1 Introduction

For a positive integer p, let \(\mathcal{A}_{p}\) denote the set of all functions \(f(z)\) which are analytic and p-valent in the open unit disk \(E=\{z\in\mathbb{C}: \vert z \vert <1\}\) and have series expansion of the form

$$ f(z)=z^{p}+\sum_{n=p+1}^{\infty }a_{n}z^{n}. $$
(1.1)

Also, let \(f\ast g\) denote the convolution (or Hadamard product) of \(f,g\in \mathcal{A}_{p}\) defined as follows:

$$ (f\ast g) (z)=z^{p}+\sum_{n=p+1}^{\infty }a_{n}b_{n}z^{n}, $$

where \(f(z)\) is given by (1.1) and \(g(z)=z^{p}+\sum_{n=p+1}^{\infty }b_{n}z^{n}\).

Quite recently, q-analysis has influenced the researchers a lot due to rapid applications in mathematics and related fields. In the last century many well-known researchers (for details, see [1, 4, 610, 13, 14, 21, 22, 32]) did great work on q-calculus and found numerous applications. It is worth mentioning that convolution theory helps many researchers to investigate a number of properties of analytic univalent and multivalent functions. Several differential and integral operators were defined using ordinary derivative; for details, see [29].

Due to growing applications of q-calculus, investigators are interested in studying properties of functions using q-operators instead of ordinary differential operators; for comprehensive study, we refer to Kanas and Reducanu [15], Mahmood and Darus [19], and Mahmood and Sokol [20]. In this paper we define a q-analogue of a Salagean type operator and study its effect on multivalent functions in conic domains.

For any non-negative integer n, the q-integer number n denoted by \([n]_{q}\) is defined by

$$ {}[ n]_{q}=\frac{1-q^{n}}{1-q},\qquad [0]_{q}=0. $$

For a non-negative integer n, the q-number shift factorial is defined as

$$ {}[ n]_{q}!=[1]_{q}[2]_{q}[3]_{q}...[n]_{q} \quad \bigl( [0]_{q}!=1 \bigr) . $$

We note that when \(q\rightarrow 1\), \([n]_{q}!\) reduces to the classical definition of factorial. In general, \([t]_{q}\) is defined as follows:

$$ {}[ t]_{q}=\frac{1-q^{t}}{1-q},\qquad [0]_{q}=0,\quad q\in ( 0,1 ) . $$

For \(f\in A\), in [5], the q-derivative operator or q-difference operator is defined as follows:

$$ \partial _{q}f(z)=\frac{f(qz)-f(z)}{z(q-1)}. $$

It can easily be seen that

$$ \partial _{q}z^{n}=[n]_{q}z^{n-1},\qquad \partial _{q} \Biggl\{ \sum_{n=1}^{\infty }a_{n}z^{n} \Biggr\} =\sum_{n=1}^{\infty }[n]_{q}a_{n}z^{n-1}. $$

Taking motivation from the above mentioned work, we define new convolution operators as follows.

Let

$$ \varPhi ( p,q,m,z ) =z^{p}+\sum_{n=p+1}^{\infty } \bigl[n+ ( p-1 ) \bigr]_{q}^{m}z^{n}. $$
(1.2)

Using the functions \(\varPhi ( p,q,m,z ) \) and the definition of q-derivative along with the idea of convolution, we now define the following differential operator \(\mathcal{S}_{q,p}^{m}f(z):\mathcal{A}_{p}\rightarrow \mathcal{A}_{p}\) for multivalent functions

$$\begin{aligned} \mathcal{S}_{q,p}^{m}f(z) =&\varPhi ( p,q,m,z ) \ast f(z),\quad m\in N\cup \{0\}, \\ =&z^{p}+\sum_{n=p+1}^{\infty }\bigl[n+ ( p-1 ) \bigr]_{q}^{m}a_{n}z^{n}, \\ =&z^{p}+\sum_{n=p+1}^{\infty }\psi _{n}a_{n}z^{n}, \end{aligned}$$
(1.3)

where

$$ \psi _{n}=\bigl[n+ ( p-1 ) \bigr]_{q}^{m}. $$
(1.4)

For \(p=1\), the operator \(\mathcal{S}_{q,p}^{m}f(z)\) reduces to the Salagean q-differential operator defined by Govindaraj and Sivasubramanian [11], and for \(p=1\), \(q\rightarrow 1\), the operator \(\mathcal{S}_{q,p}^{m}f(z)\) reduces to the Salagean differential operator defined by Salagean [26].

Taking motivation from [12] and using (1.3), we define a new class k-\(\mathcal{US}(q,\gamma ,m,p)\) of multivalent functions as follows.

Throughout paper we shall assume \(k\geq 0\), \(m\in N\cup \{0\}\), \(q\in ( 0,1 ) \), \(\gamma \in \mathbb{C} \backslash \{0\}\), and \(p\in N\).

