1 Introduction

A function \(f:I\rightarrow \mathbb{R}\), where I is an interval of real numbers, is called convex if the following inequality holds:

$$ f\bigl(ta+(1-t)b\bigr)\leq tf(a)+(1-t)f(b) $$
(1)

for all \(a,b\in I\) and \(t\in [0,1]\). Function f is called concave if −f is convex.

The Hermite–Hadamard inequality [4] for convex functions \(f:I\rightarrow \mathbb{R}\) on an interval of real line is defined as

$$ f\biggl(\frac{a+b}{2}\biggr)\leq \frac{1}{b-a} \int^{b}_{a}f(x)\,dx\leq \frac{f(a)+f(b)}{2}, $$
(2)

where \(a,b\in I\) with \(a< b\).

Since the Hermite–Hadamard inequality has many applications, many authors generalized this inequality. The Hermite–Hadamard inequality is also established for several kinds of convex functions. For more results and generalizations, see [2, 6, 1014]. The Hermite–Hadamard inequality (2) is not only established for the classical integral but also for fractional integrals (e.g., see [1, 7, 18, 22]), for conformable fractional integrals (e.g., see [19, 21]), and recently for generalized fractional integrals (e.g., see [8, 9]).

Definition 1.1

([5])

Let \(s\in (0,1]\). A function \(f:I\subset \mathbb{R}_{+}\rightarrow \mathbb{R}\), where \(\mathbb{R}_{+}=[0,\infty)\), is called s-convex function in the second sense if

$$ f\bigl(ta+(1-t)b\bigr)\leq t^{s}f(a)+(1-t)^{s}f(b) $$
(3)

for all \(a,b\in I\) and \(t\in [0,1]\).

Definition 1.2

([3, 23])

A function \(f:[0,b]\rightarrow \mathbb{R}\), with \(b>0\), is said to be m-convex if the following inequality holds:

$$ f\bigl(ta+m(1-t)c\bigr)\leq tf(a)+m(1-t)f(c) $$
(4)

for all \(a,c\in [0,b]\) and \(t\in [0,1]\) and for all \(m\in [0,1]\). f is m-concave if −f is m-convex.

Definition 1.3

([15])

Let \(\alpha >0\) with \(n-1<\alpha \leq n\), \(n\in \mathbb{N}\), and \(1< x< b\). The left- and right-hand side Riemann–Liouville fractional integrals of order α of function f are given by

$$ J^{\alpha }_{a+}f(x)=\frac{1}{\Gamma (\alpha)} \int_{a}^{x}(x-t)^{ \alpha -1}f(t)\,dt, $$

and

$$ J^{\alpha }_{b-}f(x)=\frac{1}{\Gamma (\alpha)} \int_{x}^{b}(t-x)^{ \alpha -1}f(t)\,dt, $$

respectively, where \(\Gamma (\alpha)\) is the gamma function defined by \(\Gamma (\alpha)=\int_{0}^{\infty }e^{-t}t^{\alpha -1}\,dt\).

Definition 1.4

([16])

Let \(\alpha >0\) with \(n-1<\alpha \leq n\), \(n\in \mathbb{N}\), and \(1< x< b\). The left- and right-hand side Hadamard fractional integrals of order α of function f are given by

$$ H^{\alpha }_{a+}f(x)=\frac{1}{\Gamma (\alpha)} \int_{a}^{x} \biggl( \ln \frac{x}{t} \biggr) ^{\alpha -1}\frac{f(t)}{t}\,dt, $$

and

$$ H^{\alpha }_{b-}f(x)=\frac{1}{\Gamma (\alpha)} \int_{x}^{b} \biggl( \ln \frac{t}{x} \biggr) ^{\alpha -1}\frac{f(t)}{t}\,dt. $$

Definition 1.5

([9])

Let \([a,b]\subset \mathbb{R}\) be a finite interval. Then the left- and right-hand side Katugampola fractional integrals of order \(\alpha (>0)\) of \(f\in X^{p}_{c}(a,b)\) are defined by

$$ {}^{\rho }I^{\alpha }_{a+}f(x)= \frac{\rho^{1-\alpha }}{\Gamma (\alpha)} \int_{a}^{x}\bigl(x^{\rho }-t^{ \rho } \bigr)^{\alpha -1}t^{\rho -1}f(t)\,dt $$

and

$$ {}^{\rho }I^{\alpha }_{b-}f(x)= \frac{\rho^{1-\alpha }}{\Gamma (\alpha)} \int_{x}^{b}\bigl(t^{\rho }-x^{ \rho } \bigr)^{\alpha -1}t^{\rho -1}f(t)\,dt, $$

with \(a< x< b\) and \(\rho >0\), where \(X^{p}_{c}(a,b)\) (\(c\in \mathbb{R}\), \(1\leq p\leq \infty \) ) is the space of those complex-valued Lebesgue measurable functions f on \([a,b]\) for which \(\|f\|_{X^{p}_{c}}<\infty \), where the norm is defined by

$$ \Vert f \Vert _{X^{p}_{c}}= \biggl( \int_{a}^{b} \bigl\vert t^{c}f(t) \bigr\vert ^{p}\frac{dt}{t} \biggr) ^{1/p}< \infty $$

for \(1\leq p<\infty \), \(c\in \mathbb{R}\) and for the case \(p=\infty \),

$$ \Vert f \Vert _{X^{\infty }_{c}}= \mathop{\operatorname{ess\,sup}} _{a\leq t\leq b}\bigl[t^{c} \bigl\vert f(t) \bigr\vert \bigr], $$

where ess sup stands for essential supremum.

Theorem 1.6

([9])

Let \(\alpha >0\) and \(\rho >0\). Then, for \(x>a\),

  1. 1.

    \(\lim_{\rho \rightarrow 1} ^{\rho }I^{\alpha }_{a+}f(x)=J^{ \alpha }_{a+}f(x)\),

  2. 2.

    \(\lim_{\rho \rightarrow 0+} ^{\rho }I^{\alpha }_{a+}f(x)=H^{ \alpha }_{a+}f(x)\).

Lemma 1.7

([20])

For \(0<\alpha \leq 1\) and \(0\leq a< b\), we have

$$ \bigl\vert a^{\alpha }-b^{\alpha } \bigr\vert \leq (b-a)^{\alpha }. $$

We recall the classical beta functions:

$$ \beta (a,b)= \int_{0}^{1}x^{a-1}(1-x)^{b-1} \,dx. $$

We introduce the following generalization of beta function:

$$ ^{\rho }\gamma (a,b)= \int_{0}^{1}\bigl(x^{\rho } \bigr)^{a-1}\bigl(1-x^{\rho }\bigr)^{b-1}x ^{\rho -1}\,dx. $$

Note that as \(\rho \rightarrow 1\) then \(^{\rho }\gamma (a,b)\rightarrow \beta (a,b)\).

In this paper, we give the Hermite–Hadamard type inequalities for s-convex functions and for m-convex functions via generalized fractional integral. Throughout the paper, \(X^{p}_{c}(a,b)\) (\(c \in \mathbb{R}\), \(1\leq p\leq \infty \)) is the space as defined in Definition 1.5 and \(L_{1}[a,b]\) stands for the space of Lebesgue integrable over the closed interval \([a,b]\) where a, b are some real numbers with \(a< b\).

2 Hermite–Hadamard type inequalities for s-convex function

In this section we give Hermite–Hadamard type inequalities for s-convex function.

