1 Introduction

Let \(f(x,y)\) be a 2π-periodic function in each variable and Lebesgue integrable over the two-dimensional torus \(T^{2}=[-\pi,\pi]\times [-\pi,\pi]\). Then the double trigonometric Fourier series of \(f(x,y)\) is defined by

$$ f(x,y)\sim\sum_{k=-\infty}^{\infty}\sum _{l=-\infty}^{\infty}\hat {f}(k,l)e^{i(kx+ly)}, $$
(1)

where

$$ \hat{f}(k,l)=\frac{1}{(2\pi)^{2}} \int^{\pi}_{-\pi} \int^{\pi}_{-\pi }f(u,v)e^{-i(ku+lv)}\,du\,dv $$

are the Fourier coefficients of the function f.

The double sequence of symmetric rectangular partial sums associated with Fourier series of f is given by

$$ s_{mn}(x,y)=\sum_{k=-m}^{m}\sum _{l=-n}^{n}\hat{f}(k,l)e^{i(kx+ly)}, $$

and its integral representation is given by

$$ s_{mn}(x,y)=\frac{1}{\pi^{2}} \int_{-\pi}^{\pi} \int_{-\pi}^{\pi }f(x+u,y+v)D_{m}(u)D_{n}(v) \,du\,dv, $$
(2)

where \(D_{k}(t)=\frac{\sin(k+\frac{1}{2})t}{2\sin(t/2)}\) is the Dirichlet kernel.

The concept of almost convergence of sequences was introduced and studied by G.G. Lorentz in 1948 [1]. A sequence \(\{x_{n}\}\) is said to be almost convergent to a limit L, if

$$ \lim_{n\rightarrow\infty}\frac{1}{n+1}\sum_{k=r}^{r+n}x_{k}=L \quad\mbox{for all } r\in \mathbb{N}. $$

Móricz and Rhoades [2] extended the definition of almost convergence to double sequences of real numbers \(\{x_{mn}\}\), almost converging to L, if

$$ \lim_{m,n\rightarrow\infty}\frac{1}{(m+1)(n+1)}\sum_{k=q}^{q+m} \sum_{l=r}^{r+n}x_{kl}=L \quad\mbox{for all } q,r\in \mathbb{N}. $$

The Euler means \(E_{mn}(x,y)\) of the sequence \(\{s_{kl}(x,y)\}\) are defined by

$$ E_{mn}(x,y)=\frac{1}{(1+q_{1})^{m}(1+q_{2})^{n}}\sum_{k=0}^{m} \sum_{l=0}^{n}{m\choose k} {n\choose l}{q_{1}}^{m-k}{q_{2}}^{n-l} s_{kl}(x,y),\quad q_{1},q_{2}>0, $$

and almost Euler means of the sequence \(\{s_{kl}(x,y)\}\) are defined by

$$ \tau_{mn}^{rs}(x,y)=\frac{1}{(1+q_{1})^{m}(1+q_{2})^{n}}\sum _{k=0}^{m}\sum_{l=0}^{n} {m\choose k}{n\choose l}{q_{1}}^{m-k}{q_{2}}^{n-l} S_{kl}^{rs}(x,y), $$

where

$$ S_{kl}^{rs}(x,y)=\frac{1}{(k+1)(l+1)}\sum _{\gamma=r}^{r+k}\sum_{\mu =s}^{s+l}s_{\gamma\mu}(x,y). $$

The following function classes are well known in the literature (see [3, 4]). For \(0<\alpha\leq1\), the Lipschitz class Lipα is defined by

$$ \operatorname{Lip} \alpha=\bigl\{ f:T^{2}\rightarrow\mathbb{R} \mid \omega (f,\delta)=O\bigl({\delta}^{\alpha}\bigr)\bigr\} , $$

where \(\omega(f,\delta)\) is the modulus of continuity of f, defined by

$$ \omega(f,\delta)=\sup_{x,y}\sup_{{(h^{2}+{\eta}^{2})}^{1/2}\leq\delta} \bigl\{ \big|f(x+h,y+\eta)-f(x,y)\big| \bigr\} . $$

For \(0<\alpha,\beta\leq1\), the Lipschitz class \(\operatorname {Lip}(\alpha,\beta)\) is defined by

$$ \operatorname{Lip}(\alpha,\beta)=\bigl\{ f:T^{2}\rightarrow\mathbb{R} \mid \omega_{1,x}(f,u)=O\bigl(u^{\alpha}\bigr) \mbox{ and } \omega_{1,y}(f,v)=O\bigl(v^{\beta}\bigr)\bigr\} , $$

where \(\omega_{1,x}(f,u)\) and \(\omega_{1,y}(f,v)\) are the partial moduli of continuity of f, defined by

$$ \omega_{1,x}(f,u)=\sup_{x,y}\sup_{|h|\leq u} \bigl\{ \big|f(x+h,y)-f(x,y)\big| \bigr\} $$

and

$$ \omega_{1,y}(f,v)=\sup_{x,y}\sup_{|\eta|\leq v} \bigl\{ \big|f(x,y+\eta )-f(x,y)\big| \bigr\} . $$

For \(0< \alpha, \beta\leq2\), the Zygmund class \(\operatorname {Zyg}(\alpha,\beta)\) is defined by

$$ \operatorname{Zyg}(\alpha,\beta)=\bigl\{ f:T^{2}\rightarrow\mathbb{R} \mid \omega_{2,x}(f,u)=O\bigl(u^{\alpha}\bigr) \mbox{ and } \omega_{2,y}(f,v)=O\bigl(v^{\beta}\bigr)\bigr\} , $$

where \(\omega_{2,x}(f,u)\) and \(\omega_{2,y}(f,v)\) are the partial moduli of smoothness of f, defined by

$$ \omega_{2,x}(f,u)=\sup_{x,y}\sup_{|h|\leq u} \bigl\{ \big|f(x+h,y)+f(x-h,y)-2f(x,y)\big|\bigr\} $$

and

$$ \omega_{2,y}(f,v)=\sup_{x,y}\sup_{|\eta|\leq v} \bigl\{ \big|f(x,y+\eta)+f(x,y-\eta )-2f(x,y)\big|\bigr\} . $$

Here, we generalize the definitions of \(\operatorname{Lip}(\alpha,\beta )\) and \(\operatorname{Zyg}(\alpha,\beta)\) given in [3] and [4], respectively, by introducing a new Lipschitz class \(\operatorname{Lip}(\alpha,\beta; p)\) and a Zygmund class \(\operatorname {Zyg}(\alpha,\beta; p)\).

