}I_{k-jq} \bigl(x(t_{k}-jT) \bigr) \\ &=Q^{j}\cdot Q^{-j}I_{k} \bigl(Q^{j}x(t_{k}-jT) \bigr) \\ & =I_{k} \bigl(u(t_{k}) \bigr). \end{aligned} $$
(5)

Let \(x(t)\) be any solution of (2) with \(x(T)=Qx(0)\). Then \(x(t)\) has the form

$$ x(t)=x(0)+ \int_{0}^{t}f \bigl(s,x(s) \bigr)\,ds+\sum _{0\leq t_{k}< t}I_{k} \bigl(x(t_{k}) \bigr). $$

Denote \(x(0)\) by \(x_{0}\). Then we have

$$ (I-Q)x_{0}=- \biggl[ \int_{0}^{T}f \bigl(s,x(s) \bigr)\,ds+\sum _{0\leq t_{k}< T}I_{k} \bigl(x(t _{k}) \bigr) \biggr]. $$
(6)

 □

3 Noncritial case

$$ \operatorname{det}(I-Q)\neq0. $$

In this case, \((I-Q)^{-1}\) exists. Then

$$ x_{0}=-(I-Q)^{-1} \biggl[ \int_{0}^{T}f \bigl(s,x(s) \bigr)\,ds+\sum _{0\leq t_{k}< T}I_{k} \bigl(x(t _{k}) \bigr) \biggr]. $$
(7)

So, the existence of Q-affine-periodic solutions of equation (2) is equivalent to the existence of solutions of the following impulsive integral equation:

$$\begin{aligned} x(t) =&-(I-Q)^{-1} \biggl[ \int_{0}^{T}f \bigl(s,x(s) \bigr)\,ds+\sum _{0\leq t_{k}< T}I_{k} \bigl(x(t _{k}) \bigr) \biggr] \\ &{}+ \int_{0}^{t}f \bigl(s,x(s) \bigr)\,ds+\sum _{0\leq t_{k}< t}I_{k} \bigl(x(t_{k}) \bigr). \end{aligned}$$
(8)

Let

$$ \textrm{X}= \bigl\{ x:[0,T]\rightarrow R^{n}: x(t) \text{ is continuous on } [0,T] \bigr\} , $$

and define the norm \(\|x\|=\sup_{t\in[0,T]}|x(t)|\). It is easy to see that X is a Banach space with norm \(\|x\|\). We also define the norm of the matrix \(\|X(t)\|=\|(x_{1}(t),x_{2}(t),\ldots,x_{n}(t))\|= \max_{i=1,2,\ldots,n}\|x_{i}\|\). Then we have the following theorem.

Theorem 3.1

Let a function \(p\in L([0,T],R^{+})\) and nonnegative constants \(\alpha_{k}\) (\(k=1,2,\ldots,q\)) be such that

$$\begin{aligned}& \bigl\vert f(t,y)-f(t,x) \bigr\vert \leq p(t) \vert y-x \vert , \quad \forall t\in[0,T], x,y\in R^{n}, \\& \bigl\vert I_{k}(y)-I_{k}(x) \bigr\vert \leq a_{k} \vert y-x \vert ,\quad \alpha_{k}\in R(k=1,2, \ldots,q), x,y \in R^{n}, \end{aligned}$$

and

$$ \Biggl( \int_{0}^{T}p(s)\,ds+\sum _{k=1}^{q}a_{k} \Biggr)< \frac{1}{ \Vert (I-Q)^{-1} \Vert +1}. $$

Then system (2) has an unique Q-affine-periodic solution.

Proof

Define

$$\begin{aligned} A \bigl(x(t) \bigr) =&-(I-Q)^{-1} \biggl[ \int_{0}^{T}f \bigl(s,x(s) \bigr)\,ds+\sum _{0\leq t_{k}< T}I_{k} \bigl(x(t _{k}) \bigr) \biggr] \\ &{}+ \int_{0}^{t}f \bigl(s,x(s) \bigr)\,ds+\sum _{0\leq t_{k}< t}I_{k} \bigl(x(t_{k}) \bigr). \end{aligned}$$