Theorem 2.1

Let \(\alpha >0\) and \(\rho >0\). Let \(f:[a^{\rho },b^{\rho }]\subset \mathbb{R}_{+}\rightarrow \mathbb{R}\) be a positive function with \(0\leq a< b\) and \(f\in X^{p}_{c}(a^{\rho },b^{\rho })\). If f is also an s-convex function on \([a^{\rho },b^{\rho }]\), then the following inequalities hold:

$$\begin{aligned} 2^{s-1}f \biggl( \frac{a^{\rho }+b^{\rho }}{2} \biggr) &\leq \frac{\rho^{\alpha }\Gamma (\alpha +1)}{2(b^{\rho }+a^{\rho })^{ \alpha }} \bigl[ {}^{\rho }I^{\alpha }_{a+}f \bigl(b^{\rho }\bigr)+{}^{\rho }I^{ \alpha }_{b-}f \bigl(a^{\rho }\bigr) \bigr] \\ & \leq \biggl[ \frac{\alpha }{\alpha +s}+\alpha \beta (\alpha,s+1) \biggr] \frac{f(a^{\rho })+f(b^{\rho })}{2}, \end{aligned}$$
(5)

where the fractional integrals are considered for the function \(f(x^{\rho })\) and evaluated at a and b, respectively.

Proof

Let \(t\in [0,1]\). Consider \(x,y\in [a,b]\), \(a\geq 0\), defined by \(x^{\rho }=t^{\rho }a^{\rho }+(1-t^{\rho })b^{\rho }\), \(y^{\rho }=t ^{\rho }b^{\rho }+(1-t^{\rho })a^{\rho }\). Since f is an s-convex function on \([a^{\rho },b^{\rho }]\), we have

$$ f \biggl( \frac{x^{\rho }+y^{\rho }}{2} \biggr) \leq \frac{f(x^{\rho })+f(y ^{\rho })}{2^{s}}. $$

Then we have

$$ 2^{s}f \biggl( \frac{a^{\rho }+b^{\rho }}{2} \biggr) \leq f \bigl(t^{\rho }a^{ \rho }+\bigl(1-t^{\rho } \bigr)b^{\rho }\bigr)+f\bigl(t^{\rho }b^{\rho }+ \bigl(1-t^{\rho }\bigr)a ^{\rho }\bigr). $$
(6)

Multiplying both sides of (6) by \(t^{\alpha \rho -1}\), \(\alpha >0\) and then integrating the resulting inequality with respect to t over \([0,1]\), we obtain

$$\begin{aligned} \frac{2^{s}}{\alpha \rho }f \biggl( \frac{a^{\rho }+b^{\rho }}{2} \biggr) \leq& \int^{1}_{0}t^{\alpha \rho -1}f\bigl(t^{\rho }a^{\rho }+ \bigl(1-t^{\rho }\bigr)b ^{\rho }\bigr)\,dt + \int^{1}_{0}t^{\alpha \rho -1}f\bigl(t^{\rho }b^{\rho }+ \bigl(1-t ^{\rho }\bigr)a^{\rho }\bigr)\,dt \\ =& \int_{b}^{a} \biggl( \frac{b^{\rho }-x^{\rho }}{b^{\rho }-a^{\rho }} \biggr) ^{\alpha -1}f\bigl(x^{\rho }\bigr)\frac{x^{\rho -1}}{a^{\rho }-b^{\rho }}\,dx \\ &{}+ \int_{a}^{b} \biggl( \frac{y^{\rho }-a^{\rho }}{b^{\rho }-a^{\rho }} \biggr) ^{\alpha -1}f\bigl(y^{\rho }\bigr)\frac{y^{\rho -1}}{b^{\rho }-a^{\rho }}\,dy \\ =&\frac{\rho^{\alpha -1}\Gamma (\alpha)}{(b^{\rho }+a^{\rho })^{ \alpha }} \bigl[ {}^{\rho }I^{\alpha }_{a+}f \bigl(b^{\rho }\bigr)+{}^{\rho }I^{ \alpha }_{b-}f \bigl(a^{\rho }\bigr) \bigr] . \end{aligned}$$
(7)

This establishes the first inequality. For the proof of the second inequality in (5), we first observe that for an s-convex function f, we have

$$ f\bigl(t^{\rho }a^{\rho }+\bigl(1-t^{\rho } \bigr)b^{\rho }\bigr)\leq \bigl( t^{\rho } \bigr) ^{s}f \bigl(a^{\rho }\bigr)+ \bigl( 1-t^{\rho } \bigr) ^{s}f \bigl(b^{\rho }\bigr) $$

and

$$ f\bigl(t^{\rho }b^{\rho }+\bigl(1-t^{\rho } \bigr)a^{\rho }\bigr)\leq \bigl( t^{\rho } \bigr) ^{s}f \bigl(b^{\rho }\bigr)+ \bigl( 1-t^{\rho } \bigr) ^{s}f \bigl(a^{\rho }\bigr). $$

By adding these inequalities, we get

$$ f\bigl(t^{\rho }a^{\rho }+\bigl(1-t^{\rho } \bigr)b^{\rho }\bigr)+f\bigl(t^{\rho }b^{\rho }+\bigl(1-t ^{\rho }\bigr)a^{\rho }\bigr)\leq \bigl( \bigl( t^{\rho } \bigr) ^{s}+ \bigl( 1-t ^{\rho } \bigr) ^{s} \bigr) \bigl[ f\bigl(a^{\rho }\bigr)+f\bigl(b^{\rho }\bigr) \bigr] . $$
(8)

Multiplying both sides of (8) by \(t^{\alpha \rho -1}\), \(\alpha >0\) and then integrating the resulting inequality with respect to t over \([0,1]\), we obtain

$$\begin{aligned}& \frac{\rho^{\alpha -1}\Gamma (\alpha)}{(b^{\rho }+a^{\rho })^{\alpha }} \bigl[ {}^{\rho }I^{\alpha }_{a+}f \bigl(b^{\rho }\bigr)+{}^{\rho }I^{\alpha }_{b-}f\bigl(a ^{\rho }\bigr) \bigr] \\& \quad \leq \int^{1}_{0}t^{\alpha \rho -1} \bigl( \bigl( t^{ \rho } \bigr) ^{s}+ \bigl( 1-t^{\rho } \bigr) ^{s} \bigr) \bigl[ f\bigl(a^{ \rho }\bigr)+f\bigl(b^{\rho } \bigr) \bigr]\,dt. \end{aligned}$$
(9)

Since

$$ \int^{1}_{0}t^{\alpha \rho +s\rho -1}\,dt= \frac{1}{\rho (\alpha +s)}, $$

and by choosing the change of variable \(t^{\rho }=z\), we have

$$ \int^{1}_{0}t^{\alpha \rho -1} \bigl( 1-t^{\rho } \bigr) ^{s}\,dt= \frac{ \beta (\alpha,s+1)}{\rho }. $$

Thus (9) becomes

$$ \frac{\rho^{\alpha -1}\Gamma (\alpha)}{(b^{\rho }+a^{\rho })^{\alpha }} \bigl[ {}^{\rho }I^{\alpha }_{a+}f \bigl(b^{\rho }\bigr)+{}^{\rho }I^{\alpha }_{b-}f\bigl(a ^{\rho }\bigr) \bigr] \leq \frac{1}{\rho } \biggl[ \frac{1}{\alpha +s}+ \beta ( \alpha,s+1) \biggr] \bigl( f\bigl(a^{\rho }\bigr)+f \bigl(b^{\rho }\bigr) \bigr). $$
(10)

Thus (7) and (10) give (5). □

Remark 2.2

By letting \(\rho \rightarrow 1\) in (5) of Theorem 2.1, we get Theorem 3 of [22].