Let \(L^{p}(T^{2})\) (\(p\geq1\)) denote the spaces of Lebesgue functions on the torus \(T^{2}\), with the norm defined by

$$ \bigl\| f \bigr\| _{p}= \left \{ \textstyle\begin{array}{l@{\quad}l} (\frac{1}{2\pi}\int_{0}^{2\pi}\int_{0}^{2\pi} \vert f(x,y) \vert ^{p}\,dx\,dy )^{\frac{1}{p}}, & \hbox{$p\geq1$;} \\ \operatorname{ess} \sup_{0\leq x,y\leq2\pi} \vert f(x,y) \vert , & \hbox{$p=\infty$.} \end{array}\displaystyle \right . $$

Let \(f(x,y)\) be a 2π-periodic function in each variable belonging to \(L^{p}(T^{2})\) (\(p\geq1\)) class. Then the total integral modulus of continuity of f is defined by

$$ \omega_{1}^{p}(f,u,v)=\sup_{|h|\leq u,|\eta|\leq v} \bigl\{ \big\| f(x+h,y+\eta )-f(x,y)\big\| _{p} \bigr\} $$

while the two partial integral moduli of continuity of f are defined by

$$ \omega_{1,x}^{p}(f,u)=\omega_{1}^{p}(f,u,0)= \sup_{|h|\leq u} \bigl\{ \big\| f(x+h,y)-f(x,y)\big\| _{p} \bigr\} $$

and

$$ \omega_{1,y}^{p}(f,v)=\omega_{1}^{p}(f,0,v)= \sup_{|\eta|\leq v} \bigl\{ \big\| f(x,y+\eta)-f(x,y)\big\| _{p} \bigr\} . $$

The Lipschitz class \(\operatorname{Lip}(\alpha,\beta;p)\) (\(p\geq1\)) for \(\alpha,\beta\in(0,1]\) is defined as

$$ \operatorname{Lip}(\alpha,\beta; p):=\bigl\{ f\in L^{p} \bigl(T^{2}\bigr) \mid\omega _{1,x}^{p}(f,u)=O \bigl(u^{\alpha}\bigr) \mbox{ and } \omega_{1,y}^{p}(f,v)=O \bigl(v^{\beta}\bigr)\bigr\} . $$
(3)

We also use the notion of integral modulus of smoothness. The total integral modulus of smoothness of a function f is defined by

$$ \omega_{2}^{p}(f,u,v)=\sup_{|h|\leq u,|\eta|\leq v} \bigl\{ \big\| \phi _{x,y}(h,\eta)\big\| _{p} \bigr\} , $$

where

$$\begin{aligned} \phi_{x,y}(h,\eta)={}&f(x+h,y+\eta)+f(x-h,y+\eta)+f(x+h,y-\eta) \\ &+f(x-h,y-\eta)-4f(x,y). \end{aligned}$$

The partial integral moduli of smoothness are defined by

$$ \omega_{2,x}^{p}(f,u)=\frac{1}{2}\omega_{2}^{p}(f,u,0)= \sup_{|h| \leq u}\bigl\{ \big\| f(x+h,y)+f(x-h,y)-2f(x,y)\big\| _{p} \bigr\} $$

and

$$ \omega_{2,y}^{p}(f,v)=\frac{1}{2}\omega_{2}^{p}(f,0,v)= \sup_{|\eta|\leq v}\bigl\{ \big\| f(x,y+\eta)+f(x,y-\eta)-2f(x,y) \big\| _{p}\bigr\} . $$

It is clear that \(\omega_{2}^{p}(f,u,v)\), \(\omega_{2,x}^{p}(f,u)\) and \(\omega _{2,y}^{p}(f,v)\) are nondecreasing functions in u and v and that

$$ 2 \max\bigl\{ \omega_{2,x}^{p}(f,u), \omega_{2,y}^{p}(f,v) \bigr\} \leq\omega _{2}^{p}(f,u,v)\leq2 \bigl\{ \omega_{2,x}^{p}(f,u)+ \omega_{2,y}^{p}(f,v) \bigr\} $$

and

$$ \omega_{2,x}^{p}(f,u)\leq2 \omega_{1,x}^{p}(f,u),\qquad \omega_{2,y}^{p}(f,v) \leq 2 \omega_{1,y}^{p}(f,v). $$
(4)

For \(0< \alpha, \beta\leq2\), the Zygmund class \(\operatorname {Zyg}(\alpha,\beta;p)\) (\(p\geq1\)) is defined as

$$ \operatorname{Zyg}(\alpha,\beta;p):=\bigl\{ f\in L^{p} \bigl(T^{2}\bigr) \mid\omega _{2,x}^{p}(f,u)=O \bigl(u^{\alpha}\bigr) \mbox{ and } \omega_{2,y}^{p}(f,v)=O \bigl(v^{\beta}\bigr)\bigr\} . $$

From (4) it is clear that \(\operatorname{Lip}(\alpha,\beta ;p)\subseteq\operatorname{Zyg}(\alpha,\beta;p)\) for \(0<\alpha,\beta\leq 1\), and similar to one-dimensional case, \(\operatorname{Lip}(\alpha ,\beta;p)= \operatorname{Zyg}(\alpha,\beta;p)\) for \(0<\alpha,\beta<1\), but \(\operatorname{Lip}(\alpha,\beta;p)\neq\operatorname{Zyg}(\alpha ,\beta;p)\) for \(\max(\alpha,\beta)=1\) (see, e.g., [5], p. 44).

Let \(\omega(\delta)\) be a nondecreasing function of \(\delta\geq0\). Then \(\omega(\delta)\) is of the first kind if

$$ \int_{\delta}^{\pi}\frac{\omega(u)}{u^{2}}\,du=O \biggl\{ \frac{\omega(\delta )}{\delta} \biggr\} , \quad0< \delta\leq\pi, $$
(5)

and \(\omega(\delta)\) is of the second kind if

$$ \int_{\delta}^{\pi}\frac{\omega(u)}{u^{2}}\,du=O \biggl\{ \frac{\omega(\delta )}{\delta}\log\frac{\pi}{\delta} \biggr\} , \quad0< \delta\leq\pi $$
(6)

(see [3]).

A function \(f(x,y)\) is said to belong to the class \(\operatorname {Lip}(\psi(u,v);p)\) (\(p>1\)) if

$$ \big|f(x+u,y+v)-f(x,y)\big|\leq M \biggl(\frac{\psi(u,v)}{({u.v})^{1/p}} \biggr), $$

where \(\psi(u,v)\) is a positive increasing function of the variables u, v and M is a positive constant independent of x, y, u, and v (see [68]).

Here, we generalize the definition of \(\operatorname{Lip}(\psi(u,v);p)\) (\(p>1\)) class given above by introducing a new Lipschitz class \(\operatorname{Lip}(\psi(u,v))_{L^{p}}\) (\(p>1\)) defined as

$$ \big\| f(x+u,y+v)-f(x,y)\big\| _{p}\leq M \biggl(\frac{\psi(u,v)}{({u.v})^{1/p}} \biggr). $$
(7)

Throughout this paper we shall use the following notations:

$$\begin{aligned}& \begin{aligned}\phi_{x,y}(u,v)={}&\bigl\{ f(x+u,y+v)+f(x-u,y+v)+f(x+u,y-v) \\ &+f(x-u,y-v)-4f(x,y)\bigr\} ,\end{aligned} \\& S_{k}^{r}(u)=\frac{\sin((k+1)\frac{u}{2})\sin((k+2r+1)\frac{u}{2})}{\sin ^{2}(u/2)}=\sum _{\gamma=r}^{r+k}D_{\gamma}(u), \end{aligned}$$
(8)
$$\begin{aligned}& S_{l}^{s}(v)=\frac{\sin((l+1)\frac{v}{2})\sin((l+2s+1)\frac{v}{2})}{\sin ^{2}(v/2)}=\sum _{\mu=s}^{s+l}D_{\mu}(v), \end{aligned}$$
(9)
$$\begin{aligned}& R_{m}^{r}(u)=\sum _{k=0}^{m}{m\choose k} \frac{q_{1}^{m-k}}{(k+1)}S_{k}^{r}(u),\quad q_{1}>0, \end{aligned}$$
(10)
$$\begin{aligned}& R_{n}^{s}(v)=\sum _{l=0}^{n}{n\choose l} \frac{q_{2}^{n-l}}{(l+1)}S_{l}^{s}(v),\quad q_{2}>0. \end{aligned}$$
(11)