Then

$$\begin{aligned}& \bigl\vert A \bigl(y(t) \bigr)-A \bigl(x(t) \bigr) \bigr\vert \\& \quad = \biggl\vert -(I-Q)^{-1} \biggl[ \int_{0}^{T} \bigl(f \bigl(s,y(s) \bigr)-f \bigl(s,x(s) \bigr) \bigr)\,ds+ \sum_{0\leq t_{k}< T}(I_{k} \bigl(y(t_{k})-I_{k} \bigl(x(t_{k}) \bigr) \bigr) \biggr] \\& \qquad {}+ \int_{0} ^{t} \bigl(f \bigl(s,y(s) \bigr)-f \bigl(s,x(s) \bigr) \bigr)\,ds+\sum_{0\leq t_{k}< t} \bigl(I_{k} \bigl(y(t_{k}) \bigr)-I _{k} \bigl(x(t_{k}) \bigr) \bigr) \biggr\vert \\& \quad \leq \bigl\Vert (I-Q)^{-1} \bigr\Vert \Biggl( \int_{0}^{T}p(s)\,ds+\sum _{k=1} ^{q}a_{k} \Biggr) \vert y-x \vert \\& \qquad {}+ \Biggl( \int_{0}^{t}p(s)\,ds+\sum _{k=1}^{q^{,}}a_{k} \Biggr) \vert y-x \vert \\& \quad \leq \bigl( \bigl\Vert (I-Q)^{-1} \bigr\Vert +1 \bigr) \Biggl( \int_{0}^{T}p(s)\,ds+\sum _{k=1}^{q}a_{k} \Biggr) \vert y-x \vert . \end{aligned}$$
(9)

So, if \((\int_{0}^{T}p(s)\,ds+\sum_{k=1}^{q}a_{k})<\frac{1}{\|(I-Q)^{-1} \|+1}\), then by the Banach contraction mapping principle system (2) has a unique Q-affine-periodic solution. □

4 Critial case

$$ \operatorname{det}(I-Q)=0. $$

To investigate the existence of solutions of system (2), the following auxiliary equation is often considered:

$$\begin{aligned}& \begin{aligned} &\dot{x}=\lambda f(t,x), \quad t\neq t_{k} , t\in R, \\ &\Delta x=\lambda I _{k}(x), \quad t=t_{k},k \in Z. \end{aligned} \end{aligned}$$
(10)

Then we give the following existence theorem for (Q,T)-affine-periodic solutions by using the topological degree theory [6, 7, 911].

Theorem 4.1

Let \(D\subset R^{n}\) be a bounded open set. Assume that the following hypotheses hold for system (10):

  1. (H1)

    For each \(\lambda\in(0,1]\), every Q-affine-periodic solution \(x(t)\) of system (10) satisfies

    $$ x(t)\notin\partial D \quad \textit{for all }t; $$
  2. (H2)

    the Brouwer degree,

    $$ \operatorname{deg}\bigl(g,D\cap \operatorname{Ker}(I-Q),0 \bigr)\neq0 \quad \textit{if } \operatorname{Ker}(I-Q) \neq{0}, $$

where

$$ g(a)=\frac{1}{T} \biggl[ \int_{0}^{T}Pf(s,a)\,ds+\sum _{0\leq t_{k}< T}PI_{k} \bigl(x(t _{k}) \bigr) \biggr], $$

with an orthogonal projection \(P:R^{n}\rightarrow \operatorname{Ker}(I-Q)\).

Then system (2) has at least one Q-affine-periodic solution \(x_{*}(t)\in D\) for all t.

Proof

Consider the auxiliary equation (10) with the boundary value condition \(x(T)=Qx(t)\), where \(\lambda\in(0,1]\). Let \(x(t)\) be any solution of (10) with \(x(T)=Qx(0)\). Then

$$\begin{aligned}& (I-Q)x_{0} \\& \quad =-\lambda \biggl[ \int_{0}^{T}f \bigl(s,x(s) \bigr)\,ds+\sum _{0\leq t_{k}< T}I _{k} \bigl(x(t_{k}) \bigr) \biggr]. \end{aligned}$$
(11)

In this case, \((I-Q)^{-1}\) does not exist. By coordinate transformation, without loss of generality, we can just let

$$ Q= \left ( \begin{matrix} I & 0 \\ 0 & Q_{1} \end{matrix} \right ) , $$
(12)

where \((I-Q_{1})^{-1}\) exists. Here \(Q=Q_{1}\oplus I\).

