1 Introduction

In this paper, we are concerned with the following evolutionary p-Laplacian under dynamic boundary condition:

$$\begin{aligned}& \frac{\partial u}{\partial t}=\operatorname {div}\bigl(\vert \nabla u\vert ^{p-2}\nabla u\bigr)-\overset{\rightarrow }{g}(u)\cdot\nabla u+f(u), \quad x\in \Omega, t>0, \end{aligned}$$
(1.1)
$$\begin{aligned}& \sigma u_{t}+\vert \nabla u\vert ^{p-2} \nabla u\cdot\nu=0, \quad x\in\partial \Omega, t>0, \end{aligned}$$
(1.2)
$$\begin{aligned}& u(x,0)=u_{0}(x), \quad x\in\Omega, \end{aligned}$$
(1.3)

where \(p>1\), \(\overset{\rightarrow}{g}:\mathbb{R}\to\mathbb{R}^{N}\), \(f:\mathbb{R}\to\mathbb{R}\), \(\Omega\subset\mathbb{R}^{N}\) is a bounded domain with smooth boundary Ω, and \(\nu:\partial\Omega\to\mathbb{R}^{N}\) is the outer unit normal vector.

The quasilinear parabolic problems with dynamic boundary conditions of type (1.1)-(1.3) arise in numerous areas such as heat conduction, chemical reactor theory, colloid chemistry and population growth, see [1, 2] and the references therein. Many reaction-diffusion equations under dynamic boundary conditions have been considered in the past years. An early study of problem (1.1)-(1.3) with \(p=2\) and \(\overset{\rightarrow}{g}=\vec{0}\) was carried out by Below and Mailly [3] who showed a complete result about the blow-up phenomena as well as the lower and upper bounds for the blow-up time. Moreover, some of the techniques were also applied to the porous medium equation with reaction. Later on, for the evolutionary p-Laplacian with \(p\ge2N/(N+2)\), where N is the dimension of the domain, Gal and Warma [4] considered the following equation without convection:

$$\frac{\partial u}{\partial t}-\operatorname {div}\bigl(\vert \nabla u\vert ^{p-2}\nabla u\bigr)+f(u)=g(x), \quad x\in \Omega, t>0, $$

coupled with dynamic boundary conditions. The well-posedness and the existence of a global attractor results were established. More recently, Mailly and Rault [2] studied the nonlinear convection problem (1.1)-(1.3) with \(p=2\) and proved the global existence and blow-up phenomena of local solutions. For other results about the solvability of quasilinear parabolic equations with dynamic boundary conditions, we refer the readers to [57], etc.

Throughout this paper, we suppose that the dissipativity condition holds

$$ \sigma>0, \quad \sigma\in C^{1}\bigl(\partial\Omega\times[0,+ \infty)\bigr), $$
(1.4)

and the functions in problem (1.1)-(1.3) are smooth

$$ f\in C^{1}(\mathbb{R}),\qquad f(s)\ge0 \quad \mbox{for } s\ge0,\qquad \overset{\rightarrow}{g}\in C^{1}\bigl(\mathbb{R},\mathbb{R}^{N} \bigr), $$
(1.5)

the initial data is non-negative and satisfies

$$ u_{0}\ge0,\quad u_{0}\in L^{\infty}(\Omega) \cap W^{1,p}(\Omega). $$
(1.6)

In Section 2 we develop the comparison principle for a regularized problem and the local existence of weak and strong solutions of problem (1.1)-(1.3). In Section 3 we derive the global existence of the strong solutions, while in Section 4 we prove the blow-up phenomenon of strong solutions by formulating a family of radially symmetric lower solutions.

2 Comparison principle and local existence

In this section, we use the regularization method and compactness theorems to prove the local existence of the solutions to problem (1.1)-(1.3).

Consider the following regularized problem:

$$\begin{aligned}& \frac{\partial u}{\partial t}=\operatorname {div}\biggl(\biggl(\frac{1}{n}+ \vert \nabla u\vert ^{2}\biggr)^{\frac {p-2}{2}}\nabla u \biggr) -\overset{\rightarrow}{g}(u_{+})\cdot\nabla u+f_{M}(u), \quad x\in \Omega, t>0, \end{aligned}$$
(2.1)
$$\begin{aligned}& \sigma u_{t}+\biggl(\frac{1}{n}+\vert \nabla u \vert ^{2}\biggr)^{\frac{p-2}{2}}\nabla u\cdot\nu=0, \quad x\in \partial\Omega, t>0, \end{aligned}$$
(2.2)
$$\begin{aligned}& u(x,0)=u_{0,n}(x), \quad x\in\Omega, \end{aligned}$$
(2.3)

where \(f_{M}(s)=\min\{f_{+}(s), M\}\), \(s_{+}=\max\{s,0\}\), \(M>0\), \(n\in \mathbb{Z}^{+}\), \(u_{0,n}\in C^{\infty}(\overline{\Omega})\) satisfies

$$\inf_{\Omega}u_{0}\le u_{0,n}\le\sup _{\Omega}u_{0}, \qquad \Vert u_{0,n}\Vert _{W^{1,p}}\le2\Vert u_{0}\Vert _{W^{1,p}}, \qquad \lim _{n\to\infty} \Vert u_{0,n}-u_{0}\Vert _{W^{1,p}}=0. $$

Since \(f,\overset{\rightarrow}{g}\in C^{1}\), we can verify that \(f_{M}\), \(\overset{\rightarrow}{g}(s_{+})\) are locally Lipschitz continuous.

Hereafter, we suppose that the regularized problem (2.1)-(2.3) has a classical solution \(u_{n,M}\in C^{2,1}(\overline{\Omega}\times[0,T_{n,M}))\) with the maximal existence time \(0< T_{n,M}\le+\infty\). Let \(Q_{T}=\overline{\Omega}\times(0,T)\) for \(T>0\) and define

$$\begin{aligned}& F_{n,M}[u]=F_{n,M}(u,\nabla u)=\operatorname {div}\biggl(\biggl( \frac{1}{n}+\vert \nabla u\vert ^{2}\biggr)^{\frac{p-2}{2}}\nabla u \biggr) -\overset{\rightarrow}{g}(u_{+})\cdot\nabla u+f_{M}(u), \\& B_{n}[u]=\sigma u_{t}+\biggl(\frac{1}{n}+\vert \nabla u\vert ^{2}\biggr)^{\frac{p-2}{2}}\nabla u\cdot \nu. \end{aligned}$$

Notice that, in the dynamic boundary condition, \(B_{n}[u]\) is nonlinear with respect to ∇u. First, we need the following comparison principles which are simple variations of the comparison principles in [8].