Note 1

We can easily prove that \(\phi_{x,y}(u,v)\) satisfies the following inequalities:

$$ \big|\phi_{x,y}(u,v)\big|\leq2 \bigl(\omega_{2,x}(f,u)+ \omega_{2,y}(f,v) \bigr) $$
(12)

and

$$ \big\| \phi_{x,y}(u,v)\big\| _{p}\leq2 \bigl(\omega_{2,x}^{p}(f,u)+ \omega _{2,y}^{p}(f,v) \bigr). $$
(13)

Móricz and Xianlianc Shi [4] studied the rate of uniform approximation of a 2π-periodic continuous function \(f(x,y)\) in the Lipschitz class \(\operatorname{Lip}(\alpha,\beta)\) and in the Zygmund class \(\operatorname{Zyg}(\alpha,\beta)\), \(0<\alpha,\beta\leq1\), by Cesàro means \(\sigma_{mn}^{\gamma\delta}\) of positive order of its double Fourier series. They also obtained the result for conjugate function by using the corresponding Cesàro means.

Further, Móricz and Rhoades [9] studied the rate of uniform approximation of \(f(x,y)\) in Lipα, \(0<\alpha \leq1\), class by Nörlund means of its Fourier series. After that, Móricz and Rhoades [10] studied the rate of uniform approximation of a continuous function \(f(x,y)\) in the Lipschitz class \(\operatorname{Lip}(\alpha,\beta)\) and in the Zygmund class \(\operatorname{Zyg}(\alpha,\beta)\), \(0<\alpha,\beta\leq1\), by Nörlund means of its Fourier series. In [10], they also obtained the result for a conjugate function by using the corresponding Nörlund means.

Mittal and Rhoades [3] generalized the results of [9, 10], and [4] for a 2π-periodic continuous function \(f(x,y)\) in the Lipschitz class \(\operatorname{Lip}(\alpha,\beta)\) and in the Zygmund class \(\operatorname{Zyg}(\alpha,\beta)\), \(0<\alpha,\beta \leq1\), by using rectangular double matrix means of its double Fourier series. Lal [11, 12] obtained results for double Fourier series using double matrix means and product matrix means.

Also, Khan [6] obtained the degree of approximation of functions belonging to the class \(\operatorname{Lip}(\psi(u,v);p)\) (\(p > 1\)) by Jackson type operator. Further, Khan and Ram [8] determined the degree of approximation for the functions belonging to the class \(\operatorname{Lip}(\psi(u,v);p)\) (\(p > 1\)) by means of Gauss–Weierstrass integral of the double Fourier series of \(f(x,y)\). Khan et al. [7] extended the result of Khan [6] for n-dimensional Fourier series. In [13], Krasniqi determined the degree of approximation of the functions belonging to the class \(\operatorname{Lip}(\psi(u,v);p)\) (\(p>1\)) by Euler means of double Fourier series of a function \(f(x,y)\). In fact, he generalized the result of Khan [14] for two-dimensional and for n-dimensional cases.

2 Main results

In this paper, we study the problem in more generalized function classes defined in Sect. 1 and determine the degree of approximation by almost Euler means of the double Fourier series. More precisely, we prove the following theorem.

Theorem 2.1

Let \(f(x,y)\) be a 2π-periodic function in each variable belonging to \(L^{p}(T^{2})\) (\(1\leq p<\infty\)). Then the degree of approximation of \(f(x,y)\) by almost Euler means of its double Fourier series is given by:

  1. (i)

    If both \(\omega_{2,x}^{p}\) and \(\omega_{2,y}^{p}\) are of the first kind, then

    $$ \big\| \tau_{mn}^{rs}(x,y)-f(x,y)\big\| _{p}=O \biggl( \omega_{2,x}^{p} \biggl(f,\frac {1}{m+1} \biggr)+ \omega_{2,y}^{p} \biggl(f,\frac{1}{n+1} \biggr) \biggr). $$
  2. (ii)

    If \(\omega_{2,x}^{p}\) is of the first kind and \(\omega _{2,y}^{p}\) is of the second kind, then

    $$ \big\| \tau_{mn}^{rs}(x,y)-f(x,y)\big\| _{p}=O \biggl( \omega_{2,x}^{p} \biggl(f,\frac {1}{m+1} \biggr)+\log\bigl( \pi(n+1)\bigr)\omega_{2,y}^{p} \biggl(f,\frac{1}{n+1} \biggr) \biggr). $$
  3. (iii)

    If \(\omega_{2,x}^{p}\) is of the second kind and \(\omega _{2,y}^{p}\) is of the first kind, then

    $$ \big\| \tau_{mn}^{rs}(x,y)-f(x,y)\big\| _{p}=O \biggl(\log \bigl(\pi(m+1)\bigr)\omega _{2,x}^{p} \biggl(f, \frac{1}{m+1} \biggr)+\omega_{2,y}^{p} \biggl(f, \frac {1}{n+1} \biggr) \biggr). $$
  4. (iv)

    If both \(\omega_{2,x}^{p}\) and \(\omega_{2,y}^{p}\) are of the second kind, then

    $$\begin{aligned} \big\| \tau_{mn}^{rs}(x,y)-f(x,y)\big\| _{p}={}&O \biggl(\log \bigl(\pi(m+1)\bigr)\omega _{2,x}^{p} \biggl(f, \frac{1}{m+1} \biggr) \\ &+\log\bigl(\pi(n+1)\bigr)\omega_{2,y}^{p} \biggl(f,\frac{1}{n+1} \biggr) \biggr).\end{aligned} $$

For \(p=\infty\), the partial integral moduli of smoothness \(\omega _{2,x}^{p}\) and \(\omega_{2,y}^{p}\) reduce to the moduli of smoothness \(\omega_{2,x}\) and \(\omega_{2,y}\), respectively. Thus, for \(p=\infty\), we have the following theorem.

Theorem 2.2

Let \(f(x,y)\) be a 2π-periodic function in each variable belonging to \(L^{\infty}(T^{2})\). Then the degree of approximation of \(f(x,y)\) by almost Euler means of its double Fourier series is given by:

  1. (i)

    If both \(\omega_{2,x}\) and \(\omega_{2,y}\) are of the first kind, then

    $$ \big\| \tau_{mn}^{rs}(x,y)-f(x,y)\big\| _{\infty}=O \biggl( \omega_{2,x} \biggl(f,\frac {1}{m+1} \biggr)+\omega_{2,y} \biggl(f,\frac{1}{n+1} \biggr) \biggr). $$
  2. (ii)

    If \(\omega_{2,x}\) is of the first kind and \(\omega_{2,y}\) is of the second kind, then

    $$ \big\| \tau_{mn}^{rs}(x,y)-f(x,y)\big\| _{\infty}=O \biggl( \omega_{2,x} \biggl(f,\frac {1}{m+1} \biggr)+\log\bigl(\pi(n+1)\bigr) \omega_{2,y} \biggl(f,\frac{1}{n+1} \biggr) \biggr). $$
  3. (iii)

    If \(\omega_{2,x}\) is of the second kind and \(\omega_{2,y}\) is of the first kind, then

    $$ \big\| \tau_{mn}^{rs}(x,y)-f(x,y)\big\| _{\infty}=O \biggl(\log \bigl(\pi(m+1)\bigr)\omega _{2,x} \biggl(f,\frac{1}{m+1} \biggr)+ \omega_{2,y} \biggl(f,\frac{1}{n+1} \biggr) \biggr). $$
  4. (iv)