Definition 1.1

A function \(f(z)\in \mathcal{A}_{p}\) is in the class k-\(\mathcal{US}(q,\gamma ,m,p)\) if it satisfies the condition

$$ \operatorname{Re} \biggl\{ 1+\frac{1}{\gamma } \biggl\{ \frac{1}{[p]_{q}} \biggl( \frac{z\partial _{q}S_{q,p}^{m}f(z)}{S_{q,p}^{m}f(z)} \biggr) -1 \biggr\} \biggr\} >k \biggl\vert \frac{1}{\gamma } \biggl\{ \frac{1}{[p]_{q}} \biggl( \frac{z\partial _{q}S_{q,p}^{m}f(z)}{S_{q,p}^{m}f(z)} \biggr) -1 \biggr\} \biggr\vert ,\quad z\in E. $$

By taking specific values of parameters, we obtain many important subclasses studied by various authors in earlier papers. Here we enlist some of them.

  1. (i)

    For \(p=1\), the class k-\(\mathcal{US}(q,\gamma ,m,p)\) reduces to the class k-\(\mathcal{US}(q,\gamma ,m)\) studied by Saqib et al. [12].

  2. (ii)

    For \(p=1\), \(m=0\), \(k=0\), and \(\gamma \in \mathbb{C} \backslash \{0\}\), the class k-\(\mathcal{US}(q,\gamma ,m,p)\) reduces to the class \(\mathcal{S}_{q}^{\ast }(\gamma )\) studied by Seoudy and Aouf [27].

  3. (iii)

    For \(p=1\), \(m=0\), \(k=0\), and \(\gamma =\frac{1}{1-\alpha }\), with \(0\leq \alpha <1\), the class k-\(\mathcal{US}(q,\gamma ,m,p)\) reduces to the class \(\mathcal{S}_{q}^{\ast }(\alpha )\) studied by Agrawal and Sahoo [2].

  4. (iv)

    For \(p=1\), \(m=0\), \(q\rightarrow 1\), and \(\gamma =\frac{1}{1-\alpha }\), with \(0\leq \alpha <1\), the class k-\(\mathcal{US}(q,\gamma ,m,p)\) reduces to the class \(\mathcal{SD}(k,\alpha )\) studied by Shams et al. [28].

  5. (v)

    For \(p=1\), \(m=0\), \(q\rightarrow 1\), and \(\gamma =\frac{2}{1-\alpha }\), with \(0\leq \alpha <1\), the class k-\(\mathcal{US}(q,\gamma ,m,p)\) reduces to the class \(\mathcal{KD}(k,\alpha )\) studied by Owa et al. [24].

  6. (vi)

    For \(p=1\), \(k=1\), \(m=0\), \(q\rightarrow 1\), and \(\gamma =\frac{1}{1-\alpha }\), with \(0\leq \alpha <1\), the class k-\(\mathcal{US}(q,\gamma ,m,p)\) reduces to the class \(\mathcal{S}(\alpha )\) studied by Ali et al. [3].

  7. (vii)

    For \(p=1\), \(k=1\), \(m=0\), \(q\rightarrow 1\), and \(\gamma =\frac{2}{1-\alpha }\), with \(0\leq \alpha <1\), the class k-\(\mathcal{US}(q,\gamma ,m,p)\) reduces to the class \(\mathcal{K}(\alpha )\) studied by Ali et al. [3].

  8. (viii)

    For \(p=1\), \(m=0\), \(q\rightarrow 1\), the class k-\(\mathcal{US}(q,\gamma ,m,p)\) reduces to the class \(\mathcal{K}\)-\(\mathcal{ST}\) introduced by Kanas and Wisniowska [17].

  9. (ix)

    For \(p=1\), \(k=0\), \(m=0\), \(q\rightarrow 1\), and \(\gamma =\frac{1}{1-\alpha }\), with \(0\leq \alpha <1\), the class k-\(\mathcal{US}(q,\gamma ,m,p)\) reduces to the class \(\mathcal{S}^{\ast }(\alpha )\), a well-known class of starlike functions of order α, respectively.

Geometric interpretation. A function \(f(z)\in \mathcal{A}_{p}\) is in the class k-\(\mathcal{US}(q,\gamma ,m,p)\) if and only if \(\frac{1}{[p]_{q}} ( \frac{z\partial _{q}S_{q,p}^{m}f(z)}{S_{q,p}^{m}f(z)} ) \) takes all the values in the conic domain \(\varOmega _{k,\gamma }=h_{k,\gamma }(E)\) such that

$$ \varOmega _{k,\gamma }=\gamma \varOmega _{k}+(1-\alpha ), $$

where

$$ \varOmega _{k}= \bigl\{ u+iv:u>k\sqrt{ ( u-1 ) ^{2}+v^{2}} \bigr\} . $$

Since \(h_{k,\gamma }(z)\) is convex univalent, so the above definition can be written as

$$ \frac{1}{[p]_{q}} \biggl( \frac{z\partial _{q}S_{q,p}^{m}f(z)}{S_{q,p}^{m}f(z)} \biggr) \prec h_{k,\gamma }(z), $$
(1.5)

where

$$ h_{k,\gamma }(z)= \textstyle\begin{cases} \frac{1+z}{1-z},& \mbox{for }k=0, \\ 1+\frac{2\gamma }{\pi ^{2}} ( \log \frac{1+\sqrt{z}}{1-\sqrt{z}} ) ^{2},& \mbox{for }k=1, \\ 1+\frac{2\gamma }{1-k^{2}}\sinh ^{2} \{ ( \frac{2}{\pi }\arccos k ) \arctan h\sqrt{z} \} ,& \mbox{for }0< k< 1, \\ 1+\frac{\gamma }{k^{2}-1}\sin ( \frac{\pi }{2R(t)}\int_{0}^{\frac{u(z)}{\sqrt{t}}}\frac{1}{\sqrt{1-x^{2}}\sqrt{1-(tx)^{2}}}\,dx ) +\frac{\gamma }{1-k^{2}},& \mbox{for }k>1.\end{cases} $$
(1.6)