Let \(P:R^{n}\rightarrow{ \operatorname{Ker}(I-Q)}\) be the orthogonal projection. Then

$$ \begin{aligned}[b] (I-Q)x_{0}={} &(I-Q) \bigl(x^{0}_{\ker }+x^{0}_{\bot} \bigr) \\ ={}&{-}\lambda \biggl[ \int _{0}^{T}f \bigl(s,x(s) \bigr)\,ds+\sum _{0\leq t_{k}< T}I_{k} \bigl(x(t_{k}) \bigr) \biggr] \\ ={}&{-}\lambda \biggl[ \int_{0}^{T}Pf \bigl(s,x(s) \bigr)\,ds+\sum _{0\leq t_{k}< T}PI_{k} \bigl(x(t_{k}) \bigr) \biggr] \\ &{}- \lambda \biggl[ \int_{0}^{T}(I-P)f \bigl(s,x(s) \bigr)\,ds+\sum _{0\leq t_{k}< T}(I-P)I_{k} \bigl(x(t _{k}) \bigr) \biggr], \end{aligned} $$
(13)

where \(x^{0}_{\ker }\in \operatorname{Ker}(I-Q)\), \(x^{0}_{\bot}\in \operatorname{Im}(I-Q)\) and \(x_{0}=x^{0}_{\ker }+x^{0}_{\bot}\).

Let \(L_{p}=(I-Q)|_{\operatorname{Im}(I-Q)}\). It is easy to see that \(L^{-1}_{p}\) exists. Thus equation (13) is equivalent to

$$\begin{aligned}& (I-Q)x^{0}_{\ker }=-\lambda \biggl[ \int_{0}^{T}Pf \bigl(s,x(s) \bigr)\,ds+ \sum _{0\leq t_{k}< T}PI_{k} \bigl(x(t_{k}) \bigr) \biggr]=0, \\& (I-Q)x^{0}_{\bot}=-\lambda \biggl[ \int_{0}^{T}(I-P)f \bigl(s,x(s) \bigr)\,ds+ \sum _{0\leq t_{k}< T}(I-P)I_{k} \bigl(x(t_{k}) \bigr) \biggr]. \end{aligned}$$

Thus we have

$$ x^{0}_{\bot}=\lambda L^{-1}_{p} \biggl[ \int_{0}^{T}(I-P)f \bigl(s,x(s) \bigr)\,ds+ \sum _{0\leq t_{k}< T}(I-P)I_{k} \bigl(x(t_{k}) \bigr) \biggr]. $$

For \(x\in\textrm{X}\) such that \(x(t)\in\overline{D}\) for all \(t\in[0,T]\), we define the operator \(\mathtt{T}(x^{0}_{\ker },x, \lambda)\) by

$$ \mathtt{T} \bigl(x^{0}_{\ker },x,\lambda \bigr) = \left ( \begin{matrix} {x^{0}_{\ker }+ \frac{1}{T} [ \int_{0}^{T}Pf (s,x(s) )\,ds+\sum_{0\leq t _{k}< T}PI_{k} (x(t_{k}) ) ]} \\ {x^{0}_{\ker }-\lambda L^{-1}_{p} [ \int_{0}^{T}(I-P)f (s,x(s) )\,ds+\sum_{0\leq t_{k}< T}(I-P)I_{k} (x(t_{k}) ) ]} \\ {{}+\lambda [ \int_{0}^{t}f (s,x(s) )\,ds+\sum_{0\leq t_{k}< t}I_{k} (x(t _{k}) ) ]} \end{matrix} \right ), $$
(14)

where \(\lambda\in[0,1]\). We claim that each fixed point x of T in X is a solution of (10) with \(x(T)=Qx(0)\).

In fact, if x is a fixed point of T, we have

$$ \left ( \begin{matrix} {x^{0}_{\ker}} \\ {x(t)} \end{matrix} \right ) = \left ( \begin{matrix} {x^{0}_{\ker}+\frac{1}{T} [ \int_{0}^{T}Pf (s,x(s) )\,ds+\sum_{0\leq t_{k}< T}PI _{k} (x(t_{k}) ) ]} \\ {x^{0}_{\ker}-\lambda L^{-1}_{p} [ \int_{0}^{T}(I-P)f (s,x(s) )\,ds+ \sum_{0\leq t_{k}< T}(I-P)I_{k} (x(t_{k}) ) ]} \\ {{}+\lambda [ \int_{0}^{t}f (s,x(s) )\,ds+ \sum_{0\leq t_{k}< t}I_{k} (x(t_{k}) ) ]} \end{matrix} \right ) . $$