    If both \(\omega_{2,x}\) and \(\omega_{2,y}\) are of the second kind, then

    $$\begin{aligned} \big\| \tau_{mn}^{rs}(x,y)-f(x,y)\big\| _{\infty}={}&O \biggl(\log \bigl(\pi(m+1)\bigr)\omega _{2,x} \biggl(f,\frac{1}{m+1} \biggr) \\ &+ \log\bigl(\pi(n+1)\bigr)\omega_{2,y} \biggl(f,\frac{1}{n+1} \biggr) \biggr).\end{aligned} $$

Theorem 2.3

Let \(f(x,y)\) be a 2π-periodic function in each variable belonging to the class \(\operatorname{Lip}(\psi(u,v))_{L^{p}}\) (\(p>1\)). If the positive increasing function \(\psi(u,v)\) satisfies the condition

$$ (uv)^{-\sigma}\psi(u,v) \textit{ is nondecreasing for some } 1/p< \sigma< 1, $$
(14)

then the degree of approximation of \(f(x,y)\) by almost Euler means of its double Fourier series is given by

$$\begin{aligned} \big\| \tau_{mn}^{rs}(x,y)-f(x,y)\big\| _{p}={}&O \biggl\{ \bigl((m+1) (n+1) \bigr)^{1/p} \biggl[\psi \biggl(\frac{1}{{m+1}}, \frac{1}{{n+1}} \biggr) \\ &+(n+1)^{-\sigma}\psi \biggl(\frac{1}{m+1},\pi \biggr)+(m+1)^{-\sigma}\psi \biggl(\pi, \frac {1}{n+1} \biggr)\\ &+ \bigl((m+1) (n+1) \bigr)^{-\sigma} \biggr] \biggr\} . \end{aligned}$$

For \(p=\infty\), the class \(\operatorname{Lip}(\psi(u,v))_{L^{p}}\) reduces to the class \(\operatorname{Lip}(\psi(u,v))_{L^{\infty}}\), defined as

$$ \big|f(x+u,y+v)-f(x,y)\big|\leq M\psi(u,v). $$

Thus, for \(p=\infty\), we have the following theorem.

Theorem 2.4

Let \(f(x,y)\) be a 2π-periodic function in each variable belonging to the class \(\operatorname{Lip}(\psi(u,v))_{L^{\infty}}\). If the positive increasing function \(\psi(u,v)\) satisfies the condition

$$ (uv)^{-\sigma}\psi(u,v) \textit{ is nondecreasing for some } 0< \sigma< 1, $$
(15)

then the degree of approximation of \(f(x,y)\) by almost Euler means of its double Fourier series is given by

$$\begin{aligned} \big\| \tau_{mn}^{rs}(x,y)-f(x,y)\big\| _{p}={}&O \biggl\{ \psi \biggl(\frac{1}{{m+1}},\frac {1}{{n+1}} \biggr)+(n+1)^{-\sigma}\psi \biggl(\frac{1}{m+1},\pi \biggr) \\ &+(m+1)^{-\sigma}\psi \biggl(\pi,\frac{1}{n+1} \biggr)+ \bigl((m+1) (n+1) \bigr)^{-\sigma} \biggr\} . \end{aligned}$$

3 Lemmas

We need the following lemmas for the proof of our theorems.

Lemma 3.1

Let \(R_{m}^{r}(u)\) and \(R_{n}^{s}(v)\) be given by (10) and (11), respectively. Then

  1. (i)

    \(R_{m}^{r}(u)= O ((1+q_{1})^{m}(m+1) )\) for \(0< u\leq\frac {1}{m+1}\).

  2. (ii)

    \(R_{n}^{s}(v)= O ((1+q_{2})^{n}(n+1) )\) for \(0< v\leq \frac{1}{n+1}\).

Proof

(i) For \(0< u\leq\frac{1}{m+1}\), using \(\sin(u/2)\geq u/ \pi\) and \(\sin mu\leq m\sin u\), we have

$$\begin{aligned}[b] \big|R_{m}^{r}(u)\big|={}& \Bigg|\sum_{k=0}^{m} {m\choose k}\frac {q_{1}^{m-k}}{(k+1)}S_{k}^{r}(u) \Bigg| \\ ={}& \Bigg|\sum_{k=0}^{m}{m\choose k} \frac{q_{1}^{m-k}}{(k+1)}\frac{\sin ((k+1)\frac{u}{2})\sin((k+2r+1)\frac{u}{2})}{\sin^{2}(u/2)} \Bigg| \\ \leq{}&\sum_{k=0}^{m}{m\choose k} \frac{q_{1}^{m-k}}{(k+1)}\frac {(k+1)(k+2r+1)\sin(\frac{u}{2})\sin(\frac{u}{2})}{\sin^{2}(u/2)} \\ ={}&\sum_{k=0}^{m}{m\choose k}{q_{1}^{m-k}}(k+2r+1) \\ ={}&(1+q_{1})^{m}(m+2r+1) \\ ={}&O \bigl((1+q_{1})^{m} (m+1) \bigr). \end{aligned} $$
(16)

(ii) It can be proved similarly to part (i). □

Lemma 3.2

Let \(R_{m}^{r}(u)\) and \(R_{n}^{s}(v)\) be given by (10) and (11), respectively. Then

  1. (i)

    \(R_{m}^{r}(u)= O \Big(\frac{(1+q_{1})^{m}}{(m+1)u^{2}} \Big)\) for \(\frac{1}{m+1}< u\leq\pi\).

  2. (ii)

    \(R_{n}^{s}(v)= O \Big(\frac{(1+q_{2})^{n}}{(n+1)v^{2}} \Big)\) for \(\frac{1}{n+1}< v\leq\pi\).

Proof

(i) For \(\frac{1}{m+1}< u\leq\pi\), using \(\sin(u/2)\geq u/ \pi\) and \(\sin u\leq1\), we have

$$\begin{aligned} \big|R_{m}^{r}(u)\big|={}& \Bigg|\sum_{k=0}^{m} {m\choose k}\frac {q_{1}^{m-k}}{(k+1)}S_{k}^{r}(u) \Bigg| \\ ={}& \Bigg|\sum_{k=0}^{m}{m\choose k} \frac{q_{1}^{m-k}}{(k+1)}\frac{\sin ((k+1)\frac{u}{2})\sin((k+2r+1)\frac{u}{2})}{\sin^{2}(u/2)} \Bigg| \\ \leq{}&\sum_{k=0}^{m}{m\choose k} \frac{q_{1}^{m-k}}{(k+1)}\frac{\pi ^{2}}{u^{2}} \\ ={}&\frac{\pi^{2}}{(m+1)u^{2}}\sum_{k=0}^{m} {{m+1}\choose {k+1}}{q_{1}^{m-k}} \\ ={}&\frac{\pi^{2}}{(m+1)u^{2}} \bigl((1+q_{1})^{m+1}-q_{1}^{m+1} \bigr) \\ ={}&O \biggl(\frac{(1+q_{1})^{m}}{(m+1)u^{2}} \biggr). \end{aligned}$$
(17)