Theorem 2.3

Let \(\alpha >0\) and \(\rho >0\). Let \(f:[a^{\rho },b^{\rho }]\subset \mathbb{R}_{+}\rightarrow \mathbb{R}\) be a differentiable mapping on \((a^{\rho },b^{\rho })\) with \(0\leq a< b\). If \(|f'|\) is s-convex on \([a^{\rho },b^{\rho }]\), then the following inequality holds:

$$\begin{aligned}& \biggl\vert \frac{f(a^{\rho })+f(b^{\rho })}{2}-\frac{\rho^{\alpha }\Gamma (\alpha +1)}{2(b^{\rho }+a^{\rho })^{\alpha }} \bigl[{} ^{\rho }I^{ \alpha }_{a+}f\bigl(b^{\rho } \bigr)+{}^{\rho }I^{\alpha }_{b-}f\bigl(a^{\rho }\bigr) \bigr] \biggr\vert \\& \quad \leq \frac{b^{\rho }-a^{\rho }}{2} \biggl[ \frac{1}{\alpha +s+1}+ \beta (\alpha +1,s+1) \biggr] \bigl( \bigl\vert f'\bigl(a^{\rho }\bigr) \bigr\vert + \bigl\vert f'\bigl(b^{\rho }\bigr) \bigr\vert \bigr). \end{aligned}$$
(11)

Proof

From (7) one can have

$$\begin{aligned} &\frac{\rho^{\alpha -1}\Gamma (\alpha)}{(b^{\rho }+a^{\rho })^{ \alpha }} \bigl[ {}^{\rho }I^{\alpha }_{a+}f \bigl(b^{\rho }\bigr)+{}^{\rho }I^{ \alpha }_{b-}f \bigl(a^{\rho }\bigr) \bigr] \\ &\quad = \int^{1}_{0}t^{\alpha \rho -1}f\bigl(t^{\rho }a^{\rho }+ \bigl(1-t^{\rho }\bigr)b ^{\rho }\bigr)\,dt + \int^{1}_{0}t^{\alpha \rho -1}f\bigl(t^{\rho }b^{\rho }+ \bigl(1-t ^{\rho }\bigr)a^{\rho }\bigr)\,dt. \end{aligned}$$
(12)

Integrating by parts, we get

$$\begin{aligned}& \frac{f(a^{\rho })+f(b^{\rho })}{\alpha \rho }-\frac{\rho^{\alpha -1} \Gamma (\alpha)}{(b^{\rho }+a^{\rho })^{\alpha }} \bigl[ {}^{\rho }I ^{\alpha }_{a+}f\bigl(b^{\rho }\bigr)+{}^{\rho }I^{\alpha }_{b-}f \bigl(a^{\rho }\bigr) \bigr] \\& \quad =\frac{b^{\rho }-a^{\rho }}{\alpha } \int_{0}^{1}t^{\rho (\alpha +1)-1} \bigl[ f'\bigl(t^{\rho }b^{\rho }+\bigl(1-t^{\rho } \bigr)a^{\rho }\bigr)-f'\bigl(t^{\rho }a^{ \rho }+ \bigl(1-t^{\rho }\bigr)b^{\rho }\bigr) \bigr]\,dt. \end{aligned}$$
(13)

By using the triangle inequality and s-convexity of \(|f'|\) and the change of variable \(t^{\rho }=z\), we obtain

$$\begin{aligned} & \biggl\vert \frac{f(a^{\rho })+f(b^{\rho }}{\alpha \rho }-\frac{ \rho^{\alpha -1}\Gamma (\alpha)}{(b^{\rho }+a^{\rho })^{\alpha }} \bigl[{} ^{\rho }I^{\alpha }_{a+}f\bigl(b^{\rho } \bigr)+{}^{\rho }I^{\alpha }_{b-}f\bigl(a ^{\rho }\bigr) \bigr] \biggr\vert \\ &\quad \leq \frac{b^{\rho }-a^{\rho }}{\alpha } \int_{0}^{1}t^{\rho (\alpha +1)-1} \bigl\vert \bigl[ f'\bigl(t^{\rho }b^{\rho }+\bigl(1-t^{\rho } \bigr)a^{\rho }\bigr) -f'\bigl(t ^{\rho }a^{\rho }+ \bigl(1-t^{\rho }\bigr)b^{\rho }\bigr) \bigr] \bigr\vert \,dt \\ &\quad \leq \frac{b^{\rho }-a^{\rho }}{\alpha } \int_{0}^{1}t^{\rho (\alpha +1)-1} \bigl[ \bigl\vert f'\bigl(t^{\rho }b^{\rho }+\bigl(1-t^{\rho } \bigr)a^{\rho }\bigr) \bigr\vert + \bigl\vert f'\bigl(t ^{\rho }a^{\rho }+\bigl(1-t^{\rho }\bigr)b^{\rho } \bigr) \bigr\vert \bigr]\,dt \\ &\quad \leq \frac{b^{\rho }-a^{\rho }}{\alpha } \int_{0}^{1}t^{\rho (\alpha +1)-1} \bigl[ \bigl(t^{\rho }\bigr)^{s} \bigl\vert f' \bigl(b^{\rho }\bigr) \bigr\vert +\bigl(1-t^{\rho } \bigr)^{s} \bigl\vert f'\bigl(a^{\rho }\bigr) \bigr\vert \\ &\qquad {}+\bigl(t^{\rho }\bigr)^{s} \bigl\vert f'\bigl(a^{\rho }\bigr) \bigr\vert +\bigl(1-t^{\rho } \bigr)^{s} \bigl\vert f'\bigl(b^{\rho }\bigr) \bigr\vert \bigr]\,dt \\ &\quad =\frac{b^{\rho }-a^{\rho }}{\alpha } \int_{0}^{1}t^{\rho (\alpha +1)-1} \bigl[ \bigl(t^{\rho }\bigr)^{s}+\bigl(1-t^{\rho } \bigr)^{s} \bigr] \bigl[ \bigl\vert f' \bigl(a^{\rho }\bigr) \bigr\vert + \bigl\vert f'\bigl(b ^{\rho }\bigr) \bigr\vert \bigr]\,dt \\ &\quad =\frac{b^{\rho }-a^{\rho }}{\alpha \rho } \biggl[ \frac{1}{\alpha +s+1}+ \beta (\alpha +1,s+1) \biggr] \bigl[ \bigl\vert f'\bigl(a^{\rho }\bigr) \bigr\vert + \bigl\vert f'\bigl(b^{\rho }\bigr) \bigr\vert \bigr] . \end{aligned}$$
(14)

 □

Corollary 2.4

Under the same assumptions of Theorem 2.3.

  1. 1.

    If \(\rho =1\), then

    $$\begin{aligned} & \biggl\vert \frac{f(a)+f(b)}{2}- \frac{\Gamma (\alpha +1)}{2(b+a)^{\alpha }} \bigl[ J^{\alpha }_{a+}f(b)+J ^{\alpha }_{b-}f(a) \bigr] \biggr\vert \\ &\quad \leq \frac{b-a}{2} \biggl[ \frac{1}{\alpha +s+1}+\beta (\alpha +1,s+1) \biggr] \bigl( \bigl\vert f'(a) \bigr\vert + \bigl\vert f'(b) \bigr\vert \bigr). \end{aligned}$$
    (15)
  2. 2.

    If \(\rho =s=1\), then

    $$\begin{aligned} & \biggl\vert \frac{f(a)+f(b)}{2}- \frac{\Gamma (\alpha +1)}{2(b+a)^{\alpha }} \bigl[ J^{\alpha }_{a+}f(b)+J ^{\alpha }_{b-}f(a) \bigr] \biggr\vert \\ &\quad \leq \frac{b-a}{2} \biggl[ \frac{1}{\alpha +2}+\beta (\alpha +1,2) \biggr] \bigl( \bigl\vert f'(a) \bigr\vert + \bigl\vert f'(b) \bigr\vert \bigr). \end{aligned}$$
    (16)
  3. 3.