Lemma 2.1

Let \(u,v\in C^{2,1}(Q_{T})\cap C(\overline{Q}_{T})\) satisfying

$$\begin{aligned}& u_{t}-F_{n,M}[u] >v_{t}-F_{n,M}[v],\quad (x,t)\in Q_{T}, \\& B_{n}[u] >B_{n}[v], \quad (x,t)\in\partial\Omega \times(0,T), \\& u(x,0) >v(x,0), \quad x\in\overline{\Omega}. \end{aligned}$$

Then

$$u(x,t)>v(x,t), \quad (x,t)\in Q_{T}. $$

Proof

Suppose that there exists \((x_{0},t_{0})\in Q_{T}\) such that \(u(x_{0},t_{0})\le v(x_{0},t_{0})\). Let

$$t^{*}=\sup\bigl\{ \tau\in(0,T);u(x,t)>v(x,t), \forall(x,t)\in Q_{\tau}\bigr\} . $$

Then \(t^{*}\in(0,t_{0}]\subset(0,T)\) and \(\min_{\overline{Q}_{t^{*}}}\{u-v\}=0\). Thus, \(u-v\) attains its minimum 0 at some point \((x^{*},t^{*})\) with \(x^{*}\in\overline{\Omega}\). If \(x^{*}\in\Omega\), then

$$u=v,\qquad u_{t}\le v_{t},\qquad \nabla u=\nabla v, \qquad D^{2}u\ge D^{2}v \quad \mbox{at } \bigl(x^{*},t^{*}\bigr), $$

which contradicts \(u_{t}-F_{n,M}[u]>v_{t}-F_{n,M}[v]\). If \(x^{*}\in\partial\Omega\), then

$$u_{t}\le v_{t},\qquad \frac{\partial u}{\partial\nu}\le\frac{\partial v}{\partial\nu},\qquad \frac{\partial u}{\partial\mu_{i}}=\frac{\partial v}{\partial\mu_{i}} \quad \mbox{at } \bigl(x^{*},t^{*}\bigr), $$

where \(\frac{\partial}{\partial\mu_{i}}\), \(i=1,2,\dots,N-1\), are the tangential derivatives in the local coordinates at \((x^{*},t^{*})\). We can verify that

$$\biggl(\frac{1}{n}+\vert \nabla u\vert ^{2} \biggr)^{\frac{p-2}{2}}\nabla u\cdot\nu= \Biggl(\frac{1}{n}+\sum _{i=1}^{N-1}\biggl\vert \frac{\partial u}{\partial\mu _{i}} \biggr\vert ^{2}+\biggl\vert \frac{\partial u}{\partial\nu}\biggr\vert ^{2} \Biggr)^{\frac{p-2}{2}}\frac{\partial u}{\partial\nu}, $$

which is increasing with respect to \(\frac{\partial u}{\partial\nu}\) since \(p>1\). Therefore, \(B_{n}[u]\le B_{n}[v]\). We arrive at another contradiction. □

Using Lemma 2.1, we can prove the following comparison principle, which is similar to Theorem 2.2 in [8], but without the global one-side Lipschitz condition.

Lemma 2.2

Let \(u,v\in C^{2,1}(Q_{T})\cap C(\overline{Q}_{T})\) satisfying

$$\begin{aligned}& u_{t}-F_{n,M}[u] \ge v_{t}-F_{n,M}[v],\quad (x,t)\in Q_{T}, \\& B_{n}[u] \ge B_{n}[v], \quad (x,t)\in\partial\Omega \times(0,T), \\& u(x,0) \ge v(x,0),\quad x\in\overline{\Omega}. \end{aligned}$$

Then

$$u(x,t)\ge v(x,t),\quad (x,t)\in Q_{T}. $$

Proof

For any given \(T>0\), \(\varepsilon>0\), since \(u,v\in C(\overline{\Omega}\times[0,T])\), by the continuities and \(u(x,0)\ge v(x,0)\), there exists \(\delta=\delta_{\varepsilon}>0\) such that

$$u(x,t)>v(x,t)-\varepsilon,\quad x\in\overline{\Omega}, t\in (0,\delta]. $$

Notice that \(v\in C^{2,1}(\overline{\Omega}\times[\delta,T-\varepsilon])\), \(v_{+}(x,t)\in[0,\max_{\overline{Q}_{T}}v]\), and \(\overset{\rightarrow}{g}\in C^{1}([0,\max_{\overline{Q}_{T}}v])\). There exists a constant \(K>0\) such that

$$\begin{aligned}& \bigl\vert \overset{\rightarrow}{g}\bigl((v-s)_{+}\bigr)\cdot\nabla v- \overset{\rightarrow }{g}(v_{+})\cdot\nabla v\bigr\vert \le \sup _{\overline{\Omega}\times[\delta,T-\varepsilon]}\vert \nabla v\vert \cdot\bigl\vert \overset{ \rightarrow}{g}\bigl((v-s)_{+}\bigr)-\overset{\rightarrow}{g}(v_{+})\bigr\vert \le \frac{K}{2}s, \\& \bigl\vert f_{M}(v-s)-f_{M}(v)\bigr\vert \le \frac{K}{2}s,\quad s\ge0. \end{aligned}$$

Define \(\varphi=v-\varepsilon e^{(K+1)(t-\delta)}\). Thus,

$$\begin{aligned}& \begin{aligned} \varphi_{t}-F_{n,M}[\varphi]&\le v_{t}-(K+1)\varepsilon e^{(K+1)(t-\delta )}-F_{n,M}[v] +K \varepsilon e^{(K+1)(t-\delta)} \\ &< v_{t}-F_{n,M}[v]\le u_{t}-F_{n,M}[u],\quad (x,t)\in\Omega\times[\delta,T-\varepsilon], \end{aligned} \\& B_{n}[\varphi]=B_{n}[v]-(K+1)\sigma\varepsilon e^{(K+1)(t-\delta )}< B_{n}[v]\le B_{n}[u],\quad (x,t)\in\partial \Omega\times(\delta,T-\varepsilon), \\& \varphi(x,\delta)=v(x,\delta)-\varepsilon< u(x,\delta),\quad x\in \overline{\Omega}. \end{aligned}$$

Lemma 2.1 implies \(u(x,t)\ge\varphi(x,t)\) for \((x,t)\in\Omega\times[\delta_{\varepsilon},T-\varepsilon]\). Therefore, \(u(x,t)\ge\min\{v(x,t)-\varepsilon,v(x,t)-\varepsilon e^{(K+1)(t-\delta_{\varepsilon})}\}\) for \((x,t)\in\Omega\times(0,T-\varepsilon]\). By the arbitrariness of \(\varepsilon>0\), we deduce \(u(x,t)\ge v(x,t)\) for \((x,t)\in\Omega\times(0,T)\). □

Lemma 2.3

There exists at most one classical solution of problem (2.1)-(2.3).

Proof

Lemma 2.2 yields the uniqueness of classical solutions of problem (2.1)-(2.3). □

Lemma 2.4

The solution \(u_{n,M}\) of problem (2.1)-(2.3) satisfies

$$ \inf_{\Omega}u_{0}\le u_{n,M}(x,t)\le\sup_{\Omega}u_{0}+Mt, \quad (x,t)\in \overline{\Omega}\times(0,T_{n,M}). $$
(2.4)

Thus, the maximal existence time \(T_{n,M}=+\infty\).