The boundary \(\partial \varOmega _{k,\gamma }\) of the above set becomes an imaginary axis when \(k=0\), and a hyperbola when \(0< k<1\). For \(k=1\), the boundary \(\partial \varOmega _{k,\gamma }\) becomes a parabola and it is an ellipse when \(k>1\) and in this case where

$$ u(z)=\frac{z-\sqrt{t}}{1-\sqrt{t}z},\quad z\in E, $$

and \(t\in (0,1)\) is chosen such that \(k=\cosh (\pi K^{\prime }(t)/(4K(t)))\). Here \(K(t)\) is Legendre’s complete elliptic integral of the first kind and \(K^{\prime }(t)=K(\sqrt{1-t^{2}})\), and \(K^{\prime } ( t ) \) is the complementary integral of \(K ( t ) \) (for details, see [16, 17, 23]). Moreover, \(h_{k,\gamma }(E)\) is convex univalent in E, see [16, 17]. All of these curves have the vertex at the point \(\frac{k+\gamma }{k+1}\).

2 A set of lemmas

Each of the following lemmas will be needed in our present investigation.

Lemma 2.1

([25])

Let \(h(z)=\sum_{n=1}^{\infty }h_{n}z^{n}\prec F(z)=\sum_{n=1}^{\infty }d_{n}z^{n}\) in E. If \(F(z)\) is convex univalent in E, then

$$ \vert h_{n} \vert \leq \vert d_{1} \vert ,\quad n \geq 1. $$

Lemma 2.2

([31])

Let \(k\in {}[ 0,\infty )\) and let \(h_{k,\gamma }\) be defined (1.6). If

$$\begin{aligned} &h_{k,\gamma }(z)=1+Q_{1}z+Q_{2}z^{2}+\cdots, \end{aligned}$$
(2.1)
$$\begin{aligned} &Q_{1} = \textstyle\begin{cases} \frac{2\gamma A^{2}}{1-k^{2}}, & 0\leq k< 1 ,\\ \frac{8\gamma }{\pi ^{2}}, & k=1, \\ \frac{\pi ^{2}\gamma }{4 ( 1+t ) \sqrt{t}K^{2}(t) ( k^{2}-1 ) }, & k>1,\end{cases}\displaystyle \end{aligned}$$
(2.2)
$$\begin{aligned} &Q_{2} = \textstyle\begin{cases} \frac{A^{2}+2}{3}Q_{1}, & 0\leq k< 1 ,\\ \frac{2}{3}Q_{1}, & k=1, \\ \frac{4K^{2}(t) ( t^{2}+6t+1 ) -\pi ^{2}}{24K^{2} ( t ) ( 1+t ) \sqrt{t}}Q_{1}, & k>1,\end{cases}\displaystyle \end{aligned}$$
(2.3)

where \(A=\frac{2\cos ^{-1}k}{\pi }\), and \(t\in (0,1)\) is chosen such that \(k=\cosh ( \frac{\pi K^{\prime}(t)}{K(t)} ) \), \(K(t)\) is Legendre’s complete elliptic integral of the first kind.

Lemma 2.3

([18])

Let \(h(z)=1+\sum_{n=1}^{\infty }c_{n}z^{n}\) be analytic in E and satisfy \(\operatorname{Re}\{h(z)\}>0\) for z in E. Then the following sharp estimate holds:

$$ \bigl\vert c_{2}-\mu c_{1}^{2} \bigr\vert \leq 2\max \bigl\{ 1, \vert 2\mu -1 \vert \bigr\} ,\quad \forall \mu \in \mathbb{C} . $$

3 Main results

In this section, we will prove our main results.

Theorem 3.1

Let \(f(z)\in k-\mathcal{US}(q,\gamma ,m,p)\). Then

$$ S_{q,p}^{m}f(z)\prec z\exp \int_{0}^{z}\frac{p \{ h_{k,\gamma }(w(z)) \} -1}{\zeta }\,d\xi , $$
(3.1)

where \(w(z)\) is analytic in E with \(w(0)=0\) and \(\vert w(z) \vert <1\). Moreover, for \(\vert z \vert =\rho \), we have

$$ \exp \biggl( \int_{0}^{1}\frac{p \{ h_{k,\gamma }(-\rho ) \} -1}{\rho }\,d\rho \biggr) \leq \biggl\vert \frac{S_{q,p}^{m}f(z)}{z} \biggr\vert \leq \exp \biggl( \int_{0}^{1}\frac{p \{ h_{k,\gamma }(\rho ) \} -1}{\rho }\,d\rho \biggr) , $$
(3.2)

where \(h_{k,\gamma }(z)\) is defined by (1.6).