    If \(\rho =s=\alpha =1\), then

    $$ \biggl\vert \frac{f(a)+f(b)}{2}-\frac{1}{b+a} \int_{a}^{b}f(x)\,dx \biggr\vert \leq \frac{b-a}{4} \bigl( \bigl\vert f'(a) \bigr\vert + \bigl\vert f'(b) \bigr\vert \bigr). $$
    (17)

In order to prove our further results, we need the following lemma.

Lemma 2.5

Let \(\alpha >0\) and \(\rho >0\). Let \(f:[a^{\rho },b^{\rho }]\subset \mathbb{R}_{+}\rightarrow \mathbb{R}\) be a differentiable mapping on \((a^{\rho },b^{\rho })\) with \(0\leq a< b\). Then the following equality holds if the fractional integrals exist:

$$\begin{aligned}& \frac{f(a^{\rho })+f(b^{\rho })}{2}-\frac{\rho^{\alpha }\Gamma ( \alpha +1)}{2(b^{\rho }+a^{\rho })^{\alpha }} \bigl[ {}^{\rho }I^{\alpha }_{a+}f \bigl(b^{\rho }\bigr)+{}^{\rho }I^{\alpha }_{b-}f \bigl(a^{\rho }\bigr) \bigr] \\& \quad =\frac{\rho (b^{\rho }-a^{\rho })}{2} \int_{0}^{1} \bigl[ \bigl(1-t^{\rho } \bigr)^{ \alpha }-\bigl(t^{\rho }\bigr)^{\alpha } \bigr] t^{\rho -1}f'\bigl(t^{\rho }a^{ \rho }+ \bigl(1-t^{\rho }\bigr)b^{\rho }\bigr)\,dt. \end{aligned}$$
(18)

Proof

By using the similar arguments as in the proof of Lemma 2 in [18]. First consider

$$\begin{aligned} & \int_{0}^{1}\bigl(1-t^{\rho } \bigr)^{\alpha }t^{\rho -1}f'\bigl(t^{\rho }a^{\rho }+ \bigl(1-t ^{\rho }\bigr)b^{\rho }\bigr)\,dt \\ &\quad =\frac{(1-t^{\rho })^{\alpha }f(t^{\rho }a^{\rho }+(1-t^{\rho })b ^{\rho })}{\rho (a^{\rho }-b^{\rho })}\bigg|_{0}^{1} \\ &\qquad {} +\frac{\alpha }{a ^{\rho }-b^{\rho }} \int_{0}^{1}\bigl(1-t^{\rho } \bigr)^{\alpha -1}t^{\rho -1}f\bigl(t ^{\rho }a^{\rho }+ \bigl(1-t^{\rho }\bigr)b^{\rho }\bigr)\,dt \\ &\quad =\frac{f(b^{\rho })}{\rho (b^{\rho }-a^{\rho })}-\frac{\alpha }{b ^{\rho }-a^{\rho }} \int_{b}^{a} \biggl( \frac{x^{\rho }-a^{\rho }}{b ^{\rho }-a^{\rho }} \biggr) ^{\alpha -1}\cdot \frac{x^{\rho -1}}{a^{ \rho }-b^{\rho }}\,dx \\ &\quad =\frac{f(b^{\rho })}{\rho (b^{\rho }-a^{\rho })}-\frac{\rho^{\alpha -1}\Gamma (\alpha +1)}{(b^{\rho }-a^{\rho })^{\alpha +1}}\cdot{}^{ \rho }I_{b-}^{\alpha }f \bigl(x^{\rho }\bigr)\bigg|_{x=a}. \end{aligned}$$
(19)

Similarly, we can show that

$$\begin{aligned}& \int_{0}^{1}t^{\rho \alpha }\cdot t^{\rho -1}f'\bigl(t^{\rho }a^{\rho }+\bigl(1-t ^{\rho }\bigr)b^{\rho }\bigr)\,dt \\& \quad = - \frac{f(a^{\rho })}{\rho (b^{\rho }-a^{\rho })}+ \frac{\rho^{\alpha -1} \Gamma (\alpha +1)}{(b^{\rho }-a^{\rho })^{\alpha +1}}\cdot^{\rho }I _{a+}^{\alpha }f \bigl(x^{\rho }\bigr)\bigg|_{x=b}. \end{aligned}$$
(20)

Thus from (19) and (20) we get (18). □

Remark 2.6

By taking \(\rho =1\) in (18) of Lemma 2.5, we get Lemma 2 in [17].

Throughout all other results we denote

$$ I_{f}(\alpha,\rho,a,b)=\frac{f(a^{\rho })+f(b^{\rho })}{2}-\frac{ \rho^{\alpha }\Gamma (\alpha +1)}{2(b^{\rho }+a^{\rho })^{\alpha }} \bigl[ {}^{\rho }I^{\alpha }_{a+}f\bigl(b^{\rho } \bigr)+{}^{\rho }I^{\alpha }_{b-}f\bigl(a ^{\rho }\bigr) \bigr] . $$

Theorem 2.7

Let \(\alpha >0\) and \(\rho >0\). Let \(f:[a^{\rho },b^{\rho }]\subset \mathbb{R}_{+}\rightarrow \mathbb{R}\) be a differentiable mapping on \((a^{\rho },b^{\rho })\) such that \(f'\in L_{1}[a,b]\) with \(0\leq a< b\). If \(|f'|^{q}\) is s-convex on \([a^{\rho },b^{\rho }]\) for some fixed \(q\geq 1\), then the following inequality holds:

$$\begin{aligned} \bigl\vert I_{f}(\alpha,\rho,a,b) \bigr\vert \leq{}& \frac{\rho (b^{\rho }-a ^{\rho })}{2}\biggl(\frac{1}{\rho (\alpha +1)}\biggr)^{1-1/q} \\ &{}\times \biggl( \biggl( {}^{\rho }\gamma (s+1,\alpha +1)+ \frac{1}{\rho ( \alpha +s+1)} \biggr) \bigl\vert f'\bigl(a^{\rho } \bigr) \bigr\vert ^{q} \\ &{}+ \bigl( {}^{\rho }\gamma (1,\alpha +s+1)+ {}^{\rho }\gamma (\alpha +1,s+1) \bigr) \bigl\vert f'\bigl(b^{\rho }\bigr) \bigr\vert ^{q} \biggr)^{1/q}. \end{aligned}$$
(21)

Proof

Using Lemma 2.5 and the power mean inequality and s-convexity of \(|f'|^{q}\), we obtain