Proof

For any given \(T\in(0,T_{n,M})\) and \(\varepsilon>0\), define \(\underline{u}_{\varepsilon}=\inf_{\Omega }u_{0}-\varepsilon-\varepsilon t\), \(\overline{u}_{\varepsilon}=\sup_{\Omega}u_{0}+\varepsilon +(M+\varepsilon)t\). Then

$$\begin{aligned}& \frac{\partial u_{n,M}}{\partial t}-F_{n,M}[u_{n,M}]=0>-\varepsilon \ge \frac{\partial\underline{u}_{\varepsilon}}{\partial t}-F_{n,M}[\underline{u}_{\varepsilon}], \\& B_{n}[u_{n,M}]=0>-\sigma\varepsilon=B_{n}[ \underline{u}_{\varepsilon}], \\& u_{n,M}(x,0)=u_{0,n}(x)>u_{0}(x)-\varepsilon\ge \underline{u}_{\varepsilon}. \end{aligned}$$

Lemma 2.1 implies \(u_{n,M}\ge\underline{u}_{\varepsilon}\). Since \(\varepsilon>0\) is arbitrary, we have \(u_{n,M}\ge\inf_{\Omega}u_{0}\). The proof of \(u_{n,M}\le\sup_{\Omega}u_{0}+Mt\) follows similarly. □

Lemma 2.5

For \(M_{1}\ge M_{2}>0\), there holds

$$u_{n,M_{1}}\ge u_{n,M_{2}},\quad x\in\Omega, t>0. $$

Proof

For any given \(T>0\), we see that \(u_{n,M_{1}}, u_{n,M_{2}}\in C^{2,1}(Q_{T})\cap C(\overline{Q}_{T})\) and \(f_{M_{1}}(s)\ge f_{M_{2}}(s)\) for \(s\in\mathbb{R}\). Thus,

$$\frac{\partial u_{n,M_{1}}}{\partial t}-F_{n,M_{2}}[u_{n,M_{1}}]\ge\frac {\partial u_{n,M_{1}}}{\partial t}-F_{n,M_{1}}[u_{n,M_{1}}]=0 =\frac{\partial u_{n,M_{2}}}{\partial t}-F_{n,M_{2}}[u_{n,M_{2}}]. $$

Using Lemma 2.2, we complete this proof. □

Lemma 2.6

There exist constants \(\delta_{0}, M_{0}>0\) independent of n, M such that

$$\sup_{n,M}u_{n,M}(x,t)\le\sup_{\Omega}u_{0}+M_{0} \delta_{0}, \quad x\in\overline{\Omega}, t\in(0,\delta_{0}]. $$

Proof

Let \(\underline{u}_{0}=\inf_{\Omega}u_{0}\) and \(\overline{u}_{0}=\sup_{\Omega}u_{0}\). Set \(M_{0}=2\max_{s\in\{\underline{u}_{0},\overline{u}_{0}\} }f(s)+1\) and define

$$h(t)=\max_{\underline{u}_{0}\le s\le\overline{u}_{0}+M_{0}t}\bigl\vert f(s)\bigr\vert . $$

Since \(f\in C^{1}([\underline{u}_{0}, \overline{u}_{0}+M_{0}])\), we see that h is Lipschitz continuous on \([0,1]\) and \(h(0)=\max_{s\in\{\underline{u}_{0},\overline{u}_{0}\}}f(s)< M_{0}\). Thus, there exists a constant \(0<\delta_{0}<1\) such that \(h(t)< M_{0}\) for all \(t\in[0,\delta_{0}]\). By Lemma 2.4, \(u_{n,M_{0}}\in[\underline{u}_{0}, \overline{u}_{0}+M_{0}t]\). Therefore,

$$ f\bigl(u_{n,M_{0}}(x,t)\bigr)\le h(t)< M_{0},\quad x\in \overline{\Omega}, t\in [0,\delta_{0}], $$
(2.5)

and

$$f_{M_{0}}\bigl(u_{n,M_{0}}(x,t)\bigr)=\min\bigl\{ f \bigl(u_{n,M_{0}}(x,t)\bigr),M_{0}\bigr\} =f\bigl(u_{n,M_{0}}(x,t) \bigr),\quad (x,t)\in\overline{\Omega}\times(0,\delta_{0}]. $$

If \(M'\le M_{0}\), Lemma 2.5 implies

$$u_{n,M'}\le u_{n,M_{0}}\le\sup_{\Omega}u_{0}+M_{0} \delta_{0}, \quad (x,t)\in\overline{\Omega}\times(0,\delta_{0}]. $$

If \(M'>M_{0}\), since \(u_{n,M'}\in C(\overline{Q}_{\delta_{0}})\) and \(u_{n,M'}(x,0)=u_{0,n}(x)\in[\underline{u}_{0}, \overline{u}_{0}]\), we have

$$f\bigl(u_{n,M'}(x,0)\bigr)\le h(0)< M_{0},\quad x\in\overline{\Omega}, $$

and there exists a constant \(\delta_{M'}>0\) such that

$$ f\bigl(u_{n,M'}(x,t)\bigr)< M_{0}, \quad (x,t)\in \overline{\Omega}\times(0,\delta_{M'}]. $$
(2.6)

Thus,

$$f_{M_{0}}\bigl(u_{n,M'}(x,t)\bigr)=f\bigl(u_{n,M'}(x,t) \bigr)=f_{M'}\bigl(u_{n,M'}(x,t)\bigr),\quad (x,t)\in\overline{\Omega}\times(0,\delta_{M'}]. $$

We see that \(u_{n,M_{0}}\), \(u_{n,M'}\) are two classical solutions of problem (2.1)-(2.3) with \(M=M_{0}\) on \(\overline{\Omega}\times(0,\delta_{M'}]\). According to the uniqueness, Lemma 2.3, we have

$$u_{n,M_{0}}(x,t)=u_{n,M'}(x,t), \quad (x,t)\in\overline{\Omega}\times (0, \delta_{M'}]. $$

By the continuity of \(u_{n,M'}(x,t)\) and inequality (2.5), we can take \(\delta_{M'}=\delta_{0}\) in inequality (2.6). Then we have

$$u_{n,M'}(x,t)=u_{n,M_{0}}(x,t)\le\sup_{\Omega}u_{0}+M_{0} \delta_{0},\quad (x,t)\in\overline{\Omega}\times(0,\delta_{0}]. $$

We arrive at a locally uniform bound of \(u_{n,M}\). □

Remark

Lemma 2.4 shows that \(u_{n,M}\le\sup_{\Omega}u_{0}+Mt\). However, the family \(\{\sup_{\Omega}u_{0}+Mt\}_{M>0}\) is not uniformly bounded on any interval \((0,\delta]\), \(\delta>0\). Lemma 2.6 provides the locally uniform bound of \(u_{n,M}\).

Next, we derive some estimates on the solution \(u_{n,M}\).

Lemma 2.7

Suppose that σ does not depend on time. For any given \(T>0\), \(M>0\), there exists a constant \(C=C(M,T)\) independent of n such that

$$\int_{\Omega}u_{n,M}^{2}(x,t)\,dx,\qquad \int_{\partial\Omega} \sigma u_{n,M}^{2}(x,t)\,dS, \qquad \int_{Q_{T}}\vert \nabla u_{n,M}\vert ^{p} \,dx\,dt \le C,\quad t\in(0,T). $$

Moreover, if \(T=\delta_{0}\) (the constant in Lemma  2.6), then the constant \(C=C(\delta_{0})\) is independent of n, M.