Proof

If \(f(z)\in k-\mathcal{US}(q,\gamma ,m,p)\), then using identity (1.5), we obtain

$$\begin{aligned} &\frac{1}{p} \biggl( \frac{z\partial _{q}S_{q,p}^{m}f(z)}{S_{q,p}^{m}f(z)} \biggr) \prec h_{k,\gamma }(z), \\ &\frac{1}{p} \biggl( \frac{z\partial _{q}S_{q,p}^{m}f(z)}{S_{q,p}^{m}f(z)} \biggr) =h_{k,\gamma }\bigl(w(z)\bigr), \\ &\frac{\partial _{q}S_{q,p}^{m}f(z)}{S_{q,p}^{m}f(z)}-\frac{1}{z} =\frac{p \{ h_{k,\gamma }(w(z)) \} -1}{z}. \end{aligned}$$
(3.3)

For some function \(w(z)\) is analytic in E with \(w(0)=0\) and \(\vert w(z) \vert <1\). Integrating (3.3) and after some simplification, we have

$$ S_{q,p}^{m}f(z)\prec z\exp \int_{0}^{z}\frac{p \{ h_{k,\gamma }(w(z)) \} -1}{\zeta }\,d\xi . $$
(3.4)

This proves (3.1). Noting that the univalent function \(h_{k,\gamma }(z)\) maps the disk \(|z|<\rho \) \((0<\rho \leq 1)\) onto a region which is convex and symmetric with respect to the real axis, we see

$$ h_{k,\gamma }\bigl(-\rho \vert z \vert \bigr)\leq \operatorname{Re} \bigl\{ h_{k,\gamma }(w(\rho z) \bigr\} \leq h_{k,\gamma }\bigl(\rho \vert z \vert \bigr)\quad (0< \rho \leq 1, z\in E). $$
(3.5)

Using (3.4) and (3.5) gives

$$\begin{aligned} \int_{0}^{1}\frac{p \{ h_{k,\gamma }(-\rho \vert z \vert ) \} -1}{\rho }\,d\rho \leq& \operatorname{Re} \int_{0}^{1}\frac{p \{ h_{k,\gamma }(w ( \rho ( z ) ) \} -1}{\rho }\,d\rho \\ \leq& \int_{0}^{1}\frac{p \{ h_{k,\gamma }(\rho \vert z \vert ) \} -1}{\rho }\,d\rho \end{aligned}$$

for \(z\in E\). Consequently, subordination (3.4) leads to

$$\begin{aligned} &\int_{0}^{1}\frac{p \{ h_{k,\gamma }(-\rho \vert z \vert ) \} -1}{\rho }\,d\rho \leq \log \biggl\vert \frac{S_{q,p}^{m}f(z)}{z} \biggr\vert \leq \int_{0}^{1}\frac{p \{ h_{k,\gamma }(\rho \vert z \vert ) \} -1}{\rho }\,d\rho , \\ &h_{k,\gamma }(-\rho )\leq h_{k,\gamma }\bigl(-\rho \vert z \vert \bigr),\qquad h_{k,\gamma }\bigl(\rho \vert z \vert \bigr)\leq h_{k,\gamma}(\rho ) \end{aligned}$$

implies that

$$\begin{aligned} \exp \int_{0}^{1}\frac{p \{ h_{k,\gamma }(-\rho ) \} -1}{\rho }\,d\rho &\leq \biggl\vert \frac{S_{q,p}^{m}f(z)}{z} \biggr\vert \\ & \leq \exp \int_{0}^{1}\frac{p \{ h_{k,\gamma }(\rho ) \} -1}{\rho }\,d\rho . \end{aligned}$$

This completes the proof. □

When \(p=1\), we have the following known result proved by Saqib et al. in [12].

Corollary 3.2

Let \(f(z)\in k-\mathcal{US}(q,\gamma ,m)\). Then

$$ S_{q}^{m}f(z)\prec z\exp \int_{0}^{z}\frac{h_{k,\gamma }(w(\xi ))-1}{\zeta }\,d\xi , $$

where \(w(z)\) is analytic in E with \(w(0)=0\) and \(\vert w(z) \vert <1\). Moreover, for \(\vert z \vert =\rho \), we have

$$\begin{aligned} \exp \biggl( \int_{0}^{1}\frac{h_{k,\gamma }(-\rho )-1}{\rho }\,d\rho \biggr)& \leq \biggl\vert \frac{S_{q}^{m}f(z)}{z} \biggr\vert \\ &\leq \exp \biggl( \int_{0}^{1}\frac{h_{k,\gamma }(\rho )-1}{\rho }\,d\rho \biggr) , \end{aligned}$$

where \(h_{k,\gamma }(z)\) is defined by (1.6).