Thus

$$\begin{aligned}& \frac{1}{T} \biggl[ \int_{0}^{T}Pf \bigl(s,x(s) \bigr)\,ds+\sum _{0\leq t_{k}< T}PI_{k} \bigl(x(t _{k}) \bigr) \biggr]=0, \end{aligned}$$
(15)
$$\begin{aligned}& x(t)= x^{0}_{\ker } -\lambda L^{-1}_{p} \biggl[ \int_{0}^{T}(I-P)f \bigl(s,x(s) \bigr)\,ds+ \sum _{0\leq t_{k}< T}(I-P)I_{k} \bigl(x(t_{k}) \bigr) \biggr] \\& \hphantom{x(t)=}{}+\lambda \biggl[ \int_{0}^{t}f \bigl(s,x(s) \bigr)\,ds+ \sum _{0\leq t_{k}< t}I_{k} \bigl(x(t_{k}) \bigr) \biggr]. \end{aligned}$$
(16)

By equation (16) we know that

$$ x_{0}=x^{0}_{\ker }-\lambda L^{-1}_{p} \biggl[ \int_{0}^{T}(I-P)f \bigl(s,x(s) \bigr)\,ds+ \sum _{0\leq t_{k}< T}(I-P)I_{k} \bigl(x(t_{k}) \bigr) \biggr]. $$

According to \((I-Q)x^{0}_{\ker }=0\), we have

$$ \begin{aligned} Qx_{0} &=Qx^{0}_{\ker }- \lambda QL^{-1}_{p} \biggl[ \int_{0}^{T}(I-P)f \bigl(s,x(s) \bigr)\,ds+ \sum _{0\leq t_{k}< T}(I-P)I_{k} \bigl(x(t_{k}) \bigr) \biggr] \\ &=x^{0}_{\ker }-\lambda QL^{-1}_{p} \biggl[ \int_{0}^{T}(I-P)f \bigl(s,x(s) \bigr)\,ds+\sum _{0\leq t_{k}< T}(I-P)I _{k} \bigl(x(t_{k}) \bigr) \biggr]. \end{aligned} $$

Since equation (15) holds, we have

$$\begin{aligned}& (I-Q)L^{-1}_{p} \biggl[ \int_{0}^{T}(I-P)f \bigl(s,x(s) \bigr)\,ds+\sum _{0\leq t_{k}< T}(I-P)I _{k} \bigl(x(t_{k}) \bigr) \biggr] \\& \quad = \biggl[ \int_{0}^{T}(I-P)f \bigl(s,x(s) \bigr)\,ds+\sum _{0\leq t_{k}< T}(I-P)I _{k} \bigl(x(t_{k}) \bigr) \biggr] \\& \quad = \biggl[ \int_{0}^{T}(I-P)f \bigl(s,x(s) \bigr)\,ds+\sum _{0\leq t_{k}< T}(I-P)I _{k} \bigl(x(t_{k}) \bigr) \biggr] \\& \qquad {} + \biggl[ \int_{0}^{T}Pf \bigl(s,x(s) \bigr)\,ds+\sum _{0\leq t_{k}< T}PI_{k} \bigl(x(t_{k}) \bigr) \biggr] \\& \quad = \int_{0}^{T}f \bigl(s,x(s) \bigr)\,ds+\sum _{0\leq t_{k}< T}I_{k} \bigl(x(t_{k}) \bigr). \end{aligned}$$

Thus

$$\begin{aligned}& \lambda QL^{-1}_{p} \biggl[ \int_{0}^{T}(I-P)f \bigl(s,x(s) \bigr)\,ds+\sum _{0\leq t_{k}< T}(I-P)I _{k} \bigl(x(t_{k}) \bigr) \biggr] \\& \quad =\lambda L^{-1}_{p} \biggl[ \int_{0}^{T}(I-P)f \bigl(s,x(s) \bigr)\,ds+ \sum _{0\leq t_{k}< T}(I-P)I_{k} \bigl(x(t_{k}) \bigr) \biggr] \\& \qquad {}-\lambda \biggl[ \int_{0}^{T}f \bigl(s,x(s) \bigr)\,ds+ \sum _{0\leq t_{k}< T}I_{k} \bigl(x(t_{k}) \bigr) \biggr]. \end{aligned}$$

Then

$$\begin{aligned} Qx_{0} = &x^{0}_{\ker }- \lambda QL^{-1}_{p} \biggl[ \int_{0}^{T}(I-P)f \bigl(s,x(s) \bigr)\,ds+ \sum _{0\leq t_{k}< T}(I-P)I_{k} \bigl(x(t_{k}) \bigr) \biggr] \\ =&x^{0}_{\ker }-\lambda L^{-1}_{p} \biggl[ \int_{0}^{T}(I-P)f \bigl(s,x(s) \bigr)\,ds+\sum _{0\leq t_{k}< T}(I-P)I _{k} \bigl(x(t_{k}) \bigr) \biggr] \\ &{}+\lambda \biggl[ \int_{0}^{T}f \bigl(s,x(s) \bigr)\,ds+\sum _{0\leq t _{k}< T}I_{k} \bigl(x(t_{k}) \bigr) \biggr] =x(T). \end{aligned}$$
(17)