Proof

We write \(u=u_{n,M}\) in this proof for the sake of convenience. Since \(u\in C^{2,1}(Q_{T})\cap C(\overline{Q}_{T})\), multiplying equation (2.1) by u and integrating by parts over \(Q_{\tau}\), \(\tau\in(0,T]\), we have

$$\begin{aligned} &\int_{Q_{\tau}}uu_{t} \,dx\,dt+\int _{Q_{\tau}}\biggl(\frac{1}{n}+\vert \nabla u\vert ^{2}\biggr)^{\frac{p-2}{2}}\vert \nabla u\vert ^{2}\,dx\,dt \\ &\qquad {}-\int_{0}^{\tau}\int _{\partial\Omega}u\biggl(\frac{1}{n}+\vert \nabla u\vert ^{2}\biggr)^{\frac{p-2}{2}}\nabla u\cdot\nu\,dS\,dt \\ &\quad =-\int_{Q_{\tau}}\bigl(\overset{\rightarrow}{g}(u_{+})\cdot \nabla u\bigr)u \,dx\, dt+\int_{Q_{\tau}}f_{M}(u)u \,dx \,dt. \end{aligned}$$

Using the dynamic boundary condition (2.2), we conclude

$$\begin{aligned} &\int_{Q_{\tau}}uu_{t} \,dx\,dt+\int _{Q_{\tau}}\biggl(\frac{1}{n}+\vert \nabla u\vert ^{2}\biggr)^{\frac{p-2}{2}}\vert \nabla u\vert ^{2}\,dx\,dt +\int_{0}^{\tau}\int _{\partial\Omega}\sigma uu_{t} \,dS\,dt \\ &\quad =-\int_{Q_{\tau}}\bigl(\overset{\rightarrow}{g}(u_{+})\cdot \nabla u\bigr)u \,dx\, dt+\int_{Q_{\tau}}f_{M}(u)u \,dx \,dt. \end{aligned}$$

That is,

$$\begin{aligned} &\frac{1}{2}\int_{\Omega}u^{2}(x, \tau)\,dx +\int_{Q_{\tau}}\biggl(\frac{1}{n}+\vert \nabla u \vert ^{2}\biggr)^{\frac{p-2}{2}}\vert \nabla u\vert ^{2}\, dx\,dt +\frac{1}{2}\int_{\partial\Omega}\sigma u^{2}(x,\tau)\,dS \\ &\quad =\frac{1}{2}\int_{\Omega}u_{0,n}^{2}(x) \,dx+\frac{1}{2}\int_{\partial \Omega }\sigma u_{0,n}^{2}(x) \,dS -\int_{Q_{\tau}}\bigl(\overset{\rightarrow}{g}(u_{+})\cdot\nabla u \bigr)u \,dx\, dt+\int_{Q_{\tau}}f_{M}(u)u \,dx\,dt. \end{aligned}$$

Notice that \(u_{0,n}\le\sup_{\Omega}u_{0}\),

$$\biggl\vert \int_{Q_{\tau}}\bigl(\overset{\rightarrow}{g}(u_{+}) \cdot\nabla u\bigr)u \, dx\,dt \biggr\vert \le \frac{1}{4}\int _{Q_{\tau}} \vert \nabla u\vert ^{p} \,dx\,dt+C\int _{Q_{\tau}}\bigl(\bigl\vert \overset {\rightarrow}{g}(u_{+})\bigr\vert u\bigr)^{\frac{p}{p-1}}\,dx\,dt, $$

and

$$\begin{aligned} &\vert \nabla u\vert ^{p}\le\biggl(\frac{1}{n}+\vert \nabla u\vert ^{2}\biggr)^{\frac{p-2}{2}}\vert \nabla u\vert ^{2},\quad p\ge2, \\ &\vert \nabla u\vert ^{p}\le2^{\frac{2-p}{2}}\biggl( \frac{1}{n}+\vert \nabla u\vert ^{2}\biggr)^{\frac{p-2}{2}}\vert \nabla u\vert ^{2}+\biggl(\frac{1}{n} \biggr)^{\frac{p}{2}} \\ &\hphantom{\vert \nabla u\vert ^{p}} \le2\biggl(\frac{1}{n}+\vert \nabla u\vert ^{2}\biggr)^{\frac{p-2}{2}}\vert \nabla u\vert ^{2}+1, \quad 1< p< 2. \end{aligned}$$

Lemma 2.4 implies \(\vert u\vert \le\sup_{\Omega }u_{0}+MT\) for \((x,t)\in Q_{T}\). Therefore,

$$\int_{\Omega}u^{2}(x,t)\,dx,\qquad \int_{\partial\Omega} \sigma u^{2}(x,t)\,dS, \qquad \int_{Q_{T}}\vert \nabla u\vert ^{p} \,dx\,dt\le C(M,T). $$

If \(T=\delta_{0}\), Lemma 2.6 shows \(\vert u\vert \le\sup_{\Omega}u_{0}+M_{0}\delta_{0}\) for \((x,t)\in Q_{\delta_{0}}\), which is a uniform bound independent of n, M. □

Lemma 2.8

Suppose that σ does not depend on time and \(p\ge2\). For any given \(T>0\), \(M>0\), there exists a constant \(C=C(M,T)\) independent of n such that

$$\int_{\Omega} \vert \nabla u_{n,M}\vert ^{p} \,dx,\qquad \int_{Q_{T}} \biggl\vert \frac{\partial u_{n,M}}{\partial t} \biggr\vert ^{2}\,dx\,dt, \qquad \int_{0}^{T} \int_{\Omega}\sigma \biggl\vert \frac{\partial u_{n,M}}{\partial t} \biggr\vert ^{2}\,dS\,dt \le C. $$

Moreover, if \(T=\delta_{0}\) (the constant in Lemma  2.6), then the constant \(C=C(\delta_{0})\) is independent of n, M.

Proof

We write \(u=u_{n,M}\) in this proof for the sake of convenience. Since \(f_{M}\), \(g(s_{+})\) are Lipschitz continuous, the classical regularity results in [9] imply that \(u_{t}\in C^{1,0}(\overline{\Omega}\times(0,T))\). Multiplying equation (2.1) by \(u_{t}\) and integrating over \(Q_{\tau}\), we have

$$\begin{aligned} &\int_{Q_{\tau}}u_{t}^{2}\,dx\,dt+ \int_{Q_{\tau}}\biggl(\frac{1}{n}+\vert \nabla u\vert ^{2}\biggr)^{\frac{p-2}{2}}\nabla u\cdot\nabla u_{t} \,dx\,dt +\int_{0}^{\tau}\int_{\partial\Omega} \sigma u_{t}^{2}\,dS\,dt \\ &\quad =-\int_{Q_{\tau}}\bigl(\overset{\rightarrow}{g}(u_{+})\cdot \nabla u\bigr)u_{t} \, dx\,dt+\int_{Q_{\tau}}f_{M}(u)u_{t} \,dx\,dt. \end{aligned}$$

Next, we show that

$$\begin{aligned} &\int_{Q_{\tau}}\biggl(\frac{1}{n}+\vert \nabla u\vert ^{2}\biggr)^{\frac{p-2}{2}}\nabla u\cdot \nabla u_{t} \,dx\,dt \\ &\quad =\int_{Q_{\tau}}\frac{1}{2}\frac{\partial}{\partial t} \int_{0}^{\vert \nabla u(x,t)\vert ^{2}}\biggl(s+\frac {1}{n} \biggr)^{\frac{p-2}{2}}\,ds\,dx\,dt \\ &\quad =\int_{Q_{\tau}} \frac{1}{p}\frac{\partial}{\partial t} \biggl(\biggl(\frac {1}{n}+\bigl\vert \nabla u(x,t)\bigr\vert ^{2}\biggr)^{\frac{p}{2}}-\biggl( \frac{1}{n}\biggr)^{\frac{p}{2}} \biggr)\,dx\,dt \\ &\quad =\frac{1}{p}\int_{\Omega}\biggl( \frac{1}{n}+\bigl\vert \nabla u(x,\tau)\bigr\vert ^{2} \biggr)^{\frac{p}{2}}\,dx- \frac{1}{p}\int_{\Omega}\biggl(\frac{1}{n}+\bigl\vert \nabla u_{0,n}(x)\bigr\vert ^{2}\biggr)^{\frac{p}{2}}\,dx \\ &\quad \ge\frac{1}{p}\int_{\Omega}\bigl\vert \nabla u(x,\tau)\bigr\vert ^{p} \,dx -\frac{1}{p}2^{\frac{p}{2}}\int_{\Omega} \vert \nabla u_{0,n}\vert ^{p} \,dx-\frac {1}{p}2^{\frac{p}{2}}\vert \Omega \vert . \end{aligned}$$