Theorem 3.3

If \(f(z)\in k-\mathcal{US}(q,\gamma ,m,p)\), then

$$ \vert a_{p+1} \vert \leq \frac{\delta }{ \{ [p+1]_{q}-p \} \psi _{p+1}} $$
(3.6)

and

$$ \vert a_{n+p-1} \vert \leq \frac{\delta }{ \{ [n+p-1]_{q}-p \} \psi _{n+p-1}}\prod _{j=1}^{n-2} \biggl( 1+\frac{\delta }{ \{ [j+p]_{q}-p \} } \biggr) \quad \textit{for }n=3,4,\ldots, $$
(3.7)

where \(\delta =p \vert Q_{1} \vert \) with \(Q_{1}\) given by (2.2).

Proof

Let

$$ \begin{aligned} &\frac{1}{[p]_{q}} \biggl( \frac{z\partial _{q}S_{q,p}^{m}f(z)}{S_{q,p}^{m}f(z)} \biggr) =h(z), \\ &z\partial _{q}S_{q,p}^{m}f(z) = [p]_{q}S_{q,p}^{m}f(z)h(z), \end{aligned} $$
(3.8)

where \(h(z)\) is analytic in E and \(h(0)=1\). Let \(h(z)=1+\sum _{n=1}^{\infty }c_{n}z^{n}\) and \(S_{q,p}^{m}f(z)\) be given by (1.3). Then (3.8) becomes

$$ z^{p}+\sum_{n=p+1}^{\infty }[n]_{q} \psi _{n}a_{n}z^{n}=p \Biggl( \sum _{n=0}^{\infty }c_{n}z^{n} \Biggr) \Biggl( z^{p}+\sum_{n=p+1}^{\infty }\psi _{n}a_{n}z^{n} \Biggr) . $$

Now comparing the coefficients of \(z^{n+p-1}\), we obtain

$$\begin{aligned} &[ n+p-1]_{q}\psi _{n+p-1}a_{n+p-1} =p\psi _{n+p-1}a_{n+p-1}+p \{ c_{1}\psi _{n+p-2}a_{n+p-2}+ \cdots+c_{n-1} \} , \\ &\bigl\{ {}[ n+p-1]_{q}-p \bigr\} \psi _{n+p-1}a_{n+p-1} =p \{ c_{1}\psi _{n+p-2}a_{n+p-2}+ \cdots+c_{n-1} \} . \end{aligned}$$

Taking the absolute on both sides and then applying the coefficient estimates \(\vert c_{n} \vert \leq \vert Q_{1} \vert \), see in [23], we have

$$ \vert a_{n+p-1} \vert \leq \frac{p \vert Q_{1} \vert }{ \{ [n+p-1]_{q}-p \} \psi _{n+p-1}} \bigl\{ 1+\psi _{p+1} \vert a_{p+1} \vert +\cdots+\psi _{n+p-2} \vert a_{n+p-2} \vert \bigr\} . $$

Let us take \(\delta =p \vert Q_{1} \vert \), then we have

$$ \vert a_{n+p-1} \vert \leq \frac{\delta }{ \{ [n+p-1]_{q}-p \} \psi _{n+p-1}} \bigl\{ 1+\psi _{p+1} \vert a_{p+1} \vert +\cdots+\psi _{n+p-2} \vert a_{n+p-2} \vert \bigr\} . $$
(3.9)

We apply mathematical induction on (3.9), so for \(n=2\) in (3.9), we have

$$ \vert a_{p+1} \vert \leq \frac{\delta }{ \{ [p+1]_{q}-p \} \psi _{p+1}}, $$
(3.10)

which shows that (3.7) holds for \(n=2\). Now consider the case \(n=3\) in (3.9), we have

$$ \vert a_{p+2} \vert \leq \frac{\delta }{ \{ [p+2]_{q}-p \} \psi _{p+2}}\bigl\{ 1+\psi _{p+1} \vert a_{p+1} \vert \bigr\} . $$

Using (3.10), we have

$$ \vert a_{p+2} \vert \leq \frac{\delta }{ \{ [p+2]_{q}-p \} \psi _{p+2}}\biggl\{ 1+ \frac{\delta }{[p+1]_{q}-p}\biggr\} , $$

which shows that (3.7) holds for \(n=3\). Let us assume that (3.7) is true for \(n\leq t\), that is,

$$ \vert a_{t+p-1} \vert \leq \frac{\delta }{ \{ [t+p-1]_{q}-p \} \psi _{t+p-1}}\prod _{j=1}^{t-2} \biggl( 1+\frac{\delta }{[j+p]_{q}-p} \biggr) \quad \text{for }n=3,4,\ldots. $$

Consider

$$\begin{aligned} \vert a_{t+p} \vert \leq &\frac{\delta }{ \{ [t+p]_{q}-p \} \psi _{t+p}} \bigl\{ 1+\psi _{p+1} \vert a_{p+1} \vert +\cdots\psi _{t+p-1} \vert a_{t+p-1} \vert \bigr\} \\ \leq &\frac{\delta }{ \{ [t+p]_{q}-p \} \psi _{t+p}}\left \{ \textstyle\begin{array}{c} 1+\frac{\delta }{[p+1]_{q}-p}+\frac{\delta }{[p+2]_{q}-p} ( 1+\frac{\delta }{[p+1]_{q}-p} ) +\cdots \\ {}+\frac{\delta }{ \{ [t+p-1]_{q}-p \} }\prod_{j=1}^{t-2} ( 1+\frac{\delta }{[j+p]_{q}-p} ) \end{array}\displaystyle \right \} \\ =&\frac{\delta }{ \{ [t+p]_{q}-p \} \psi _{t+p}}\prod_{j=1}^{t-1} \biggl( 1+\frac{\delta }{[j+p]_{q}-p} \biggr) , \end{aligned}$$

which proves the assertion of theorem \(n=t+1\). Hence (3.7) holds for all n, \(n\geq 3\).