$$\begin{aligned} & \bigl\vert I_{f}(\alpha,\rho,a,b) \bigr\vert \\ &\quad = \biggl\vert \frac{\rho (b^{\rho }-a^{\rho })}{2} \int_{0}^{1} \bigl\{ \bigl(1-t ^{\rho } \bigr)^{\alpha }-\bigl(t^{\rho }\bigr)^{\alpha } \bigr\} t^{\rho -1}f'\bigl(t^{ \rho }a^{\rho }+ \bigl(1-t^{\rho }\bigr)b^{\rho }\bigr)\,dt \biggr\vert \\ &\quad \leq \frac{\rho (b^{\rho }-a^{\rho })}{2} \biggl( \int_{0}^{1} \bigl\vert \bigl(1-t ^{\rho } \bigr)^{\alpha }-\bigl(t^{\rho }\bigr)^{\alpha } \bigr\vert t^{\rho -1}\,dt \biggr) ^{1-1/q} \\ &\qquad {}\times \biggl( \int_{0}^{1} \bigl\vert \bigl(1-t^{\rho } \bigr)^{\alpha }-\bigl(t^{\rho }\bigr)^{ \alpha } \bigr\vert t^{\rho -1} \bigl\vert f'\bigl(t^{\rho }a^{\rho }+ \bigl(1-t^{\rho }\bigr)b^{ \rho }\bigr) \bigr\vert ^{q} \,dt \biggr) ^{1/q} \\ &\quad \leq \frac{\rho (b^{\rho }-a^{\rho })}{2} \biggl( \int_{0}^{1} \bigl\{ \bigl(1-t ^{\rho } \bigr)^{\alpha }+\bigl(t^{\rho }\bigr)^{\alpha } \bigr\} t^{\rho -1}\,dt \biggr) ^{1-1/q} \\ &\qquad {}\times \biggl( \int_{0}^{1} \bigl\{ \bigl(1-t^{\rho } \bigr)^{\alpha }+\bigl(t^{\rho }\bigr)^{ \alpha } \bigr\} t^{\rho -1} \bigl[\bigl(t^{\rho }\bigr)^{s} \bigl\vert f'\bigl(a^{\rho }\bigr) \bigr\vert ^{q}+ \bigl(1-t ^{\rho }\bigr)^{s} \bigl\vert f' \bigl(b^{\rho }\bigr) \bigr\vert ^{q} \bigr]\,dt \biggr) ^{1/q} \\ &\quad =\frac{\rho (b^{\rho }-a^{\rho })}{2}\biggl(\frac{1}{\rho (\alpha +1)} \biggr)^{1-1/q} \\ &\qquad {}\times \biggl( \biggl( {}^{\rho }\gamma (s+1,\alpha +1)+\frac{1}{\rho ( \alpha +s+1)} \biggr) \bigl\vert f'\bigl(a^{\rho }\bigr) \bigr\vert ^{q} \\ &\qquad {}+ \bigl( {}^{\rho }\gamma (1,\alpha +s+1)+ {}^{\rho }\gamma (\alpha +1,s+1) \bigr) \bigl\vert f'\bigl(b^{\rho }\bigr) \bigr\vert ^{q} \biggr)^{1/q}. \end{aligned}$$
(22)

Hence the proof is completed. □

Corollary 2.8

Under the similar conditions of Theorem 2.7.

  1. 1.

    If \(\rho =1\), then

    $$\begin{aligned} & \biggl\vert \frac{f(a)+f(b)}{2}- \frac{\Gamma (\alpha +1)}{2(b+a)^{\alpha }} \bigl[ J^{\alpha }_{a+}f(b)+J ^{\alpha }_{b-}f(a) \bigr] \biggr\vert \\ &\quad \leq \frac{ (b-a)}{2}\biggl(\frac{1}{(\alpha +1)}\biggr)^{1-1/q} \times \biggl( \biggl( \beta (s+1,\alpha +1)+\frac{1}{(\alpha +s+1)} \biggr) \bigl\vert f'(a) \bigr\vert ^{q} \\ &\qquad {}+ \bigl(\beta (1,\alpha +s+1)+ \beta (\alpha +1,s+1) \bigr) \bigl\vert f'(b) \bigr\vert ^{q} \biggr)^{1/q}. \end{aligned}$$
  2. 2.

    If \(\rho =s=1\), then

    $$\begin{aligned} & \biggl\vert \frac{f(a)+f(b)}{2}- \frac{\Gamma (\alpha +1)}{2(b+a)^{\alpha }} \bigl[ J^{\alpha }_{a+}f(b)+J ^{\alpha }_{b-}f(a) \bigr] \biggr\vert \\ &\quad \leq \frac{ (b-a)}{2}\biggl(\frac{1}{(\alpha +1)}\biggr)^{1-1/q} \times \biggl( \biggl( \beta (2,\alpha +1)+\frac{1}{(\alpha +2)} \biggr) \bigl\vert f'(a) \bigr\vert ^{q} \\ &\qquad {}+ \bigl(\beta (1,\alpha +2)+ \beta (\alpha +1,2) \bigr) \bigl\vert f'(b) \bigr\vert ^{q} \biggr)^{1/q}. \end{aligned}$$
  3. 3.

    If \(\rho =s=\alpha =1\), then

    $$ \biggl\vert \frac{f(a)+f(b)}{2}-\frac{1}{b+a} \int_{a}^{b} f(x)\,dx \biggr\vert \leq \frac{ (b-a)}{2^{2-1/q}} \times \biggl( \frac{ \vert f'(a) \vert ^{q} + \vert f'(b) \vert ^{q}}{2} \biggr) ^{1/q}. $$

Theorem 2.9

Let \(\alpha >0\) and \(\rho >0\). Let \(f:[a^{\rho },b^{\rho }]\subset \mathbb{R}_{+}\rightarrow \mathbb{R}\) be a differentiable mapping on \((a^{\rho },b^{\rho })\) such that \(f'\in L_{1}[a,b]\) with \(0\leq a< b\). If \(|f'|^{q}\) is s-convex on \([a^{\rho },b^{\rho }]\) for some fixed \(q\geq 1\), then the following inequality holds:

$$\begin{aligned} & \bigl\vert I_{f}(\alpha, \rho,a,b) \bigr\vert \\ &\quad \leq \frac{\rho^{\frac{1}{q}}(b^{\rho }-a^{\rho })}{2} \biggl( \biggl[ \beta (s+1, \alpha +1)+ \frac{1}{\alpha +s+1} \biggr] \bigl[ \bigl\vert f' \bigl(a^{\rho }\bigr) \bigr\vert ^{q}+ \bigl\vert f'\bigl(b^{ \rho }\bigr) \bigr\vert ^{q}\bigr] \biggr) ^{1/q}. \end{aligned}$$
(23)

Proof

Using Lemma 2.5, the property of modulus, the power mean inequality, and the fact that \(|f'|^{q}\) is an s-convex function, we have

$$\begin{aligned} & \bigl\vert I_{f}(\alpha, \rho,a,b) \bigr\vert \\ &\quad \leq \biggl\vert \frac{\rho (b^{\rho }-a^{\rho })}{2} \int_{0}^{1} \bigl\{ \bigl(1-t ^{\rho } \bigr)^{\alpha }-\bigl(t^{\rho }\bigr)^{\alpha } \bigr\} t^{\rho -1} \bigl\vert f'\bigl(t ^{\rho }a^{\rho }+ \bigl(1-t^{\rho }\bigr)b^{\rho }\bigr) \bigr\vert \,dt \biggr\vert \\ &\quad \leq \frac{\rho (b^{\rho }-a^{\rho })}{2} \biggl( \int_{0}^{1}t^{ \rho -1}\,dt \biggr) ^{1-1/q} \\ &\qquad {}\times \biggl( \int_{0}^{1} \bigl\{ \bigl(1-t^{\rho } \bigr)^{ \alpha }-\bigl(t^{\rho }\bigr)^{\alpha } \bigr\} \bigl\vert f'\bigl(t^{\rho }a^{\rho }+\bigl(1-t ^{\rho }\bigr)b^{\rho }\bigr) \bigr\vert ^{q}\,dt \biggr) ^{1/q} \\ &\quad \leq \frac{\rho (b^{\rho }-a^{\rho })}{2}\frac{1}{\rho^{1-1/q}} \\ &\qquad {}\times \biggl( \int_{0}^{1} \bigl\{ \bigl(1-t^{\rho } \bigr)^{\alpha }+\bigl(t^{\rho }\bigr)^{\alpha } \bigr\} \bigl[ \bigl(t^{\rho }\bigr)^{s} \bigl\vert f' \bigl(a^{\rho }\bigr) \bigr\vert ^{q}+\bigl(1-t^{\rho } \bigr)^{s} \bigl\vert f'\bigl(b ^{\rho }\bigr) \bigr\vert ^{q} \bigr]\,dt \biggr) ^{1/q} \\ &\quad =\frac{\rho^{\frac{1}{q}}(b^{\rho }-a^{\rho })}{2} \biggl( \bigl\vert f' \bigl(a^{ \rho }\bigr) \bigr\vert ^{q} \int_{0}^{1} \bigl\{ \bigl(1-t^{\rho } \bigr)^{\alpha }\bigl(t^{\rho }\bigr)^{s} + \bigl(t^{\rho }\bigr)^{\alpha }\bigl(t^{\rho } \bigr)^{s} \bigr\} \,dt \\ &\qquad {}+ \bigl\vert f'\bigl(b^{\rho }\bigr) \bigr\vert ^{q} \int_{0}^{1} \bigl\{ \bigl(1-t^{\rho } \bigr)^{\alpha }\bigl(1-t ^{\rho }\bigr)^{s} + \bigl(t^{\rho }\bigr)^{\alpha }\bigl(1-t^{\rho } \bigr)^{s} \bigr\} \,dt \biggr)^{1/q} \\ &\quad =\frac{\rho^{\frac{1}{q}}(b^{\rho }-a^{\rho })}{2} \bigl( A \bigl\vert f' \bigl(a^{ \rho }\bigr) \bigr\vert ^{q}+B \bigl\vert f'\bigl(b^{\rho }\bigr) \bigr\vert ^{q} \bigr) ^{1/q}. \end{aligned}$$
(24)