Young’s inequality yields

$$\begin{aligned} &\biggl\vert -\int_{Q_{\tau}}\bigl(\overset{ \rightarrow}{g}(u_{+})\cdot\nabla u\bigr)u_{t} \,dx\,dt \biggr\vert \le \frac{1}{4}\int_{Q_{\tau}}u_{t}^{2}\,dx \,dt+\int_{Q_{\tau}}\bigl\vert \overset {\rightarrow}{g}(u_{+})\bigr\vert ^{2}\vert \nabla u\vert ^{2}\,dx\,dt \\ &\hphantom{\biggl\vert -\int_{Q_{\tau}}\bigl(\overset{ \rightarrow}{g}(u_{+})\cdot\nabla u\bigr)u_{t} \,dx\,dt \biggr\vert }\le\frac{1}{4}\int_{Q_{\tau}}u_{t}^{2} \,dx\,dt+C(M,T)\int_{Q_{\tau}} \vert \nabla u\vert ^{p} \,dx\,dt,\quad p\ge2, \\ &\biggl\vert \int_{Q_{\tau}}f_{M}(u)u_{t} \,dx\,dt \biggr\vert \le\frac{1}{4}\int_{Q_{\tau}}u_{t}^{2} \,dx\,dt+\int_{Q_{\tau}}f_{M}^{2}(u)\,dx\,dt. \end{aligned}$$

We conclude the estimate. □

Now, we define the following two types of weak solutions of problem (1.1)-(1.3).

Definition 2.1

A function \(u\in L^{p}((0,T);W^{1,p}(\Omega))\) is called a local weak solution of problem (1.1)-(1.3) if the integral equality

$$\begin{aligned} &{-}\int_{\Omega}u_{0}\varphi\,dx-\int _{Q_{T}}u\varphi_{t} \,dx\,dt+\int_{Q_{T}} \vert \nabla u\vert ^{p-2}\nabla u\cdot\nabla\varphi\,dx\,dt -\int _{0}^{T}\int_{\partial\Omega}u(\sigma \varphi)_{t} \,dS\,dt \\ &\quad =-\int_{Q_{T}}\bigl(\overset{\rightarrow}{g}(u) \cdot\nabla u\bigr)\varphi\,dx\, dt+\int_{Q_{T}}f(u)\varphi\,dx \,dt \end{aligned}$$
(2.7)

holds for any \(\varphi\in C^{\infty}(\overline{Q}_{T})\) that satisfies \(\varphi(x,T)=0\) for \(x\in\overline{\Omega}\), \(\varphi(x,0)=0\) for \(x\in \partial\Omega\).

Definition 2.2

A function \(u\in L^{p}((0,T);W^{1,p}(\Omega))\) is called a local strong solution of problem (1.1)-(1.3) if \(u_{t}\in L^{2}(Q_{T})\), u is the a.e. limit function of a subsequence \(\{u_{n_{k},M_{k}}\}\) of classical solutions to the regularized problem (2.1)-(2.3), and the integral equality (2.7) holds for any \(\varphi\in C^{\infty}(\overline{Q}_{T})\) that satisfies \(\varphi(x,T)=0\) for \(x\in\overline{\Omega}\), \(\varphi(x,0)=0\) for \(x\in \partial\Omega\).

Theorem 2.1

Suppose that σ does not depend on time. Problem (1.1)-(1.3) admits at least one local weak solution.

Proof

For any \(T>0\), \(\varphi\in C^{\infty}(\overline{Q}_{T})\) that satisfies \(\varphi(x,T)=0\) for \(x\in\overline{\Omega}\), \(\varphi(x,0)=0\) for \(x\in \partial\Omega\), multiplying (2.1) by φ, integrating over \(Q_{T}\), we have

$$\begin{aligned} &\int_{Q_{T}}\frac{\partial u_{n,M}}{\partial t}\varphi\,dx\,dt +\int _{Q_{T}}\biggl(\frac{1}{n}+\vert \nabla u_{n,M} \vert ^{2}\biggr)^{\frac{p-2}{2}}\nabla u_{n,M}\cdot \nabla\varphi\,dx\,dt \\ &\qquad {}-\int_{0}^{T}\int_{\partial\Omega} \biggl(\frac{1}{n}+\vert \nabla u_{n,M}\vert ^{2} \biggr)^{\frac{p-2}{2}}\nabla u_{n,M}\cdot\nu\varphi\,dS\,dt \\ &\quad =-\int_{Q_{T}}\bigl(\overset{\rightarrow}{g} \bigl((u_{n,M})_{+}\bigr)\cdot\nabla u_{n,M}\bigr)\varphi\,dx\,dt +\int_{Q_{T}}f_{M}(u_{n,M})\varphi\,dx\,dt. \end{aligned}$$

By the dynamic boundary condition (2.2), we obtain

$$\begin{aligned} &-\int_{0}^{T}\int_{\partial\Omega} \biggl(\frac{1}{n}+\vert \nabla u_{n,M}\vert ^{2} \biggr)^{\frac{p-2}{2}}\nabla u_{n,M}\cdot\nu\varphi\,dS\,dt \\ &\quad =\int_{0}^{T}\int_{\partial\Omega} \sigma\frac{\partial u_{n,M}}{\partial t}\varphi\,dS\,dt =-\int_{0}^{T} \int_{\partial\Omega}u_{n,M}(\sigma\varphi)_{t} \,dS \,dt. \end{aligned}$$

Thus,

$$\begin{aligned} &{-}\int_{\Omega}u_{0,n}\varphi\,dx-\int _{Q_{T}}u_{n,M}\varphi_{t} \,dx\,dt +\int _{Q_{T}}\biggl(\frac{1}{n}+\vert \nabla u_{n,M} \vert ^{2}\biggr)^{\frac{p-2}{2}}\nabla u_{n,M}\cdot \nabla\varphi\,dx\,dt \\ &\quad =\int_{0}^{T}\int_{\partial\Omega}u_{n,M}( \sigma\varphi)_{t} \,dS\,dt -\int_{Q_{T}}\bigl( \overset{\rightarrow}{g}(u_{n,M})\cdot\nabla u_{n,M}\bigr)\varphi \,dx\,dt+\int_{Q_{T}}f_{M}(u_{n,M})\varphi \,dx\,dt. \end{aligned}$$

By the uniform estimates in Lemma 2.6 and Lemma 2.7, there exist a subsequence \(\{u_{n_{k},M_{k}}\}\) (\(n_{k}\to\infty\), \(M_{k}\to \infty \), as \(k\to\infty\)) and a function \(u\in L^{p}((0,\delta_{0});W^{1,p}(\Omega))\) such that \(u_{n_{k},M_{k}}\) converges weakly to u in \(L^{2}(Q_{\delta_{0}})\), \(\nabla u_{n_{k},M_{k}}\) converges weakly to ∇u in \(L^{p}(Q_{\delta_{0}})\), and \(u_{n_{k},M_{k}}\) converges weakly to u in \(L^{p}(\partial\Omega \times (0,\delta_{0}))\) in the sense of trace. Hence the above integral equality converges to (2.7) for \(T=\delta_{0}\) and u is a local weak solution to problem (1.1)-(1.3). □

Theorem 2.2

Suppose that σ does not depend on time and \(p\ge2\). Problem (1.1)-(1.3) admits at least one local strong solution.