This completes the proof. □

When \(p=1\), we have the following known result proved by Saqib et al. in [12].

Corollary 3.4

([12])

If \(f(z)\in k-\mathcal{US}(q,\gamma ,m)\), then

$$ \vert a_{2} \vert \leq \frac{\delta }{ \{ [2]_{q}-1 \} [2]_{q}^{m}} $$

and

$$ \vert a_{n} \vert \leq \frac{\delta }{ \{ [n]_{q}-1 \} [n]_{q}^{m}}\prod _{j=1}^{n-2} \biggl( 1+\frac{\delta }{[j+1]_{q}-1} \biggr) \quad \textit{for }n=3,4,\ldots, $$

where \(\delta = \vert Q_{1} \vert \) with \(Q_{1}\) given by (2.2).

Theorem 3.5

Let \(0\leq k<\infty \) be fixed and let \(f(z)\in k-\mathcal{US}(q,\gamma ,m,p)\) with the form (1.1). Then, for a complex number μ,

$$ \bigl\vert a_{p+2}-\mu a_{p+1}^{2} \bigr\vert \leq \frac{pQ_{1}}{2 [ 2p+1 ] _{q}^{m} \{ [p+2]_{q}-p \} }\max \bigl[ 1, \vert 2v-1 \vert \bigr] , $$
(3.11)

where

$$ v=\frac{1}{2} \biggl\{ 1-\frac{Q_{2}}{Q_{1}}-Q_{1} \biggl( \frac{4p}{ \{ [p+1]_{q}-p \} }-\mu \frac{4p [ 2p+1 ] _{q}^{m} \{ [p+2]_{q}-p \} }{ ( [ 2p ] _{q}^{m} ) ^{2} \{ [p+1]_{q}-p \} } \biggr) \biggr\} , $$
(3.12)

and \(\delta =p \vert Q_{1} \vert \), with \(Q_{1}\) and \(Q_{2}\) given by (2.2) and (2.3).

Proof

Let \(f(z)\in k-\mathcal{US}(q,\gamma ,m,p)\), then there exists a Schwarz function \(w(z)\), with \(w(0)=0\) and \(|w(z)|<1\), such that

$$\begin{aligned} \begin{aligned} &\frac{1}{[p]_{q}} \biggl( \frac{z\partial _{q}S_{q,p}^{m}f(z)}{S_{q,p}^{m}f(z)} \biggr) \prec h_{k,\gamma }(z),\quad z\in E, \\ &\frac{1}{[p]_{q}} \biggl( \frac{z\partial _{q}S_{q,p}^{m}f(z)}{S_{q,p}^{m}f(z)} \biggr) =h_{k,\gamma }\bigl(w(z)\bigr). \end{aligned} \end{aligned}$$
(3.13)

Let \(h(z)\in \mathcal{P}\) be a function defined as

$$ h(z)=\frac{1+w(z)}{1-w(z)}, $$

which gives

$$ w(z)=\frac{c_{1}}{2}z+\frac{1}{2}\biggl(c_{2}- \frac{c_{1}^{2}}{2}\biggr)z^{2}+\cdots $$

and

$$ h_{k,\gamma }\bigl(w(z)\bigr)=1+\frac{Q_{1}c_{1}}{2}z+ \biggl\{ \frac{Q_{2}c_{1}^{2}}{4}+\frac{1}{2}\biggl(c_{2}- \frac{c_{1}^{2}}{2}\biggr)Q_{1} \biggr\} z^{2}+\cdots. $$
(3.14)

Using (3.14) in (3.13) and along with (1.3), we obtain

$$ a_{p+1}=\frac{pQ_{1}c_{1}}{ [ 2p ] _{q}^{m} \{ [p+1]_{q}-p \} } $$

and

$$ a_{p+2}=\frac{p}{ [ 2p+1 ] _{q}^{m} \{ [p+2]_{q}-p \} } \biggl\{ \frac{Q_{1}c_{2}}{2}+ \frac{c_{1}^{2}}{4} \biggl( Q_{2}-Q_{1}+\frac{4pQ_{1}^{2}}{ \{ [p+1]_{q}-p \} } \biggr) \biggr\} . $$

Using any complex number μ and the above coefficients, we have

$$ a_{p+2}-\mu a_{p+1}^{2}=\frac{pQ_{1}}{2 [ 2p+1 ] _{q}^{m} \{ [p+2]_{q}-p \} } \bigl\{ c_{2}-vc_{1}^{2} \bigr\} . $$
(3.15)