By using the change of variable \(t^{\rho }=z\), we get

$$ A= \int_{0}^{1} \bigl\{ \bigl(1-t^{\rho } \bigr)^{\alpha }\bigl(t^{\rho }\bigr)^{s} + \bigl(t^{ \rho }\bigr)^{\alpha }\bigl(t^{\rho } \bigr)^{s} \bigr\} \,dt=\beta (s+1,\alpha +1)+\frac{1}{ \alpha +s+1} $$

and

$$ B= \int_{0}^{1} \bigl\{ \bigl(1-t^{\rho } \bigr)^{\alpha }\bigl(1-t^{\rho }\bigr)^{s} + \bigl(t^{ \rho }\bigr)^{\alpha }\bigl(1-t^{\rho } \bigr)^{s} \bigr\} \,dt=\beta (\alpha +1,s+1)+\frac{1}{ \alpha +s+1}. $$

Thus substituting the values of A and B in (24) and applying the fact that \(\beta (a,b)=\beta (b,a)\), we get the desired result. □

Corollary 2.10

Under the similar conditions of Theorem 2.7.

  1. 1.

    If \(\rho =1\), then

    $$\begin{aligned} & \biggl\vert \frac{f(a)+f(b)}{2}- \frac{\Gamma (\alpha +1)}{2(b+a)^{\alpha }} \bigl[ J^{\alpha }_{a+}f(b)+J ^{\alpha }_{b-}f(a) \bigr] \biggr\vert \\ &\quad \leq \frac{(b-a)}{2} \biggl( \biggl[ \beta (s+1,\alpha +1)+ \frac{1}{ \alpha +s+1} \biggr] \bigl[ \bigl\vert f'(a) \bigr\vert ^{q}+ \bigl\vert f'(b) \bigr\vert ^{q} \bigr] \biggr) ^{1/q}. \end{aligned}$$
  2. 2.

    If \(\rho =s=1\), then

    $$\begin{aligned} & \biggl\vert \frac{f(a)+f(b)}{2}- \frac{\Gamma (\alpha +1)}{2(b+a)^{\alpha }} \bigl[ J^{\alpha }_{a+}f(b)+J ^{\alpha }_{b-}f(a) \bigr] \biggr\vert \\ &\quad \leq \frac{(b-a)}{2} \biggl( \biggl[ \beta (2,\alpha +1)+ \frac{1}{ \alpha +2} \biggr] \bigl[ \bigl\vert f'(a) \bigr\vert ^{q}+ \bigl\vert f'(b) \bigr\vert ^{q} \bigr] \biggr) ^{1/q}. \end{aligned}$$
  3. 3.

    If \(\rho =s=\alpha =1\), then

    $$ \biggl\vert \frac{f(a)+f(b)}{2}-\frac{1}{b+a} \int_{a}^{b} f(x)\,dx \biggr\vert \leq \frac{(b-a)}{2} \biggl( \frac{ \vert f'(a) \vert ^{q}+ \vert f'(b) \vert ^{q}}{2} \biggr) ^{1/q}. $$

3 Hermite–Hadamard type inequalities for m-convex function

In this section we give Hermite–Hadamard type inequalities for m-convex function.

Theorem 3.1

Let \(\alpha >0\) and \(\rho >0\). Let \(f:[a^{\rho },b^{\rho }]\subset \mathbb{R}_{+}\rightarrow \mathbb{R}\) be a positive function with \(0\leq a< b\) and \(f\in X^{p}_{c}(a^{\rho },b^{\rho })\). If f is also an m-convex function on \([a^{\rho },b^{\rho }]\), then the following inequalities hold:

$$\begin{aligned} f \biggl( \frac{m^{\rho }(a^{\rho }+b^{\rho })}{2} \biggr) & \leq \frac{\rho^{\alpha }\Gamma (\alpha +1)}{2((mb)^{\rho }-(ma)^{ \rho })^{\alpha }} {}^{\rho }I_{ma+}^{\alpha }f \bigl( (mb)^{\rho } \bigr) +\frac{m ^{\rho }\rho^{\alpha }\Gamma (\alpha +1)}{2(b^{\rho }-a^{\rho })^{ \alpha }} {}^{\rho }I_{b-}^{\alpha }f \bigl( a^{\rho } \bigr) \\ & \leq \frac{m^{\rho }}{2} \bigl( f\bigl(a^{\rho }\bigr)+f \bigl(b^{\rho }\bigr) \bigr). \end{aligned}$$
(25)

Proof

Since f is m-convex, we have

$$ f \biggl( \frac{x^{\rho }+m^{\rho }y^{\rho }}{2} \biggr) \leq \frac{f(x ^{\rho })+m^{\rho }f(y^{\rho })}{2}. $$

Let \(x^{\rho }=m^{\rho }t^{\rho }a^{\rho }+m^{\rho }(1-t^{\rho })b ^{\rho }\), \(y^{\rho }=t^{\rho }b^{\rho }+(1-t^{\rho })a^{\rho }\) with \(t\in [0,1]\). Then we obtain

$$ f \biggl( \frac{m^{\rho }(a^{\rho }+b^{\rho })}{2} \biggr) \leq \frac{f(m ^{\rho }t^{\rho }a^{\rho }+m^{\rho }(1-t^{\rho })b^{\rho }) +m^{ \rho }f(t^{\rho }b^{\rho }+(1-t^{\rho })a^{\rho })}{2}. $$
(26)