Proof

By the uniform estimates in Lemma 2.6, Lemma 2.7, and Lemma 2.8, the norms \(\Vert u_{n,M}\Vert _{H^{1}(Q_{\delta_{0}})}\), \(\Vert \nabla u_{n,M}\Vert _{L^{p}(Q_{\delta _{0}})}\) are uniformly bounded. There exist a subsequence \(\{u_{n_{k},M_{k}}\}\) (\(n_{k}\to\infty\), \(M_{k}\to \infty \), as \(k\to\infty\)) and a function \(u\in L^{p}((0,\delta_{0});W^{1,p}(\Omega))\), \(u_{t}\in L^{2}(Q_{\delta_{0}})\) such that \(\{u_{n_{k},M_{k}}\}\) converges weakly to u in \(H^{1}(Q_{\delta_{0}})\), \(\nabla u_{n_{k},M_{k}}\) converges weakly to ∇u in \(L^{p}(Q_{\delta_{0}})\). Hence \(u_{n_{k},M_{k}}\to u\) almost everywhere and the integral equality (2.7) holds. □

Remark

For any given \(M>0\), by the estimates in Lemma 2.7 and Lemma 2.8, using the diagonal procedure, we can choose a subsequence \(\{u_{n_{k},M}\} \) (\(\{n_{k}\}\) might depend on M) and a function \(u_{M}\) such that \(u_{n_{k},M}\) converges to \(u_{M}\) on \(Q_{T}\) for any \(T>0\) in the manner stated in the proof of Theorem 2.2. Furthermore, we can verify that \(u_{M}\) is the global strong solution to the following equation:

$$\frac{\partial u}{\partial t}=\operatorname {div}\bigl(\vert \nabla u\vert ^{p-2}\nabla u\bigr)-\overset{\rightarrow }{g}(u)\cdot\nabla u+f_{M}(u) $$

coupled with the initial-boundary value conditions (1.2)-(1.3). Using the diagonal procedure again, we can choose a subsequence \(\{n_{k}\} \) independent of M and then choose \(u_{M}\) such that \(u_{n_{k},M}\) converges to \(u_{M}\) for any \(M\in \mathbb{Z}^{+}\) in the same manner. Lemma 2.5 implies \(u_{n_{k},M_{1}}\ge u_{n_{k},M_{2}}\) for \(M_{1}\ge M_{2}\). Thus, \(\{u_{M}\}_{M\in\mathbb{Z}^{+}}\) is monotone with respect to M. Define

$$T^{*}=\sup\Bigl\{ T>0;\sup_{M\in\mathbb{Z}^{+}}\sup_{(x,t)\in\overline{\Omega}\times (0,T)}u_{M}(x,t)< \infty\Bigr\} , $$

and

$$u(x,t)=\sup_{M\in\mathbb{Z}^{+}}u_{M}(x,t), \quad (x,t)\in\overline{\Omega}\times\bigl(0,T^{*}\bigr). $$

Lemma 2.6 shows \(T^{*}\ge\delta_{0}\). Similar to the proof of Theorem 2.1 and Theorem 2.2, we can prove that u is a strong solution to problem (1.1)-(1.3) with maximal existence time \(T^{*}\).

3 Global existence

In this section, we study the global existence of local strong solutions to problem (1.1)-(1.3) defined in Section 2. We need to find an appropriate upper-solution to the regularized problem (2.1)-(2.3) which is independent of n, M and exists globally. If \(p=2\), the p-Laplacian is reduced to Laplacian, so we only consider \(p>2\) in this section.

Lemma 3.1

Let \(\alpha=\frac{p-1}{p-2}\), \(p>2\), \(K>0\), \(\eta\in C^{1}([0,+\infty))\). For a fixed integer \(1\le j\le N\), define \(\underline{x}_{j}=\min_{\overline{\Omega}}x_{j}\), \(\overline{x}_{j}=\max_{\overline{\Omega}}x_{j}\), and

$$U(x,t)=\frac{1}{\alpha}\bigl(Ke^{\eta(t)}+x_{j}-\overline{x}_{j}\bigr)^{\alpha},\quad x\in\overline{\Omega}, t\ge0. $$

Then U is an upper solution of the regularized problem (2.1)-(2.3) provided

$$\begin{aligned}& Ke^{\eta(0)}+\underline{x}_{j}-\overline{x}_{j}\ge1,\qquad \frac{1}{\alpha}\bigl(Ke^{\eta(0)}+\underline{x}_{j}-\overline{x}_{j}\bigr)^{\alpha}\ge\sup_{\Omega}u_{0}, \\& \eta'(t)\ge\alpha2^{p}, \qquad \sigma(x,t)\eta'(t) \ge2^{p},\quad x\in \partial\Omega, t\ge0, \end{aligned}$$

and

$$g_{j}(s)s^{\frac{1}{p-1}}\ge f(s),\qquad s\ge\frac{1}{\alpha} \bigl(Ke^{\eta(0)}+\underline{x}_{j}-\overline{x}_{j} \bigr)^{\alpha}. $$

Proof

By a simple computation, we have

$$\begin{aligned} &\operatorname {div}\biggl(\biggl(\frac{1}{n}+\vert \nabla u \vert ^{2}\biggr)^{\frac{p-2}{2}}\nabla u\biggr) \\ &\quad =\biggl( \frac{1}{n}+\vert \nabla u\vert ^{2}\biggr)^{\frac{p-2}{2}}\Delta u +(p-2) \biggl(\frac{1}{n}+\vert \nabla u\vert ^{2}\biggr)^{\frac{p-2}{2}-1}\frac{\partial u}{\partial x_{i}}\frac{\partial u}{\partial x_{j}} \frac{\partial^{2} u}{\partial x_{i}\,\partial x_{j}}. \end{aligned}$$

Notice that \(\alpha>1\) and \((\alpha-1)(p-1)=\alpha\). We show that

$$\begin{aligned}& \vert \nabla U\vert =\frac{\partial U}{\partial x_{j}}=\bigl(Ke^{\eta (t)}+x_{j}- \overline{x}_{j}\bigr)^{\alpha-1}\ge1, \\& U_{t}=\bigl(Ke^{\eta(t)}+x_{j}-\overline{x}_{j}\bigr)^{\alpha-1}Ke^{\eta(t)}\eta '(t)\ge \bigl(Ke^{\eta(t)}+x_{j}-\overline{x}_{j} \bigr)^{\alpha}\eta'(t), \\& \biggl\vert \biggl(\frac{1}{n}+\vert \nabla U\vert ^{2}\biggr)^{\frac{p-2}{2}}\nabla U\cdot\nu\biggr\vert \le 2^{\frac{p-2}{2}}\vert \nabla U\vert ^{p-1} \le2^{p}\bigl(Ke^{\eta(t)}+x_{j}-\overline{x}_{j}\bigr)^{\alpha}, \\& \operatorname {div}\biggl(\biggl(\frac{1}{n}+\vert \nabla U\vert ^{2}\biggr)^{\frac{p-2}{2}}\nabla U\biggr) \le2^{\frac{p-2}{2}}\vert \nabla U\vert ^{p-2}\Delta U+(p-2) \max\bigl\{ 2^{\frac {p-2}{2}-1},1\bigr\} \vert \nabla U\vert ^{p-2} \frac{\partial^{2} U}{\partial x_{j}^{2}} \\& \hphantom{\operatorname {div}\biggl(\biggl(\frac{1}{n}+\vert \nabla U\vert ^{2}\biggr)^{\frac{p-2}{2}}\nabla U\biggr)}\le\alpha2^{p}\bigl(Ke^{\eta(t)}+x_{j}- \overline{x}_{j}\bigr)^{\alpha-1}. \end{aligned}$$