Using Lemma 2.3 on (3.15), we have

$$ \bigl\vert a_{p+2}-\mu a_{p+1}^{2} \bigr\vert \leq \frac{pQ_{1}}{2 [ 2p+1 ] _{q}^{m} \{ [p+2]_{q}-p \} }\max \bigl[ 1, \vert 2v-1 \vert \bigr] , $$

where

$$ v=\frac{1}{2} \biggl\{ 1-\frac{Q_{2}}{Q_{1}}-Q_{1} \biggl( \frac{4p}{ \{ [p+1]_{q}-p \} }-\mu \frac{4p [ 2p+1 ] _{q}^{m} \{ [p+2]_{q}-p \} }{ ( [ 2p ] _{q}^{m} ) ^{2} \{ [p+1]_{q}-p \} } \biggr) \biggr\} . $$

This is our required result (3.11). □

When \(p=1\), we have the following known result proved by Saqib et al. in [12].

Corollary 3.6

([12])

Let \(0\leq k<\infty \) be fixed and let \(f(z)\in k-\mathcal{US}(q,\gamma ,m)\) with the form (1.1). Then, for a complex number μ,

$$ \bigl\vert a_{3}-\mu a_{2}^{2} \bigr\vert \leq \frac{Q_{1}}{2 [ 3 ] _{q}^{m} \{ [3]_{q}-1 \} }\max \bigl[ 1, \vert 2v-1 \vert \bigr] , $$

where

$$ v=\frac{1}{2} \biggl\{ 1-\frac{Q_{2}}{Q_{1}}-Q_{1} \biggl( \frac{4}{[2]_{q}-1}-\mu \frac{4 [ 3 ] _{q}^{m} \{ [3]_{q}-1 \} }{ ( [ 2 ] _{q}^{m} ) ^{2} \{ [2]_{q}-1 \} } \biggr) \biggr\} , $$

and \(Q_{1}\) and \(Q_{2}\) are given by (2.2) and (2.3).

Theorem 3.7

If a function \(f(z)\in \mathcal{A}_{p}\) has the form (1.1) and satisfies the condition

$$ \sum_{n=p+1}^{\infty } \bigl\{ \bigl\{ \bigl\vert [n]_{q}-p \bigr\vert \bigr\} (k+1)+p \vert \gamma \vert \bigr\} \vert \psi _{n} \vert \vert a_{n} \vert \leq \vert \gamma \vert \vert p \vert , $$
(3.16)

then \(f(z)\in k-\mathcal{US}(q,\gamma ,m,p)\).

Proof

Let

$$\begin{aligned} \biggl\vert \frac{1}{p} \biggl( \frac{z\partial _{q}S_{q,p}^{m}f(z)}{S_{q,p}^{m}f(z)} \biggr) -1 \biggr\vert =& \biggl\vert \frac{z\partial _{q}S_{q,p}^{m}f(z)-pS_{q,p}^{m}f(z)}{pS_{q,p}^{m}f(z)} \biggr\vert \\ =& \biggl\vert \frac{\sum_{n=p+1}^{\infty }\psi _{n} \{ [n]_{q}-p \} a_{n}z^{n}}{pz^{p}+p\sum_{n=p+1}^{\infty }\psi _{n}a_{n}z^{n}} \biggr\vert \\ \leq &\frac{\sum_{n=p+1}^{\infty } \vert \psi _{n} \{ [n]_{q}-p \} \vert \vert a_{n} \vert }{ \vert p \vert -\sum_{n=p+1}^{\infty }p \vert \psi _{n} \vert \vert a_{n} \vert }. \end{aligned}$$
(3.17)

From (3.16), it follows that

$$ p-\sum_{n=p+1}^{\infty }p \vert \psi _{n} \vert \vert a_{n} \vert >0. $$

To show that \(f(z)\in k-\mathcal{US}(q,\gamma ,m,p)\), it is enough to prove that

$$ \biggl\vert \frac{k}{\gamma } \biggl\{ \frac{1}{p} \biggl( \frac{z\partial _{q}S_{q,p}^{m}f(z)}{S_{q,p}^{m}f(z)} \biggr) -1 \biggr\} \biggr\vert -\operatorname{Re} \biggl\{ \frac{1}{\gamma } \biggl\{ \frac{1}{p} \biggl( \frac{z\partial _{q}S_{q,p}^{m}f(z)}{S_{q,p}^{m}f(z)} \biggr) -1 \biggr\} \biggr\} \leq 1. $$