By equations (16) and (17), equation (11) holds. Thus,

$$ x^{0}_{\bot}=-\lambda L^{-1}_{p} \biggl[ \int_{0}^{T}(I-P)f \bigl(s,x(s) \bigr)\,ds+ \sum _{0\leq t_{k}< T}(I-P)I_{k} \bigl(x(t_{k}) \bigr) \biggr]. $$

Then,

$$\begin{aligned} x(t) = &x^{0}_{\ker }-\lambda L^{-1}_{p} \biggl[ \int_{0}^{T}(I-P)f \bigl(s,x(s) \bigr)\,ds+ \sum _{0\leq t_{k}< T}(I-P)I_{k} \bigl(x(t_{k}) \bigr) \biggr] \\ &{}+\lambda \biggl[ \int_{0}^{t}f \bigl(s,x(s) \bigr)\,ds+ \sum _{0\leq t_{k}< t}I \bigl(x(t_{k}) \bigr) \biggr] \\ =&x^{0}_{\ker }+x^{0}_{\bot}+ \lambda \biggl[ \int_{0}^{t}f \bigl(s,x(s) \bigr)\,ds+\sum _{0\leq t_{k}< t}I_{k} \bigl(x(t_{k}) \bigr) \biggr] \\ =&x_{0}+\lambda \biggl[ \int_{0}^{t}f \bigl(s,x(s) \bigr)\,ds+\sum _{0\leq t_{k}< t}I_{k} \bigl(x(t _{k}) \bigr) \biggr]. \end{aligned}$$

This means that the fixed point x is a solution of (10) with \(x(T)=Qx(0)\).

Now, we need to prove the existence of the fixed point of T. Take a constant M such that \(M> \sup_{t\in[0,T],x\in\overline{D}}|f(t,x)|\), and let

$$ \textrm{X}_{\lambda}= \biggl\{ x\in\textrm{X}: \biggl\vert \frac{x(t)-x(r)}{t-r} \biggr\vert \leq \lambda M \text{ for all } t,r \in(t_{k},t_{k+1}],t\neq r \biggr\} . $$

Then, it is easy to make a retraction \(\alpha_{\lambda}:\textrm{X} \rightarrow\textrm{X}_{\lambda}\).

Define an operator \(\widehat{\mathtt{T}}(x^{0}_{\ker },x,\lambda)\) by

$$ \begin{aligned} &\widehat{\mathtt{T}} \bigl(x^{0}_{\ker },x, \lambda \bigr) \\ &\quad = \left ( \begin{matrix} {x^{0}_{\ker} +\frac{1}{T} [ \int_{0}^{T}Pf (s,\alpha_{\lambda}\circ x(s) )\,ds+ \sum_{0\leq t_{k}< T}PI_{k} ( \alpha_{\lambda}\circ x(t_{k}) ) ]} \\ {\alpha_{\lambda}\circ x^{0}_{\ker }-\lambda L^{-1}_{p} [ \int_{0} ^{T}(I-P)f (s,\alpha_{\lambda} \circ x(s) )\,ds+\sum_{0\leq t_{k}< T}(I-P)I _{k} (\alpha_{\lambda}\circ x(t_{k}) ) ]} \\ {{}+\lambda [ \int_{0}^{t}f (s, \alpha_{\lambda}\circ x(s) )\,ds+\sum_{0\leq t_{k}< t}I_{k} ( \alpha_{ \lambda}\circ x(t_{k}) ) ]} \end{matrix} \right ). \end{aligned} $$
(18)

Since \(P:R^{n}\rightarrow \operatorname{Ker}(I-Q)\), it is easy to see that

$$ \frac{1}{T} \biggl[ \int_{0}^{T}Pf \bigl(s, x(s) \bigr)\,ds+\sum _{0\leq t_{k}< T}PI_{k} \bigl(x(t _{k}) \bigr) \biggr] \in \operatorname{Ker}(I-Q). $$

Also,

$$ \frac{1}{T} \biggl[ \int_{0}^{T}Pf \bigl(s,\alpha_{\lambda}\circ x(s) \bigr)\,ds+ \sum_{0\leq t_{k}< T}PI_{k} \bigl( \alpha_{\lambda}\circ x(t_{k}) \bigr) \biggr]\in \operatorname{Ker}(I-Q). $$