(ii) It can be proved similarly to part (i). □

4 Proof of the main results

Proof of Theorem 2.1

Using the integral representation of \(s_{kl}(x,y)\) given in (2), we have

$$ s_{kl}(x,y)-f(x,y)=\frac{1}{4\pi^{2}} \int_{0}^{\pi} \int_{0}^{\pi}\phi _{x,y}(u,v)D_{k}(u)D_{l}(v) \,du\,dv. $$

Therefore,

$$\begin{aligned} S_{kl}^{rs}(x,y)-f(x,y)={}&\frac{1}{(k+1)(l+1)}\sum _{\gamma=r}^{r+k}\sum_{\mu=s}^{s+l} \bigl(s_{\gamma\mu}(x,y)-f(x,y) \bigr) \\ ={}&\frac{1}{(k+1)(l+1)}\sum_{\gamma=r}^{r+k}\sum _{\mu=s}^{s+l} \int _{0}^{\pi} \int_{0}^{\pi}\frac{\phi_{x,y}(u,v)}{4\pi^{2}}D_{\gamma }(u)D_{\mu}(v) \,du\,dv \\ ={}& \int_{0}^{\pi} \int_{0}^{\pi}\frac{\phi_{x,y}(u,v )}{{4\pi ^{2}}(k+1)(l+1)} \Biggl(\sum _{\gamma=r}^{r+k}D_{\gamma}(u) \Biggr) \Biggl(\sum _{\mu=s}^{s+l}D_{\mu}(v) \Biggr)\,du \,dv. \end{aligned}$$

Now

$$\begin{gathered} \tau_{mn}^{rs}(x,y)-f(x,y) \\ \quad= \Biggl\{ \frac{1}{(1+q_{1})^{m}(1+q_{2})^{n}}\sum_{k=0}^{m} \sum_{l=0}^{n}{m\choose k} {n\choose l}{q_{1}}^{m-k}{q_{2}}^{n-l}S_{kl}^{rs}(x,y) \Biggr\} -f(x,y) \\ \quad=\frac{1}{4\pi^{2}} \int_{0}^{\pi} \int_{0}^{\pi}\frac{\phi _{x,y}(u,v)}{(1+q_{1})^{m}(1+q_{2})^{n}} \Biggl(\sum _{k=0}^{m}\frac{{m\choose k}q_{1}^{m-k}S_{k}^{r}(u)}{(k+1)} \Biggr) \Biggl(\sum _{l=0}^{n}\frac{{n\choose l}q_{2}^{n-l}S_{l}^{s}(v)}{(l+1)} \Biggr)\,du\,dv \\ \quad=\frac{1}{4\pi^{2}} \int_{0}^{\pi} \int_{0}^{\pi}\phi_{x,y}(u,v) \frac {R_{m}^{r}(u)}{(1+q_{1})^{m}}\frac{R_{n}^{s}(v)}{(1+q_{2})^{n}}\,du\,dv, \end{gathered}$$

which, on applying the generalized Minkowski inequality, gives

$$\begin{aligned} &\big\| \tau_{mn}^{rs}(x,y)-f(x,y)\big\| _{p} \\ &\quad= \bigg\| \frac{1}{4\pi^{2}} \int_{0}^{\pi}\int_{0}^{\pi}\phi_{x,y}(u,v) \frac {R_{m}^{r}(u)}{(1+q_{1})^{m}}\frac{R_{n}^{s}(v)}{(1+q_{2})^{n}}\,du\,dv \bigg\| _{p} \\ &\quad= \biggl\{ \frac{1}{2\pi} \int_{0}^{2\pi} \int_{0}^{2\pi} \bigg|\frac{1}{4\pi ^{2}} \int_{0}^{\pi} \int_{0}^{\pi}\phi_{x,y}(u,v) \frac {R_{m}^{r}(u)}{(1+q_{1})^{m}}\frac{R_{n}^{s}(v)}{(1+q_{2})^{n}}\,du\,dv \bigg|^{p}\,dx\,dy \biggr\} ^{1/p} \\ &\quad\leq\frac{1}{4\pi^{2}} \int_{0}^{\pi}\int_{0}^{\pi}\big\| \phi_{x,y}(u,v) \big\| _{p}\frac {|R_{m}^{r}(u)|}{(1+q_{1})^{m}}\frac{|R_{n}^{s}(v)|}{(1+q_{2})^{n}}\,du\,dv \\ &\quad=\frac{1}{4\pi^{2}} \biggl\{ \int_{0}^{\frac{1}{(m+1)}} \int_{0}^{\frac {1}{(n+1)}}+ \int_{\frac{1}{(m+1)}}^{\pi}\int_{0}^{\frac{1}{(n+1)}}+ \int _{0}^{\frac{1}{(m+1)}} \int_{\frac{1}{(n+1)}}^{\pi}+ \int_{\frac {1}{(m+1)}}^{\pi}\int_{\frac{1}{(n+1)}}^{\pi}\biggr\} \\ & \qquad{}\times\big\| \phi_{x,y}(u,v)\big\| _{p}\frac{|R_{m}^{r}(u)|}{(1+q_{1})^{m}}\frac {|R_{n}^{s}(v)|}{(1+q_{2})^{n}} \,du\,dv \\ &\quad=\frac{1}{4\pi^{2}}\{I_{1}+I_{2}+I_{3}+I_{4} \},\quad \mbox{say}. \end{aligned}$$
(18)

Proof of part (i): Using Lemma 3.1 and (13), we have

$$\begin{aligned}[b] I_{1}&= \int_{0}^{\frac{1}{(m+1)}} \int_{0}^{\frac{1}{(n+1)}}\big\| \phi_{x,y}(u,v)\big\| _{p}\frac{|R_{m}^{r}(u)|}{(1+q_{1})^{m}}\frac{|R_{n}^{s}(v)|}{(1+q_{2})^{n}}\,du\, dv \\ &=O \bigl((m+1) (n+1) \bigr) \int_{0}^{\frac{1}{(m+1)}} \int_{0}^{\frac {1}{(n+1)}} \bigl(\omega_{2,x}^{p}(f,u)+ \omega_{2,y}^{p}(f,v) \bigr)\,du\, dv \\ &=O \biggl(\omega_{2,x}^{p} \biggl(f, \frac{1}{m+1} \biggr)+\omega_{2,y}^{p} \biggl(f, \frac{1}{n+1} \biggr) \biggr). \end{aligned} $$
(19)

Using Lemma 3.1, Lemma 3.2, (5), and (13), we have

$$\begin{aligned}[b] I_{2}&= \int_{\frac{1}{(m+1)}}^{\pi}\int_{0}^{\frac{1}{(n+1)}}\big\| \phi _{x,y}(u,v) \big\| _{p}\frac{|R_{m}^{r}(u)|}{(1+q_{1})^{m}}\frac {|R_{n}^{s}(v)|}{(1+q_{2})^{n}}\,du\,dv \\ &=O \biggl(\frac{n+1}{m+1} \biggr) \int_{\frac{1}{(m+1)}}^{\pi}\int_{0}^{\frac {1}{(n+1)}} \bigl(\omega_{2,x}^{p}(f,u)+ \omega_{2,y}^{p}(f,v) \bigr)\frac{du\, dv}{u^{2}} \\ &=O \biggl(\frac{n+1}{m+1} \biggr) \int_{\frac{1}{(m+1)}}^{\pi}\biggl(\frac {1}{n+1} \biggr) \biggl(\omega_{2,x}^{p}(f,u)+\omega_{2,y}^{p} \biggl(f,\frac {1}{n+1} \biggr) \biggr)\frac{du}{u^{2}} \\ &=O \biggl(\frac{1}{m+1} \biggr) \biggl\{ \int_{\frac{1}{(m+1)}}^{\pi}\frac {\omega_{2,x}^{p}(f,u)}{u^{2}}\,du+ \omega_{2,y}^{p} \biggl(f,\frac{1}{n+1} \biggr) \int_{\frac{1}{(m+1)}}^{\pi}\frac{du}{u^{2}} \biggr\} \\ &=O \biggl(\omega_{2,x}^{p} \biggl(f, \frac{1}{m+1} \biggr)+\omega_{2,y}^{p} \biggl(f, \frac{1}{n+1} \biggr) \biggr). \end{aligned} $$
(20)