From (3.17), we have

$$\begin{aligned} & \biggl\vert \frac{k}{\gamma } \biggl\{ \frac{1}{p} \biggl( \frac{z\partial _{q}S_{q,p}^{m}f(z)}{S_{q,p}^{m}f(z)} \biggr) -1 \biggr\} \biggr\vert -\operatorname{Re} \biggl\{ \frac{1}{\gamma } \biggl\{ \frac{1}{p} \biggl( \frac{z\partial _{q}S_{q,p}^{m}f(z)}{S_{q,p}^{m}f(z)} \biggr) -1 \biggr\} \biggr\} \\ &\quad \leq \frac{k}{ \vert \gamma \vert } \biggl\vert \frac{1}{p} \biggl( \frac{z\partial _{q}S_{q,p}^{m}f(z)}{S_{q,p}^{m}f(z)} \biggr) -1 \biggr\vert +\frac{1}{ \vert \gamma \vert } \biggl\vert \frac{1}{p} \biggl( \frac{z\partial _{q}S_{q,p}^{m}f(z)}{S_{q,p}^{m}f(z)} \biggr) -1 \biggr\vert \\ &\quad \leq \frac{(k+1)}{ \vert \gamma \vert } \biggl\vert \frac{1}{p} \biggl( \frac{z\partial _{q}S_{q,p}^{m}f(z)}{S_{q,p}^{m}f(z)} \biggr) -1 \biggr\vert \\ &\quad =\frac{(k+1)}{ \vert \gamma \vert } \biggl\vert \frac{z\partial _{q}S_{q,p}^{m}f(z)-pS_{q,p}^{m}f(z)}{pS_{q,p}^{m}f(z)} \biggr\vert \\ &\quad \leq \frac{(k+1)}{ \vert \gamma \vert } \biggl\{ \frac{\sum_{n=p+1}^{\infty } \vert \psi _{n} \{ [n]_{q}-p \} \vert \vert a_{n} \vert }{ \vert p \vert -\sum_{n=p+1}^{\infty }p \vert \psi _{n} \vert \vert a_{n} \vert } \biggr\} \\ &\quad \leq 1. \end{aligned}$$

 □

When \(p=1\), we have the following known result proved by Hussain et al. in [12].

Corollary 3.8

([12])

If a function \(f(z)\in \mathcal{A}\) has the form (1.1) and satisfies the condition

$$ \sum_{n=2}^{\infty } \bigl\{ \bigl\vert [n]_{q}-1 \bigr\vert (k+1)+ \vert \gamma \vert \bigr\} [n]_{q}^{m} \vert a_{n} \vert \leq \vert \gamma \vert , $$

then \(f(z)\in k-\mathcal{US}(q,\gamma ,m)\).

When \(q\rightarrow 1\), \(p=1\), \(m=0\), \(\gamma =1-\alpha \), with \(0\leq \alpha <1\), we have the following known result, proved by Shams et al. in [28].

Corollary 3.9

A function \(f\in A\) of the form (1.1) is in the class \(\mathcal{SD}(k,\alpha )\) if it satisfies the condition

$$ \sum_{n=2}^{\infty } \bigl\{ n(k+1)-(k+\alpha ) \bigr\} \vert a_{n} \vert \leq 1-\alpha , $$

where \(0\leq \alpha <1\) and \(k\geq 0\).

When \(q\rightarrow 1\), \(p=1\), \(m=0\), \(\gamma =1-\alpha \), with \(0\leq \alpha <1\) and \(k=0\), we have the following known result proved by Silverman in [30].

Corollary 3.10

A function \(f\in A\) of the form (1.1) is in the class \(\mathcal{SD}(\alpha )\) if it satisfies the condition

$$ \sum_{n=2}^{\infty } \{ n-\alpha \} \vert a_{n} \vert \leq 1-\alpha . $$

Theorem 3.11

Let \(f(z)\in k-\mathcal{US}(q,\gamma ,m,p)\). Then \(f(E)\) contains an open disk of radius

$$ r=\frac{ \{ [p+1]_{q}-p \} \psi _{p+1}}{(p+1) \{ [p+1]_{q}-p \} \psi _{p+1}+\delta }, $$

where \(\delta =p \vert Q_{1} \vert \) with \(Q_{1}\) given by (2.2).

Proof

Let \(w_{0}\neq 0\) be a complex number such that \(f(z)\neq w_{0}\) for \(z\in E\). Then

$$ f_{1}(z)=\frac{w_{0}f(z)}{w_{0}-f(z)}=z+ \biggl( a_{p+1}+ \frac{1}{w_{0}} \biggr) z^{p+1}+\cdots. $$

Since \(f_{1}(z)\) is univalent, so

$$ \biggl\vert a_{p+1}+\frac{1}{w_{0}} \biggr\vert \leq p+1. $$

Now, by using (3.6), we have

$$ \biggl\vert \frac{1}{w_{0}} \biggr\vert \leq \frac{(p+1) \{ [p+1]_{q}-p \} \psi _{p+1}+\delta }{ \{ [p+1]_{q}-p \} \psi _{p+1}}. $$

Hence we have

$$ \vert w_{0} \vert \geq \frac{ \{ {}[ p+1]_{q}-p \} \psi _{p+1}}{(p+1) \{ [p+1]_{q}-p \} \psi _{p+1}+\delta }. $$

 □

When \(p=1\), we have the following known result proved by Saqib et al. in [12].

Corollary 3.12

([12])

Let \(f(z)\in k-\mathcal{US}(q,\gamma ,m)\). Then \(f(E)\) contains an open disk of radius

$$ r=\frac{ \{ [2]_{q}-1 \} [ 2 ] _{q}^{m}}{2 [ 2 ] _{q}^{m} \{ [2]_{q}-1 \} +Q_{1}}, $$

where \(Q_{1}\) is given by (2.2).