Thus,

$$\begin{aligned}& B_{n}[U]=\sigma U_{t}-\biggl(\frac{1}{n}+\vert \nabla U\vert ^{2}\biggr)^{\frac{p-2}{2}}\nabla U\cdot \nu \ge0, \\& U_{t}-F_{n,M}[U]=U_{t}-\operatorname {div}\biggl(\biggl(\frac{1}{n}+\vert \nabla U\vert ^{2} \biggr)^{\frac{p-2}{2}}\nabla U\biggr) +\overset{\rightarrow}{g}(U)\cdot \nabla U-f(U) \\& \hphantom{U_{t}-F_{n,M}[U]} \ge g_{j}(U) (\alpha U)^{\frac{1}{p-1}}-f(U)\ge0,\quad x \in\Omega, t>0, \end{aligned}$$

and

$$U(x,0)=\frac{1}{\alpha}\bigl(Ke^{\eta(0)}+x_{j}-\overline{x}_{j}\bigr)^{\alpha}\ge \sup_{\Omega}u_{0} \ge u_{0,n}(x), \quad x\in\overline{\Omega}. $$

Lemma 2.2 implies that \(U(x,t)\) is an upper solution of problem (2.1)-(2.3). □

Now we give some conditions on the functions f, g, and σ, which ensure the global existence of local solutions.

Theorem 3.1

Suppose \(p>2\), \((\inf_{x\in\partial\Omega}\sigma(x,\cdot ))^{-1}\in L_{\mathrm{loc}}^{1}([0,+\infty))\), there exist an integer \(1\le j\le N\) and a constant \(M>1\) such that

$$g_{j}(s)s^{\frac{1}{p-1}}\ge f(s), \quad s\ge M. $$

Then the strong solution of problem (1.1)-(1.3) is a global solution.

Proof

Take \(K=\max\{1,(\alpha\sup_{\Omega}u_{0})^{\frac{1}{\alpha}}, (\alpha M)^{\frac{1}{\alpha}}\}+\overline{x}_{j}-\underline{x}_{j}\), and define

$$\eta(t)=2^{p}\int_{0}^{t} \Bigl(\inf _{x\in\partial\Omega}\sigma(x,\tau ) \Bigr)^{-1}\,d\tau+ \alpha2^{p}t, $$

where α, \(\overline{x}_{j}\), \(\underline{x}_{j}\) are the constants defined in Lemma 3.1. Thus, \(U(x,t)=\frac{1}{\alpha}(Ke^{\eta(t)}+x_{j}-\overline{x}_{j})^{\alpha}\) is an upper solution to the regularized problem (2.1)-(2.3) for any \(n\in\mathbb{Z}^{+}\) and \(M>0\). That is, \(u_{n,M}(x,t)\le U(x,t)\) for \(x\in\overline{\Omega}\) and \(t\ge0\). According to the definition of strong solution, we have \(u(x,t)\le U(x,t)\). Hence u does not blow up in finite time. □

4 Blow-up

In this section, we investigate the blow-up phenomenon of problem (1.1)-(1.3). We need to construct a family of lower solutions of the regularized problem (2.1)-(2.3) whose supremum blows up in finite time.

Lemma 4.1

Suppose that \(p>2\), Ω is a convex domain, and there exist constants \(C_{1}, C_{2}>0\) such that

$$f(s)\ge C_{1}s^{p-1}, \qquad \bigl\vert \overset{\rightarrow}{g}(s) \bigr\vert \le C_{2}s^{p-2}, \quad s\ge0. $$

Choose \(x_{0}\in\Omega\) with \(B_{r}(x_{0})\subset\Omega\), \(r>0\). For \(A,B>0\) and \(\varphi_{M}\in C^{1}([0,+\infty))\), define

$$v_{M}(x,t)=\bigl(A-B\vert x-x_{0}\vert ^{2} \bigr)\varphi_{M}(t), \quad x\in\overline{\Omega}, t\ge0. $$

Then the function \(v_{M}\) is a lower solution of the regularized problem (2.1)-(2.3) provided

$$\begin{aligned}& A\ge2Bd^{2}, \qquad 2Bd\varphi_{M}(0)\ge1,\qquad A\varphi_{M}(0) \le\inf_{\Omega}u_{0}, \qquad C_{1}\bigl(A \varphi_{M}(t)\bigr)^{p-1}\le M, \\& \varphi_{M}'\ge0, \qquad \sigma A\varphi_{M}' \le(2Br)^{p-1}\delta\varphi_{M}^{p-1},\qquad A \varphi_{M}'\le K\varphi_{M}^{p-1}, \end{aligned}$$

where \(d=\sup_{\Omega} \vert x-x_{0}\vert \), \(\delta=\inf_{\partial\Omega}\frac{x-x_{0}}{\vert x-x_{0}\vert }\cdot\nu >0\) (by the convexity of Ω), and

$$K=\frac{1}{2}C_{1}\biggl(\frac{1}{2}A \biggr)^{p-1}-2^{p}(2B)^{p-1}d^{p-2}(N+p)- \biggl(\frac {1}{2}C_{1}\biggr)^{-(p-2)}C_{2}^{p-1}(2Bd)^{p-1}. $$

Proof

Let \(\rho(x)=\vert x-x_{0}\vert \). A direct calculation shows

$$\begin{aligned}& \nabla v_{M}=-2B\varphi_{M}(x-x_{0}),\qquad \frac{\partial v_{M}}{\partial t}=\bigl(A-B\rho^{2}\bigr)\varphi_{M}'(t), \\& \biggl(\frac{1}{n}+\vert \nabla v_{M}\vert ^{2} \biggr)^{\frac{p-2}{2}}\nabla v_{M} =-\biggl( \frac{1}{n}+(2B)^{2}\rho^{2}\varphi_{M}^{2} \biggr)^{\frac{p-2}{2}}2B\varphi_{M}(x-x_{0}), \\& \operatorname {div}\biggl(\biggl(\frac{1}{n}+\vert \nabla v_{M}\vert ^{2}\biggr)^{\frac{p-2}{2}}\nabla v_{M} \biggr) =-\biggl(\frac{1}{n}+(2B)^{2} \rho^{2}\varphi_{M}^{2}\biggr)^{\frac{p-2}{2}}2NB\varphi_{M} \\& \hphantom{\operatorname {div}\biggl(\biggl(\frac{1}{n}+\vert \nabla v_{M}\vert ^{2}\biggr)^{\frac{p-2}{2}}\nabla v_{M} \biggr) =}-(p-2) \biggl(\frac{1}{n}+(2B)^{2}\rho^{2} \varphi_{M}^{2}\biggr)^{\frac {p-2}{2}-1}(2B)^{2}\rho ^{2}\varphi_{M}^{2}{2B}\varphi_{M} \\& \hphantom{\operatorname {div}\biggl(\biggl(\frac{1}{n}+\vert \nabla v_{M}\vert ^{2}\biggr)^{\frac{p-2}{2}}\nabla v_{M} \biggr) }=-\biggl(\frac{1}{n}+(2B)^{2}\rho^{2} \varphi_{M}^{2}\biggr)^{\frac{p-2}{2}-1}2B\varphi_{M} \\& \hphantom{\operatorname {div}\biggl(\biggl(\frac{1}{n}+\vert \nabla v_{M}\vert ^{2}\biggr)^{\frac{p-2}{2}}\nabla v_{M} \biggr)= }\cdot \biggl(\biggl(\frac{1}{n}+(2B)^{2} \rho^{2}\varphi_{M}^{2}\biggr)N+(p-2) (2B)^{2}\rho ^{2}\varphi_{M}^{2} \biggr). \end{aligned}$$