Similarly, we have

$$ I_{3}=O \biggl(\omega_{2,x}^{p} \biggl(f,\frac{1}{m+1} \biggr)+\omega _{2,y}^{p} \biggl(f, \frac{1}{n+1} \biggr) \biggr). $$
(21)

Using Lemma 3.2, (5), and (13), we have

$$\begin{aligned} I_{4}&= \int_{\frac{1}{(m+1)}}^{\pi}\int_{\frac{1}{(n+1)}}^{\pi}\big\| \phi _{x,y}(u,v) \big\| _{p}\frac{|R_{m}^{r}(u)|}{(1+q_{1})^{m}}\frac {|R_{n}^{s}(v)|}{(1+q_{2})^{n}}\,du\,dv \\ &=O \biggl(\frac{1}{(m+1)(n+1)} \biggr) \int_{\frac{1}{(m+1)}}^{\pi}\int_{\frac {1}{(n+1)}}^{\pi}\bigl(\omega_{2,x}^{p}(f,u)+ \omega_{2,y}^{p}(f,v) \bigr)\frac {du\,dv}{u^{2}v^{2}} \\ &=O \biggl(\frac{1}{(m+1)(n+1)} \biggr) \int_{\frac{1}{(m+1)}}^{\pi}(n+1) \biggl(\omega_{2,x}^{p}(f,u)+ \omega_{2,y}^{p} \biggl(f,\frac{1}{n+1} \biggr) \biggr) \frac{du}{u^{2}} \\ &=O \biggl(\frac{1}{m+1} \biggr) \biggl\{ \int_{\frac{1}{(m+1)}}^{\pi}\frac {\omega_{2,x}^{p}(f,u)}{u^{2}}\,du+ \omega_{2,y}^{p} \biggl(f,\frac{1}{n+1} \biggr) \int_{\frac{1}{(m+1)}}^{\pi}\frac{du}{u^{2}} \biggr\} \\ &=O \biggl(\omega_{2,x}^{p} \biggl(f, \frac{1}{m+1} \biggr)+\omega_{2,y}^{p} \biggl(f, \frac{1}{n+1} \biggr) \biggr). \end{aligned}$$
(22)

Collecting (18)–(22), we have

$$ \big\| \tau_{mn}^{rs}(x,y)-f(x,y)\big\| _{p}=O \biggl( \omega_{2,x}^{p} \biggl(f,\frac {1}{m+1} \biggr)+ \omega_{2,y}^{p} \biggl(f,\frac{1}{n+1} \biggr) \biggr), $$

which proves part (i).

Proof of part (ii): Using (19) and (20), we have

$$\begin{aligned}& I_{1}=O \biggl(\omega_{2,x}^{p} \biggl(f,\frac{1}{m+1} \biggr)+\omega _{2,y}^{p} \biggl(f, \frac{1}{n+1} \biggr) \biggr), \end{aligned}$$
(23)
$$\begin{aligned}& I_{2}=O \biggl(\omega_{2,x}^{p} \biggl(f,\frac{1}{m+1} \biggr)+\omega _{2,y}^{p} \biggl(f, \frac{1}{n+1} \biggr) \biggr). \end{aligned}$$
(24)

Using Lemma 3.1, Lemma 3.2, (6), and (13), we have

$$\begin{aligned}[b] I_{3}&= \int_{0}^{\frac{1}{(m+1)}} \int_{\frac{1}{(n+1)}}^{\pi}\big\| \phi _{x,y}(u,v) \big\| _{p}\frac{|R_{m}^{r}(u)|}{(1+q_{1})^{m}}\frac {|R_{n}^{s}(v)|}{(1+q_{2})^{n}}\,du\,dv \\ &=O \biggl(\frac{m+1}{n+1} \biggr) \int_{0}^{\frac{1}{(m+1)}} \int_{\frac {1}{(n+1)}}^{\pi}\bigl(\omega_{2,x}^{p}(f,u)+ \omega_{2,y}^{p}(f,v) \bigr)\frac {du\,dv}{v^{2}} \\ &=O \biggl(\frac{m+1}{n+1} \biggr) \int_{0}^{\frac{1}{(m+1)}}(n+1) \biggl[\omega _{2,x}^{p}(f,u)+\log\bigl(\pi(n+1)\bigr)\omega_{2,y}^{p} \biggl(f,\frac{1}{n+1} \biggr) \biggr]\,du \\ &=O(m+1) \biggl\{ \int_{0}^{\frac{1}{(m+1)}}{\omega_{2,x}^{p}(f,u)} \,du+\log \bigl(\pi(n+1)\bigr)\omega_{2,y}^{p} \biggl(f, \frac{1}{n+1} \biggr) \int_{0}^{\frac {1}{(m+1)}}\,du \biggr\} \\ &=O \biggl(\omega_{2,x}^{p} \biggl(f, \frac{1}{m+1} \biggr)+\log\bigl(\pi(n+1)\bigr)\omega _{2,y}^{p} \biggl(f,\frac{1}{n+1} \biggr) \biggr). \end{aligned} $$
(25)

Using Lemma 3.2, (5), (6), and (13), we have

$$\begin{aligned}[b] I_{4}&= \int_{\frac{1}{(m+1)}}^{\pi} \int_{\frac{1}{(n+1)}}^{\pi}\big\| \phi _{x,y}(u,v) \big\| _{p}\frac{|R_{m}^{r}(u)|}{(1+q_{1})^{m}}\frac {|R_{n}^{s}(v)|}{(1+q_{2})^{n}}\,du\,dv \\ &=O \biggl(\frac{1}{(m+1)(n+1)} \biggr) \int_{\frac{1}{(m+1)}}^{\pi}\int_{\frac {1}{(n+1)}}^{\pi}\bigl(\omega_{2,x}^{p}(f,u)+ \omega_{2,y}^{p}(f,v) \bigr)\frac {du\,dv}{u^{2}v^{2}} \\ &=O \biggl(\frac{1}{(m+1)(n+1)} \biggr) \int_{\frac{1}{(m+1)}}^{\pi}(n+1) \biggl[\omega_{2,x}^{p}(f,u)+ \log\bigl(\pi(n+1)\bigr)\omega_{2,y}^{p} \biggl(f, \frac {1}{n+1} \biggr) \biggr]\frac{du}{u^{2}} \\ &=O \biggl(\frac{1}{m+1} \biggr) \biggl\{ \int_{\frac{1}{(m+1)}}^{\pi}\frac {\omega_{2,x}^{p}(f,u)}{u^{2}}\,du+\log\bigl( \pi(n+1)\bigr)\omega_{2,y}^{p} \biggl(f,\frac {1}{n+1} \biggr) \int_{\frac{1}{(m+1)}}^{\pi}\frac{du}{u^{2}} \biggr\} \\ &=O \biggl(\omega_{2,x}^{p} \biggl(f, \frac{1}{m+1} \biggr)+\log\bigl(\pi(n+1)\bigr)\omega _{2,y}^{p} \biggl(f,\frac{1}{n+1} \biggr) \biggr). \end{aligned} $$
(26)

Collecting (18), (23)–(26), we have

$$ \big\| \tau_{mn}^{rs}(x,y)-f(x,y)\big\| _{p}=O \biggl( \omega_{2,x}^{p} \biggl(f,\frac {1}{m+1} \biggr)+\log\bigl( \pi(n+1)\bigr)\omega_{2,y}^{p} \biggl(f,\frac{1}{n+1} \biggr) \biggr), $$

which proves part (ii).