Let us consider the homotopy

$$\begin{aligned}& H \bigl(x^{0}_{\ker },x,\lambda \bigr)= \widehat{ \mathtt{T}} \bigl(x^{0}_{\ker },x, \lambda \bigr), \end{aligned}$$
(19)
$$\begin{aligned}& \bigl(x^{0}_{\ker },x,\lambda \bigr)\in \bigl(D \cap \operatorname{Ker}(I-Q)\times\widetilde{D} \times[0,1] \bigr), \end{aligned}$$
(20)

where \(\widetilde{D}=\{x\in X:x(t)\in D \text{ for all } t \in[0,T]\}\).

We claim that

$$ 0\notin(id-H) (\partial \bigl( \bigl(D\cap \operatorname{Ker}(I-Q)\times \widetilde{D} \bigr)\times[0,1] \bigr). $$
(21)

Suppose, on the contrary, that there exists \((\widehat{x}^{0}_{\ker }, \widehat{x},\widehat{\lambda})\in\partial((D\cap \operatorname{Ker}(I-Q)\times \widetilde{D})\times[0,1]\) such that \((id-H)(\widehat{x}^{0}_{\ker }, \widehat{x},\widehat{\lambda})=0\). Since \(\widehat{x}^{0}_{\ker } \in\partial D\) is contradictory to (\(H_{1}\)) and since \(\partial(D \cap \operatorname{Ker}(I-Q))\subset\partial D\), we have that \(\widehat{x}^{0}_{ \ker }\notin\partial(D\cap \operatorname{Ker}(I-Q))\). In other words, \(\widehat{x}\in\partial D\). Then (21) can be proved as follows.

(i) When \(\widehat{\lambda}=0\), by the definition of the set \(\textrm{X}_{\lambda}\) we have

$$ \textrm{X}_{0}= \biggl\{ x\in X: \biggl\vert \frac{x(t)-x(r)}{t-r} \biggr\vert \leq0 \text{ for all } t,r\in(t_{k},t_{k+1}],t \neq r \biggr\} . $$

Hence \(\alpha_{0}\circ x(t)\equiv\alpha_{0}\circ x(t_{k+1})\) for all \(t\in(t_{k},t_{k+1}]\). Since \((id-H)(\widehat{x}^{0}_{\ker}, \widehat{x},0)=0\), we have

$$ \left ( \begin{matrix} {\widehat{x}^{0}_{\ker }} \\ {\widehat{x}(t)} \end{matrix} \right ) = \left ( \begin{matrix} { \widehat{x}^{0}_{\ker } +\frac{1}{T} [ \int_{0}^{T}Pf (s,\alpha_{ \lambda}\circ x(s) )\,ds+\sum_{0\leq t_{k}< T}PI_{k} ( \alpha_{\lambda} \circ x(t_{k}) ) ]} \\ {\alpha_{0} \circ\widehat{x}^{0}_{\ker }} \end{matrix} \right ) . $$
(22)

This means that \(\widehat{x}(t)\equiv\widehat{x}(0)\) for all \(t\in[0,T]\). Taking \(\widehat{x}(t)=p\), we have \(\alpha_{0}\circ \widehat{x}^{0}_{\ker }=\widehat{x}(t)=p\). Consequently,

$$ \frac{1}{T} \biggl[ \int_{0}^{T}Pf \bigl(s,\alpha_{\lambda}\circ x(s) \bigr)\,ds+ \sum_{0\leq t_{k}< T}PI_{k} \bigl( \alpha_{\lambda}\circ x(t_{k}) \bigr) \biggr]=0, $$

and this is equivalent to \(g(p)=0\) by the definition of \(g(a)\). Notice that \(\widehat{x}\in\partial\widetilde{D}\) and \(\widetilde{D}=\{x \in D \text{ for all } t\in[0,T]\}\). Then there exists \(t_{0}\in[0,T]\) such that \(\widehat{x(t)}_{0}\in\partial D\). Since \(\widehat{x}(t)\equiv p\) for all \(t\in[0,T]\), we obtain that \(p\in\partial D\). Thus, we have \(p\in\partial D\) and \(g(p)=0\). It is contradictory to (\(H_{2}\)) because the Brouwer degree \(\operatorname{deg}(g,D,0) \neq0\).