Thus, we have

$$\begin{aligned} \biggl\vert \operatorname {div}\biggl(\biggl(\frac{1}{n}+ \vert \nabla v_{M}\vert ^{2}\biggr)^{\frac{p-2}{2}}\nabla v_{M} \biggr)\biggr\vert &\le\biggl( \frac{1}{n}+(2B)^{2}\rho^{2}\varphi_{M}^{2} \biggr)^{\frac {p-2}{2}}(N+p-1)2B\varphi_{M} \\ &\le\bigl(1+(2Bd)^{2}\varphi_{M}^{2} \bigr)^{\frac{p-2}{2}}(N+p-1)2B\varphi_{M} \\ &\le2^{p}(2B)^{p-1}d^{p-2}(N+p) \varphi_{M}^{p-1},\quad x\in\overline{\Omega}, t\le0, \end{aligned}$$

and

$$\begin{aligned} \biggl(\frac{1}{n}+\vert \nabla v_{M}\vert ^{2}\biggr)^{\frac{p-2}{2}}\nabla v_{M}\cdot\nu &=- \biggl(\frac{1}{n}+(2B)^{2}\rho^{2}\varphi_{M}^{2} \biggr)^{\frac{p-2}{2}}2B\varphi _{M}\rho \frac{x-x_{0}}{\vert x-x_{0}\vert } \cdot\nu \\ &\le -\biggl(\frac{1}{n}+(2B)^{2}\rho^{2} \varphi_{M}^{2}\biggr)^{\frac{p-2}{2}}2B\varphi _{M}\rho \delta \\ &\le -(2Br)^{p-1}\delta\varphi_{M}^{p-1},\quad x\in\partial\Omega, t\ge0. \end{aligned}$$

Young’s inequality shows

$$\bigl\vert \overset{\rightarrow}{g}(v_{M})\cdot\nabla v_{M}\bigr\vert \le C_{2}v_{M}^{p-2} \vert \nabla v_{M}\vert \le\frac{1}{2}C_{1}v_{M}^{p-1}+ \biggl(\frac{1}{2}C_{1}\biggr)^{-(p-2)}C_{2}^{p-1} \vert \nabla v_{M}\vert ^{p-1}. $$

We obtain

$$f_{M}(v_{M})=\min\bigl\{ M,f(v_{M})\bigr\} \ge C_{1}v_{M}^{p-1}, $$

and

$$\begin{aligned} f_{M}(v_{M})-\overset{\rightarrow}{g}\cdot\nabla v_{M} &\ge\frac{1}{2}C_{1}v_{M}^{p-1}- \biggl(\frac {1}{2}C_{1}\biggr)^{-(p-2)}C_{2}^{p-1} \vert \nabla v_{M}\vert ^{p-1} \\ &\ge\frac{1}{2}C_{1}\biggl(\frac{1}{2}A \varphi_{M}\biggr)^{p-1}-\biggl(\frac {1}{2}C_{1} \biggr)^{-(p-2)}C_{2}^{p-1}(2Bd\varphi_{M})^{p-1}. \end{aligned}$$

Furthermore,

$$\begin{aligned}& \frac{\partial v_{M}}{\partial t}-F_{n,M}[v_{M}]\le A\varphi_{M}'-K \varphi _{M}^{p-1}\le0,\quad (x,t)\in\partial\Omega\times \mathbb{R}^{+}, \\& B_{n}[v_{M}]=\sigma\frac{\partial v_{M}}{\partial t}+\biggl( \frac{1}{n}+\vert \nabla v_{M}\vert ^{2} \biggr)^{\frac{p-2}{2}}\frac{\partial v_{M}}{\partial\nu}\\& \hphantom{B_{n}[v_{M}]} \le\sigma A\varphi_{M}'-(2Br)^{p-1} \delta\varphi_{M}^{p-1}\le0, \quad (x,t)\in\partial\Omega\times \mathbb{R}^{+}, \\& v_{M}(x,0)\le A\varphi_{M}(0)\le\inf_{\Omega}u_{0}\le u_{0,n}(x),\quad x\in \overline{\Omega}. \end{aligned}$$

Lemma 2.2 implies that \(v_{M}\) is a lower solution of problem (2.1)-(2.3). □

Theorem 4.1

Suppose that \(p>2\), Ω is a convex domain, \(\sigma\in L^{\infty }(\partial\Omega\times\mathbb{R}^{+})\), and there exist constants \(C_{1}, C_{2}>0\) such that

$$f(s)\ge C_{1}s^{p-1},\qquad \bigl\vert \overset{\rightarrow}{g}(s) \bigr\vert \le C_{2}s^{p-2},\quad s\ge0. $$

Then the strong solution of problem (1.1)-(1.3) blows up in finite time provided that \(\inf_{\Omega}u_{0}\) is sufficiently large.

Proof

Let \(x_{0}\), r, d, δ, K be as defined in Lemma 4.1. Since \(K=K(A,B)\) converges to \(K(A,0)=\frac{1}{2}C_{1}(\frac {1}{2}A)^{p-1}>0\) as B tends to 0+, we can choose \(A,B>0\) such that

$$C_{1}A^{p-1}=1, \qquad 2Bd^{2}\le A, \qquad K=K(A,B)>0. $$

Then set

$$\varphi_{M}(0)=\frac{1}{2Bd}>0,\qquad \overline{\sigma}=\sup _{\partial \Omega \times\mathbb{R}^{+}}\sigma,\qquad \gamma=\min\biggl\{ \frac{K}{A}, \frac{(2Br)^{p-1}\delta}{\overline{\sigma}A}\biggr\} . $$

By Lemma 4.1, the function \(v_{M}=(A-B\vert x-x_{0}\vert ^{2})\varphi_{M}(t)\) is a lower solution provided

$$\inf_{\Omega}u_{0}\ge\frac{A}{2Bd},\qquad \varphi_{M}(t)\le M^{\frac{1}{p-1}},\qquad 0\le\varphi_{M}'(t) \le\gamma\varphi_{M}^{p-1}(t). $$

Define

$$\varphi_{M}(t)=\min\bigl\{ \bigl(\varphi_{M}^{2-p}(0)-(p-2) \gamma t\bigr)_{+}^{-\frac {1}{p-2}},M^{\frac{1}{p-1}}\bigr\} ,\quad t\ge0. $$

Although \(\varphi_{M}(t)\) is not \(C^{1}\) continuous, we can change the partial derivative \(\frac{\partial}{\partial t}\) to the leftward partial derivative \(\frac{\partial}{\partial t^{-}}\) in the proof of Lemma 2.1, Lemma 2.2, and Lemma 4.1, then we conclude that \(v_{M}\) is a lower solution of problem (2.1)-(2.3). Hence \(u_{n,M}(x,t)\ge v_{M}(x,t)\) for \((x,t)\in\overline{\Omega}\times \mathbb{R}^{+}\). By the definition of strong solution, we have

$$u(x,t)\ge\sup_{M\in\mathbb{Z}^{+}}v_{M}(x,t),\quad x\in\overline{\Omega}, t\in(0,T_{0}), $$

where \(T_{0}=\frac{(2Bd)^{p-2}}{(p-2)\gamma}\). Since \(v_{M}\) blows up at finite time \(T_{0}\), the strong solution u must blow up at time \(T^{*}\le T_{0}\). □