In a similar manner, we can prove part (iii) and part (iv). □

Proof of Theorem 2.2

We have

$$\begin{gathered} \big|\tau_{mn}^{rs}(x,y)-f(x,y)\big| \\ \quad= \bigg|\frac{1}{4\pi^{2}} \int_{0}^{\pi}\int_{0}^{\pi}\phi_{x,y}(u,v) \frac {R_{m}^{r}(u)}{(1+q_{1})^{m}}\frac{R_{n}^{s}(v)}{(1+q_{2})^{n}}\,du\,dv \bigg| \\ \quad\leq\frac{1}{4\pi^{2}} \int_{0}^{\pi}\int_{0}^{\pi}\big|\phi_{x,y}(u,v)\big| \frac {|R_{m}^{r}(u)|}{(1+q_{1})^{m}}\frac{|R_{n}^{s}(v)|}{(1+q_{2})^{n}}\,du\,dv \\ \quad=\frac{1}{4\pi^{2}} \biggl[ \int_{0}^{\frac{1}{(m+1)}} \int_{0}^{\frac {1}{(n+1)}}+ \int_{\frac{1}{(m+1)}}^{\pi}\int_{0}^{\frac{1}{(n+1)}}+ \int _{0}^{\frac{1}{(m+1)}} \int_{\frac{1}{(n+1)}}^{\pi}+ \int_{\frac{1}{(m+1)}}^{\pi}\int_{\frac{1}{(n+1)}}^{\pi}\biggr] \\ \qquad{}\times\big|\phi _{x,y}(u,v)\big| \frac{|R_{m}^{r}(u)|}{(1+q_{1})^{m}}\frac{|R_{n}^{s}(v)|}{(1+q_{2})^{n}}\, du\,dv \\ \quad=\frac{1}{4\pi^{2}}\{I_{1}+I_{2}+I_{3}+I_{4} \},\quad \mbox{say}. \end{gathered}$$

Using (12) and following the proof of Theorem 2.1 with supremum norm, we will get the required result. □

Proof of Theorem 2.3

Following the proof of Theorem 2.1, using the generalized Minkowski inequality and the fact that \(\phi _{x,y}(u,v)\in\operatorname{Lip}(\psi(u,v))_{L^{p}}\) (\(p>1\)), we have

$$\begin{aligned} &\big\| \tau_{mn}^{rs}(x,y)-f(x,y)\big\| _{p} \\ &\quad= \bigg\| \frac{1}{4\pi^{2}} \int_{0}^{\pi}\int_{0}^{\pi}\phi_{x,y}(u,v) \frac {R_{m}^{r}(u)}{(1+q_{1})^{m}}\frac{R_{n}^{s}(v)}{(1+q_{2})^{n}}\,du\,dv \bigg\| _{p} \\ &\quad\leq\frac{1}{4\pi^{2}} \int_{0}^{\pi}\int_{0}^{\pi}\big\| \phi_{x,y}(u,v) \big\| _{p}\frac {|R_{m}^{r}(u)|}{(1+q_{1})^{m}}\frac{|R_{n}^{s}(v)|}{(1+q_{2})^{n}}\,du\,dv \\ &\quad=\frac{1}{4\pi^{2}} \biggl[ \int_{0}^{\frac{1}{(m+1)}} \int_{0}^{\frac {1}{(n+1)}}+ \int_{\frac{1}{(m+1)}}^{\pi}\int_{0}^{\frac{1}{(n+1)}}+ \int _{0}^{\frac{1}{(m+1)}} \int_{\frac{1}{(n+1)}}^{\pi}+ \int_{\frac {1}{(m+1)}}^{\pi}\int_{\frac{1}{(n+1)}}^{\pi}\biggr] \\ &\qquad{}\times M\frac{\psi(u,v)}{(u.v)^{1/p}}\frac{|R_{m}^{r}(u)|}{(1+q_{1})^{m}}\frac {|R_{n}^{s}(v)|}{(1+q_{2})^{n}}\,du\,dv \end{aligned}$$
(27)
$$\begin{aligned} &\quad=\frac{1}{4\pi^{2}}\{I_{1}+I_{2}+I_{3}+I_{4} \}, \quad\mbox{say}. \end{aligned}$$
(28)

Using Lemma 3.1, we have

$$\begin{aligned}[b] I_{1}&\leq \int_{0}^{1/{(m+1)}} \int_{0}^{1/{(n+1)}}M\frac{\psi (u,v)}{(u.v)^{1/p}}\frac{|R_{m}^{r}(u)|}{(1+q_{1})^{m}} \frac {|R_{n}^{s}(v)|}{(1+q_{2})^{n}}\,du\,dv \\ &=O \bigl((m+1) (n+1) \bigr)\psi \biggl(\frac{1}{{m+1}},\frac{1}{{n+1}} \biggr) \int_{0}^{1/{(m+1)}} \int_{0}^{1/{(n+1)}}(u.v)^{-1/p}\,du\,dv \\ &=O \biggl\{ \psi \biggl(\frac{1}{{m+1}},\frac{1}{{n+1}} \biggr) \bigl((m+1) (n+1) \bigr)^{1/p} \biggr\} . \end{aligned} $$
(29)

Using Lemma 3.1 and Lemma 3.2, we have

$$\begin{aligned}[b] I_{2}&\leq \int_{0}^{1/{(m+1)}} \int_{1/{(n+1)}}^{\pi}M\frac{\psi (u,v)}{(u.v)^{1/p}}\frac{|R_{m}^{r}(u)|}{(1+q_{1})^{m}} \frac {|R_{n}^{s}(v)|}{(1+q_{2})^{n}}\,du\,dv \\ &= \int_{0}^{1/{(m+1)}} \int_{1/{(n+1)}}^{\pi}M\frac{(uv)^{-\sigma}\psi (u,v)}{(u.v)^{1/p-\sigma}}\frac{|R_{m}^{r}(u)|}{(1+q_{1})^{m}} \frac {|R_{n}^{s}(v)|}{(1+q_{2})^{n}}\,du\,dv \\ &=O \biggl(\frac{m+1}{n+1} \biggr) \biggl(\frac{\psi(\frac{1}{m+1},\pi)}{ (\frac{1}{m+1}.\pi )^{\sigma}} \biggr) \int_{0}^{1/{(m+1)}} \int _{1/{(n+1)}}^{\pi}\frac{(uv)^{\sigma}}{v^{2}(uv)^{1/p}}\,du\,dv \\ &=O \biggl\{ \psi \biggl(\frac{1}{m+1},\pi \biggr) (m+1)^{1/p}(n+1)^{{1/p}-\sigma} \biggr\} . \end{aligned} $$
(30)