Multiplying both sides of (26) by \(t^{\alpha \rho -1}\), \(\alpha >0\) and then integrating the resulting inequality with respect to t over \([0,1]\), we obtain

$$\begin{aligned} &\frac{2}{\rho \alpha }f \biggl( \frac{m^{\rho }(a^{\rho }+b^{\rho })}{2} \biggr) \\ &\quad \leq \int_{0}^{1}t^{\alpha \rho -1}f\bigl(m^{\rho }t^{\rho }a^{\rho }+m ^{\rho }\bigl(1-t^{\rho }\bigr)b^{\rho }\bigr)\,dt+ m^{\rho } \int_{0}^{1}t^{\alpha \rho -1}f\bigl(t^{\rho }b^{\rho }+ \bigl(1-t^{\rho }\bigr)a^{\rho }\bigr)\,dt \\ &\quad = \int_{mb}^{ma} \biggl( \frac{x^{\rho }-(mb)^{\rho }}{(ma)^{\rho }-(mb)^{ \rho }} \biggr) ^{\alpha -1} x^{\rho -1}\frac{dx}{(ma)^{\rho }-(mb)^{ \rho }} \\ &\qquad {}+m^{\rho } \int_{a}^{b} \biggl( \frac{y^{\rho }-a^{\rho }}{b^{\rho }-a ^{\rho }} \biggr) ^{\alpha -1} y^{\rho -1} \frac{dy}{b^{\rho }-a^{\rho }} \\ &\quad =\frac{\rho^{\alpha -1}\Gamma (\alpha)}{((mb)^{\rho }-(ma)^{\rho })^{ \alpha }} {}^{\rho }I_{ma+}^{\alpha }f \bigl( (mb)^{\rho } \bigr) +\frac{m ^{\rho }\rho^{\alpha -1}\Gamma (\alpha)}{(b^{\rho }-a^{\rho })^{ \alpha }} {}^{\rho }I_{b-}^{\alpha }f \bigl( a^{\rho } \bigr). \end{aligned}$$
(27)

Now by multiplying both sides of (27) by \(\frac{\alpha \rho }{2}\), we get the first inequality of (25). For the second inequality, using m-convexity of f, we have

$$ f\bigl(m^{\rho }t^{\rho }a^{\rho }+m^{\rho } \bigl(1-t^{\rho }\bigr)b^{\rho }\bigr) +m^{ \rho }f\bigl( \bigl(1-t^{\rho }\bigr)a^{\rho }+t^{\rho }b^{\rho } \bigr) \leq m^{\rho } \bigl[ f\bigl(a^{\rho }\bigr)+f \bigl(b^{\rho }\bigr) \bigr] . $$
(28)

Multiplying both sides of (28) by \(t^{\alpha \rho -1}\), \(\alpha >0\) and then integrating the resulting inequality with respect to t over \([0,1]\), we obtain

$$\begin{aligned} &\frac{\rho^{\alpha -1}\Gamma (\alpha)}{((mb)^{\rho }-(ma)^{\rho })^{ \alpha }} {}^{\rho }I_{ma+}^{\alpha }f \bigl( (mb)^{\rho } \bigr) +\frac{m ^{\rho }\rho^{\alpha -1}\Gamma (\alpha)}{(b^{\rho }-a^{\rho })^{ \alpha }} {}^{\rho }I_{b-}^{\alpha }f \bigl( a^{\rho } \bigr) \\ &\quad \leq \frac{m^{\rho }}{\rho \alpha } \bigl( f\bigl(a^{\rho }\bigr)+f \bigl(b^{\rho }\bigr) \bigr). \end{aligned}$$
(29)

Now, by multiplying both sides of (29) by \(\frac{\alpha \rho }{2}\), we get the second inequality of (25). □

Corollary 3.2

Under the assumptions of Theorem 3.1, we have

  1. 1.

    For \(\rho =1\), then

    $$\begin{aligned} &f \biggl( \frac{m(a+b)}{2} \biggr) \\ &\quad \leq \frac{\Gamma (\alpha +1)}{2(mb-ma)^{\alpha }} J_{ma+}^{\alpha }f(mb)+ \frac{m\Gamma (\alpha +1)}{2(b-a)^{\alpha }} J_{b-}^{\alpha }f ( a ) \\ &\quad \leq \frac{m}{2} \bigl( f(a)+f(b) \bigr). \end{aligned}$$
    (30)
  2. 2.

    For \(\rho =\alpha =1\), then

    $$\begin{aligned} f \biggl( \frac{m(a+b)}{2} \biggr) &\leq \frac{1}{2(mb-ma)} \int_{ma}^{mb}f(x)\,dx +\frac{m}{2(b-a)} \int_{a}^{b}f(x)\,dx \\ & \leq \frac{m}{2} \bigl( f(a)+f(b) \bigr). \end{aligned}$$
    (31)

Remark 3.3

If we take \(m=1\) in (31) of Corollary (3.2)(2), then we get (2).

Theorem 3.4

Let \(\alpha >0\) and \(\rho >0\). Let \(f:[a^{\rho },b^{\rho }]\subset \mathbb{R}_{+}\rightarrow \mathbb{R}\) be a positive function with \(0\leq a< b\) and \(f\in X^{p}_{c}(a^{\rho },b^{\rho })\). If f is also an m-convex function on \([a^{\rho },b^{\rho }]\). Let \(F(x^{\rho },y ^{\rho })_{t^{\rho }}:[0,1]\rightarrow \mathbb{R}\) be defined as

$$ F\bigl(x^{\rho },y^{\rho }\bigr)_{t^{\rho }}=\frac{1}{2} \bigl[ f\bigl(t^{\rho }x^{ \rho }+m^{\rho } \bigl(1-t^{\rho }\bigr)y^{\rho }\bigr) +f\bigl(\bigl(1-t^{\rho } \bigr)x^{\rho }+m ^{\rho }t^{\rho }y^{\rho }\bigr) \bigr] . $$

Then we have

$$\begin{aligned} &\frac{1}{(b^{\rho }-a^{\rho })^{\alpha }} \int_{a}^{b}\bigl(b^{\rho }-u ^{\rho } \bigr)^{\alpha -1}u^{\rho -1} F \biggl( u^{\rho },\frac{a^{\rho }+b ^{\rho }}{2} \biggr) _{ ( \frac{b^{\rho }-u^{\rho }}{b^{\rho }-a^{ \rho }} ) }\,du \\ &\quad \leq \frac{\rho^{\alpha -1}\Gamma (\alpha)}{2(b^{\rho }-a^{\rho })^{ \alpha }} {}^{\rho }I_{a+}^{\alpha }f \bigl(b^{\rho }\bigr)+\frac{m}{2\rho \alpha }f \biggl( \frac{a^{\rho }+b^{\rho }}{2} \biggr). \end{aligned}$$
(32)

Proof

Since f is an m-convex function, we have

$$\begin{aligned} F\bigl(x^{\rho },y^{\rho } \bigr)_{t^{\rho }} &\leq \frac{1}{2} \bigl[ t^{\rho }f\bigl(x ^{\rho }\bigr)+m^{\rho }\bigl(1-t^{\rho }\bigr)f \bigl(y^{\rho }\bigr) +\bigl(1-t^{\rho }\bigr)f\bigl(x^{ \rho } \bigr)+m^{\rho }t^{\rho }f\bigl(y^{\rho }\bigr) \bigr] \\ & =\frac{1}{2} \bigl[ f\bigl(x^{\rho }\bigr)+m^{\rho }f \bigl(y^{\rho }\bigr) \bigr] , \end{aligned}$$

and also

$$ F \biggl( x^{\rho },\frac{a^{\rho }+b^{\rho }}{2} \biggr) _{t^{\rho }} \leq \frac{1}{2} \biggl[ f\bigl(x^{\rho }\bigr)+m^{\rho }f \biggl( \frac{a^{\rho }+b ^{\rho }}{2} \biggr) \biggr] . $$

Take \(x^{\rho }=t^{\rho }a^{\rho }+(1-t^{\rho })b^{\rho }\), we have

$$ F \biggl( t^{\rho }a^{\rho }+\bigl(1-t^{\rho } \bigr)b^{\rho },\frac{a^{\rho }+b ^{\rho }}{2} \biggr) _{t^{\rho }}\leq \frac{1}{2} \biggl[ f\bigl(t^{\rho }a^{ \rho }+ \bigl(1-t^{\rho }\bigr)b^{\rho }\bigr)+m^{\rho }f \biggl( \frac{a^{\rho }+b^{ \rho }}{2} \biggr) \biggr] . $$
(33)