(ii) When \(\widehat{\lambda}\in(0,1]\), as \(0=(id-H)(\widehat{x}^{0} _{\ker },\widehat{x},\widehat{\lambda})\), we have

$$\begin{aligned}& \left ( \begin{matrix} {\widehat{x}^{0}_{\ker }} \\ {\widehat{x}(t)} \end{matrix} \right ) \\& \quad = \left ( \begin{matrix} {\widehat{x}^{0}_{\ker } +\frac{1}{T} [ \int_{0}^{T}Pf (s, \alpha_{\widehat{\lambda}}\circ x(s) )\,ds+\sum_{0\leq t_{k}< T}PI_{k} ( \alpha_{\widehat{\lambda}}\circ x(t_{k}) ) ]} \\ {\alpha_{\widehat{\lambda}}\circ x^{0}_{\ker }-\widehat{\lambda} L ^{-1}_{p} [ \int_{0}^{T}(I-P)f (s,\alpha_{\widehat{\lambda}} \circ x(s) )\,ds+ \sum_{0\leq t_{k}< T}(I-P)I_{k} ( \alpha_{\widehat{\lambda}}\circ x(t _{k}) ) ]} \\ {{}+\widehat{\lambda} [ \int_{0}^{t}f (s,\alpha_{ \widehat{\lambda}}\circ x(s) )\,ds+\sum_{0\leq t_{k}< t}I_{k} ( \alpha_{\widehat{\lambda}}\circ x(t_{k}) ) ]} \end{matrix} \right ) . \end{aligned}$$

Thus

$$ \frac{1}{T} \biggl[ \int_{0}^{T}Pf \bigl(s,\alpha_{\widehat{\lambda}}\circ x(s) \bigr)\,ds+ \sum_{0\leq t_{k}< T}PI_{k} \bigl( \alpha_{\widehat{\lambda}}\circ x(t_{k}) \bigr) \biggr]=0 $$

and

$$ \begin{aligned}[b] \widehat{x}(t)={} & \alpha_{\widehat{\lambda}} \circ x^{0}_{\ker }- \widehat{\lambda} L^{-1}_{p} \biggl[ \int_{0}^{T}(I-P)f \bigl(s, \alpha_{\widehat{\lambda}} \circ x(s) \bigr)\,ds+\sum_{0\leq t_{k}< T}(I-P)I _{k} \bigl(\alpha_{\widehat{\lambda}}\circ x(t_{k}) \bigr) \biggr] \\ &{}+ \widehat{\lambda} \biggl[ \int_{0}^{t}f \bigl(s,\alpha_{\widehat{\lambda}}\circ x(s) \bigr)\,ds+ \sum_{0\leq t_{k}< t}I_{k} \bigl( \alpha_{\widehat{\lambda}}\circ x(t_{k}) \bigr) \biggr]. \end{aligned} $$
(23)

Note that

$$\begin{aligned}& \biggl\vert \frac{x(t)-x(r)}{t-r} \biggr\vert \\& \quad = \frac{1}{ \vert t-r \vert } \biggl\vert \widehat{\lambda} \int _{0}^{t}f \bigl(s,\alpha_{\widehat{\lambda}}\circ \widehat{x}(s) \bigr)\,ds- \widehat{\lambda} \int_{0}^{r}f \bigl(s,\alpha_{\widehat{\lambda}}\circ \widehat{x}(s) \bigr)\,ds \biggr\vert \\& \quad =\frac{1}{ \vert t-r \vert } \biggl\vert \widehat{\lambda} \int _{r}^{t}f \bigl(s,\alpha_{\widehat{\lambda}}\circ \widehat{x}(s) \bigr)\,ds \biggr\vert \\& \quad \leq \lambda M. \end{aligned}$$

By the definition of \(\textrm{X}_{\lambda}\) we obtain \(\widehat{x} \in\textrm{X}_{\widehat{\lambda}}\), which means that \(\alpha_{\widehat{\lambda}}\circ\widehat{x}=\widehat{x}\). Now we can rewrite equation (23) as

$$\begin{aligned} \widehat{x}(t) =& x^{0}_{\ker } - \widehat{ \lambda} L^{-1}_{p} \biggl[ \int _{0}^{T}(I-P)f \bigl(s, x(s) \bigr)\,ds+\sum _{0\leq t_{k}< T}(I-P)I_{k} \bigl(x(t_{k}) \bigr) \biggr] \\ &{}+\widehat{\lambda} \biggl[ \int_{0}^{t}f \bigl(s, x(s) \bigr)\,ds+\sum _{0\leq t_{k}< t}I _{k} \bigl(x(t_{k}) \bigr) \biggr]. \end{aligned}$$

By a similar discussion of equation (16) we can prove that \(\widehat{x}(t)\) is a solution of equation (10). By hypothesis (\(H_{1}\)) we know that \(\widehat{x}(t)\notin\partial\widetilde{D}\) for any \(t\in[0,T]\). This is a contradiction to \(\widehat{x}\in\partial \widetilde{D}\).