Similarly, we have

$$ I_{3}=O \biggl\{ \psi \biggl(\pi,\frac{1}{n+1} \biggr) (m+1)^{{1/p}-\sigma }(n+1)^{1/p} \biggr\} . $$
(31)

Using Lemma 3.1 and Lemma 3.2, we have

$$\begin{aligned}[b] I_{4}&\leq \int_{1/{(m+1)}}^{\pi}\int_{1/{(n+1)}}^{\pi}M\frac{\psi (u,v)}{(u.v)^{1/p}}\frac{|R_{m}^{r}(u)|}{(1+q_{1})^{m}} \frac {|R_{n}^{s}(v)|}{(1+q_{2})^{n}}\,du\,dv \\ &= \int_{1/{(m+1)}}^{\pi}\int_{1/{(n+1)}}^{\pi}M\frac{(uv)^{-\sigma}\psi (u,v)}{(u.v)^{1/p-\sigma}}\frac{|R_{m}^{r}(u)|}{(1+q_{1})^{m}} \frac {|R_{n}^{s}(v)|}{(1+q_{2})^{n}}\,du\,dv \\ &=O \biggl(\frac{1}{(m+1)(n+1)} \biggr) \biggl(\frac{\psi(\pi,\pi)}{(\pi.\pi )^{\sigma}} \biggr) \int_{1/{(m+1)}}^{\pi}\int_{1/{(n+1)}}^{\pi}\frac {(uv)^{\sigma}}{(uv)^{2+1/p}}\,du\,dv \\ &=O \bigl((m+1) (n+1) \bigr)^{1/p-\sigma}. \end{aligned} $$
(32)

Collecting (28)–(32), we have

$$\begin{aligned} \big\| \tau_{mn}^{rs}(x,y)-f(x,y)\big\| _{p}={}&O \biggl\{ \bigl((m+1) (n+1) \bigr)^{1/p} \biggl[\psi \biggl(\frac{1}{{m+1}}, \frac{1}{{n+1}} \biggr) \\ &+(n+1)^{-\sigma}\psi \biggl(\frac{1}{m+1},\pi \biggr)+(m+1)^{-\sigma}\psi \biggl(\pi, \frac {1}{n+1} \biggr)\\ &+ \bigl((m+1) (n+1) \bigr)^{-\sigma} \biggr] \biggr\} . \end{aligned}$$

 □

Proof of Theorem 2.4

We have

$$\begin{aligned} &\big|\tau_{mn}^{rs}(x,y)-f(x,y)\big| \\ &\quad= \bigg|\frac{1}{4\pi^{2}} \int_{0}^{\pi}\int_{0}^{\pi}\phi_{x,y}(u,v) \frac {R_{m}^{r}(u)}{(1+q_{1})^{m}}\frac{R_{n}^{s}(v)}{(1+q_{2})^{n}}\,du\,dv \bigg| \\ &\quad\leq\frac{1}{4\pi^{2}} \int_{0}^{\pi}\int_{0}^{\pi}\big|\phi_{x,y}(u,v)\big| \frac {|R_{m}^{r}(u)|}{(1+q_{1})^{m}}\frac{|R_{n}^{s}(v)|}{(1+q_{2})^{n}}\,du\,dv \\ &\quad=\frac{1}{4\pi^{2}} \biggl[ \int_{0}^{\frac{1}{(m+1)}} \int_{0}^{\frac {1}{(n+1)}}+ \int_{\frac{1}{(m+1)}}^{\pi}\int_{0}^{\frac{1}{(n+1)}}+ \int _{0}^{\frac{1}{(m+1)}} \int_{\frac{1}{(n+1)}}^{\pi}+ \int_{\frac{1}{(m+1)}}^{\pi}\int_{\frac{1}{(n+1)}}^{\pi}\biggr] \\ &\qquad{}\times M\psi(u,v)\frac{|R_{m}^{r}(u)|}{(1+q_{1})^{m}}\frac{|R_{n}^{s}(v)|}{(1+q_{2})^{n}}\, du\,dv \\ &\quad=\frac{1}{4\pi^{2}}\{I_{1}+I_{2}+I_{3}+I_{4} \}, \quad\mbox{say}. \end{aligned}$$
(33)

Now we can follow the proof of Theorem 2.3 with supremum norm to get the result. □

5 Corollaries

If \(f\in\operatorname{Zyg}(\alpha,\beta;p)\), then

$$ \omega_{2,x}^{p}(f,u)=O\bigl(u^{\alpha}\bigr) \quad\mbox{and}\quad \omega _{2,y}^{p}(f,v)=O\bigl(v^{\beta} \bigr). $$

For \(0<\alpha,\beta<1\),

$$ \int_{\delta}^{\pi}\frac{u^{\alpha}}{u^{2}}\,du=O \bigl( \delta^{\alpha-1} \bigr) \quad\mbox{and}\quad \int_{\delta}^{\pi}\frac{v^{\beta}}{v^{2}}\,dv=O \bigl(\delta ^{\beta-1} \bigr), $$

which implies that \(u^{\alpha}\) and \(v^{\beta}\) are of the first kind.

For \(\alpha=\beta=1\),

$$ \int_{\delta}^{\pi}\frac{u^{\alpha}}{u^{2}}\,du=O \biggl(\log \frac{\pi}{\delta } \biggr) \quad\mbox{and}\quad \int_{\delta}^{\pi}\frac{v^{\beta}}{v^{2}}\,dv=O \biggl(\log \frac{\pi}{\delta} \biggr), $$

which implies that \(u^{\alpha}\) and \(v^{\beta}\) are of the second kind.

Thus, Theorem 2.1 reduces to the following corollary.

Corollary 1

If \(f\in\operatorname{Zyg}(\alpha,\beta;p)\), then

$$ \big\| \tau_{mn}^{rs}(x,y)-f(x,y)\big\| _{p}= \left \{ \textstyle\begin{array}{l@{\quad}l} O ((m+1)^{-\alpha}+(n+1)^{-\beta} ), & 0< \alpha, \beta < 1; \\ O ((m+1)^{-\alpha}+\frac{\log(n+1)}{n+1} ), & 0< \alpha< 1, \beta=1; \\ O (\frac{\log(m+1)}{m+1}+(n+1)^{-\beta} ), & \alpha=1, 0< \beta< 1; \\ O (\frac{\log(m+1)}{m+1}+\frac{\log(n+1)}{n+1} ), & \alpha =1,\beta=1. \end{array}\displaystyle \right . $$

For \(p=\infty\), the Zygmund class \(\operatorname{Zyg}(\alpha,\beta;p)\) reduces to \(\operatorname{Zyg}(\alpha,\beta)\). In this case, from Theorem 2.2 we have the following corollary.

Corollary 2

If \(f\in\operatorname{Zyg}(\alpha,\beta)\), then

$$ \big\| \tau_{mn}^{rs}(x,y)-f(x,y)\big\| _{\infty}= \left \{ \textstyle\begin{array}{l@{\quad}l} O ((m+1)^{-\alpha}+(n+1)^{-\beta} ), & 0< \alpha, \beta < 1; \\ O ((m+1)^{-\alpha}+\frac{\log(n+1)}{n+1} ), & 0< \alpha< 1, \beta=1; \\ O (\frac{\log(m+1)}{m+1}+(n+1)^{-\beta} ), & \alpha=1, 0< \beta< 1; \\ O (\frac{\log(m+1)}{m+1}+\frac{\log(n+1)}{n+1} ), & \alpha =1,\beta=1. \end{array}\displaystyle \right . $$