Multiplying both sides of (33) by \(t^{\alpha \rho -1}\), \(\alpha >0\) and then integrating the resulting inequality with respect to t over \([0,1]\), we obtain

$$\begin{aligned} & \int_{0}^{1}t^{\alpha \rho -1}F \biggl( t^{\rho }a^{\rho }+\bigl(1-t^{\rho }\bigr)b ^{\rho }, \frac{a^{\rho }+b^{\rho }}{2} \biggr) _{t^{\rho }}\,dt \\ &\quad \leq \frac{1}{2} \int_{0}^{1}t^{\alpha \rho -1} \biggl[ f \bigl(t^{\rho }a ^{\rho }+\bigl(1-t^{\rho } \bigr)b^{\rho }\bigr) +m^{\rho }f \biggl( \frac{a^{\rho }+b ^{\rho }}{2} \biggr) \biggr]\,dt. \end{aligned}$$
(34)

Then, by the change of variable \(u^{\rho }=t^{\rho }a^{\rho }+(1-t ^{\rho })b^{\rho }\), we get the desired inequality (32). □

Remark 3.5

By taking \(\rho =1\) in (32) of Theorem 3.4, we get Theorem 6 in [22].

4 Applications to special means

In this section, we consider some applications to our results. Here we consider the following means:

  1. (1)

    The arithmetic mean:

    $$ A(a,b)=\frac{a+b}{2}; \quad a,b\in \mathbb{R}. $$
  2. (2)

    The logarithmic mean:

    $$ L(a,b)=\frac{\ln \vert b \vert -\ln \vert a \vert }{b-a}; \quad a,b\in \mathbb{R}, \vert a \vert \neq \vert b \vert , a,b\neq 0. $$
  3. (3)

    The generalized log mean:

    $$ L_{n}(a,b)= \biggl[ \frac{b^{n+1}-a^{n+1}}{(n+1)(b-a)} \biggr] ^{1/n} ;\quad a,b\in \mathbb{R}, n\in \mathbb{Z}\setminus \{-1,0\}, a,b\neq 0. $$

Proposition 4.1

Let \(a,b\in \mathbb{R}\), \(a< b\), \(0\notin [a,b]\), and \(n\in \mathbb{Z}\), \(|n|\geq 2\), then

$$ \biggl\vert A\bigl(a^{n},b^{n}\bigr)- \frac{b-a}{b+a}L_{n}^{n}(a,b) \biggr\vert \leq \frac{ \vert n \vert (b-a)}{2}A \bigl( \vert a \vert ^{n-1}, \vert b \vert ^{n-1} \bigr). $$
(35)

Proof

By taking \(f(x)=x^{n}\) in Corollary 2.4(3), we get the required result. □

Proposition 4.2

Let \(a,b\in \mathbb{R}\), \(a< b\), \(0\notin [a,b]\), and \(n\in \mathbb{Z}\), \(|n|\geq 2\). Then, for \(q\geq 1\), we have

$$ \biggl\vert A\bigl(a^{n},b^{n}\bigr)- \frac{b-a}{b+a}L_{n}^{n}(a,b) \biggr\vert \leq \frac{ \vert n \vert (b-a)}{2^{2-1/q}}A^{1/q} \bigl( \vert a \vert ^{q(n-1)}, \vert b \vert ^{q(n-1)} \bigr). $$
(36)

Proof

By taking \(f(x)=x^{n}\) in Corollary 2.8(3), we get the required result. □

Proposition 4.3

Let \(a,b\in \mathbb{R}\), \(a< b\), \(0\notin [a,b]\), and \(n\in \mathbb{Z}\), \(|n|\geq 2\). Then, for \(q\geq 1\), we have

$$ \biggl\vert A\bigl(a^{n},b^{n}\bigr)- \frac{b-a}{b+a}L_{n}^{n}(a,b) \biggr\vert \leq \frac{ \vert n \vert (b-a)}{2}A^{1/q} \bigl( \vert a \vert ^{q(n-1)}, \vert b \vert ^{q(n-1)} \bigr). $$
(37)

Proof

By taking \(f(x)=x^{n}\) in Corollary 2.10(3), we get the required result. □

Proposition 4.4

Let \(a,b\in \mathbb{R}\), \(a< b\), \(0\notin [a,b]\), and \(n\in \mathbb{Z}\), \(m\in [0,1]\), then we have

$$ f\bigl(mA(a,b)\bigr)\leq \frac{1}{2}L_{n}^{n}(ma,mb)+ \frac{m}{2}L_{n}^{n}(a,b) \leq mA \bigl(a^{n},b^{n}\bigr). $$
(38)

Proof

By taking \(f(x)=x^{n}\) in Corollary 3.2(2), we get the required result. □

Proposition 4.5

Let \(a,b\in \mathbb{R}\), \(a< b\), \(0\notin [a,b]\), then

$$ \biggl\vert A\bigl(a^{-1},b^{-1}\bigr)- \frac{b-a}{b+a}L(a,b) \biggr\vert \leq \frac{b-a}{2}A \bigl( \vert a \vert ^{-2}, \vert b \vert ^{-2} \bigr). $$
(39)

Proof

By taking \(f(x)=\frac{1}{x}\) in Corollary 2.4(3), we get the required result. □

Proposition 4.6

Let \(a,b\in \mathbb{R}\), \(a< b\), \(0\notin [a,b]\). Then, for \(q\geq 1\), we have

$$ \biggl\vert A\bigl(a^{-1},b^{-1}\bigr)- \frac{b-a}{b+a}L(a,b) \biggr\vert \leq \frac{b-a}{2^{2-1/q}}A^{1/q} \bigl( \vert a \vert ^{-2q}, \vert b \vert ^{-2q} \bigr). $$
(40)

Proof

By taking \(f(x)=\frac{1}{x}\) in Corollary 2.8(3), we get the required result. □

Proposition 4.7

Let \(a,b\in \mathbb{R}\), \(a< b\), \(0\notin [a,b]\). Then, for \(q\geq 1\), we have

$$ \biggl\vert A\bigl(a^{-1},b^{-1}\bigr)- \frac{b-a}{b+a}L(a,b) \biggr\vert \leq \frac{b-a}{2}A^{1/q} \bigl( \vert a \vert ^{-2q}, \vert b \vert ^{-2q} \bigr). $$
(41)

Proof

By taking \(f(x)=\frac{1}{x}\) in Corollary 2.10(3), we get the required result. □

Proposition 4.8

Let \(a,b\in \mathbb{R}\), \(a< b\), \(0\notin [a,b]\), and \(m\in [0,1]\), then we have

$$ f\bigl(mA\bigl(a^{-1},b^{-1}\bigr)\bigr)\leq \frac{1}{2}L(ma,mb)+\frac{m}{2}L(a,b)\leq mA\bigl(a ^{-1},b^{-1}\bigr). $$
(42)

Proof

By taking \(f(x)=\frac{1}{x}\) in Corollary 3.2(2), we get the required result. □

5 Conclusion

In Sect. 2, some Hermite–Hadamard type inequalities for s-convex functions in a generalized fractional form were obtained. In Corollaries 2.4, 2.8, and 2.10, we obtained some new results related to s-convex functions, convex functions via Riemann–Liouville fractional integrals and via classical integrals. In Sect. 3, we established a Hermite–Hadamard type inequality for m-convex functions in generalized fractional integrals. In Corollary 3.2, a new Hermite–Hadamard type inequality for m-convex functions via Riemann–Liouville fractional integrals and via classical integrals was proved.