By (i) and (ii) we obtain that

$$ 0\notin(id-H) \bigl(\partial \bigl( \bigl(D\cap \operatorname{Ker}(I-Q) \bigr)\times \widetilde{D} \bigr)\times [0,1] \bigr). $$

Therefore, by the homotopy invariance and the theory of Brouwer degree we have

$$ \begin{aligned} &\operatorname{deg}\bigl(id-H \bigl(x^{0}_{\ker}, \cdot,1 \bigr), \bigl(D\cap \operatorname{Ker}(I-Q) \bigr)\times\widetilde{D},0 \bigr) \\ &\quad =\operatorname{deg}\bigl(id-H \bigl(x^{0}_{\ker},\cdot,0 \bigr), \bigl(D \cap \operatorname{Ker}(I-Q) \bigr)\times \widetilde{D},0 \bigr) \\ &\quad =\operatorname{deg}\bigl(g,D\cap \operatorname{Ker}(I-Q),0 \bigr)\neq0. \end{aligned} $$

This means that there exists \(\widehat{x}_{*}\in\widetilde{D}\) such that

$$ \left ( \begin{matrix} {\widehat{x}^{0}_{*\ker }} \\ {\widehat{x}_{*}(t)} \end{matrix} \right ) =\widehat{ T} \bigl(\widehat{x}^{0}_{*\ker }, \widehat{x} _{*}(t),1 \bigr). $$
(24)

Similarly to the proof in (ii), we get \(\widehat{x}_{*}\in\textrm{X} _{\lambda}\). Then

$$ { } \widehat{T} \bigl(\widehat{x}^{0}_{*\ker }, \widehat{x}_{*}(t),1 \bigr)= T \bigl(\widehat{x}^{0}_{*\ker }, \widehat{x}_{*}(t),1 \bigr). $$
(25)

By equations (24) and (25) we obtain that \(\widehat{x}_{*}\) is a fixed point of T in X. Thus, \(\widehat{x}_{*}\) is a solution of system (2) with boundary value condition \(x(T)=Qx(0)\). □

5 Numerical simulation

Example 1

Consider the system

$$ \begin{aligned} &\dot{x}=- \vert x \vert ^{2}x+(\sin\pi t,\cos\pi t)^{T}, \quad t\neq N, \\ &\Delta x= \biggl(\frac{1}{e}-1 \biggr)x,\quad t=N. \end{aligned} $$
(26)

Set

$$ Q= \left ( \begin{matrix} -1& 0 \\ 0& -1 \end{matrix} \right ) . $$

In this example, \(Q=-I\). System (26) has an antiperiodic solution (see Fig. 1).

Figure 1
figure 1

The antiperiodic solution of system (26). The green line is the trajectory of \(x(t)\) for \(t\in(0,1]\), the red line corresponds to the trajectory of \(Qx(t)\) for \(t\in(0,1]\)

Example 2

Consider the system

$$ \begin{aligned} &\dot{x}=- \vert x \vert ^{2}x+(\sin t,\cos t,1)^{T},\quad t\neq N, \\ &\Delta x= \biggl(\frac{1}{e}-1 \biggr)x, \quad t=N. \end{aligned} $$
(27)

Set

$$ Q= \left ( \begin{matrix} {\cos(2\pi-1)}& {-\sin(2\pi-1)} &0 \\ {\sin(2\pi-1)}& {\cos(2\pi-1)} &0 \\ 0 &0 &1 \end{matrix} \right ) . $$

Similarly to Example 1, system (26) has a \((Q,1)\)-affine-periodic solution., which is a quasi-periodic solution (see Fig. 2).

Figure 2
figure 2

The \((Q,T)\)-affine-periodic solution of system (27). The black line is the trajectory of \(x(t)\) for \(t\in(0,1]\), the red line corresponds to the trajectory of \(Qx(t)\) for \(t\in(0,1]\), and the green line corresponds to the trajectory of \(Q^{2}x(t)\) for \(t\in(0,1]\). It is easy to see that \(x(t)\) is a quasi-periodic solution of system (27)