1 Introduction

Dirichlet series

$$ f(s)=\sum_{n=1}^{\infty }a_{n}e^{\lambda_{n}s}, \quad s=\sigma +it, $$
(1)

where

$$ 0\leq \lambda_{1}< \lambda_{2}< \cdots < \lambda_{n}< \cdots , \qquad \lambda _{n}\rightarrow \infty\quad \mbox{as } n\rightarrow \infty ; $$
(2)

\(s=\sigma +it\) (σ, t are real variables), \(a_{n}\) are nonzero complex numbers. When \(a_{n}\), \(\lambda_{n}\), n satisfy some conditions, the series (1) is convergent in the whole plane or the half-plane, that is, \(f(s)\) is an analytic function or entire function in the whole plane or the half-plane. In the past few decades, many mathematicians studied the growth and value distribution of the analytic (entire) function defined by Dirichlet series and obtained lots of interesting results (see [19]).

As we know, Dirichlet series is regarded as a special example of the Laplace-Stieltjes transform. The Laplace-Stieltjes transform, named for Pierre-Simon Laplace and Thomas Joannes Stieltjes, is an integral transform similar to the Laplace transform. For real-valued functions, it is the Laplace transform of a Stieltjes measure, however it is often defined for functions with values in a Banach space. It can be used in many fields of mathematics, such as functional analysis, and certain areas of theoretical and applied probability.

For the Laplace-Stieltjes transforms,

$$ G(s)= \int_{0}^{+\infty }e^{-sx}\,d\alpha (x), \quad s= \sigma +it, $$
(3)

where \(\alpha (x)\) is a bounded variation on any finite interval \([0,Y]\) (\(0< Y<+\infty\)), and σ and t are real variables. Let

$$ B_{n}^{*}=\sup_{\lambda_{n}< x\leq \lambda_{n+1},-\infty < t< +\infty } \biggl\vert \int_{\lambda_{n}}^{x}e^{-ity}\,d\alpha (y)\biggr\vert , $$

where the sequence \(\{\lambda_{n}\}_{n=1}^{\infty }\) satisfies (2) and

$$ \limsup_{n\rightarrow +\infty }(\lambda_{n+1}- \lambda_{n})=h< +\infty. $$
(4)

In 1963, Yu [10] proved the Valiron-Knopp-Bohr formula of the associated abscissas of bounded convergence, absolute convergence, and uniform convergence of Laplace-Stieltjes.

Theorem A

Suppose that Laplace-Stieltjes transforms (3) satisfy (2), (4) and \(\limsup_{n\rightarrow +\infty }\frac{ \log n}{\lambda_{n}}<+\infty \), then

$$ \limsup_{n\rightarrow +\infty }\frac{\log B_{n}^{\ast }}{\lambda_{n}} \leq \sigma_{u}^{G} \leq \limsup_{n\rightarrow +\infty }\frac{\log B _{n}^{\ast }}{\lambda_{n}}+\limsup_{n\rightarrow +\infty } \frac{ \log n}{\lambda_{n}}, $$

where \(\sigma_{u}^{F}\) is called the abscissa of uniform convergence of \(F(s)\).

Moreover, Yu [10] first introduced the maximal molecule \(M_{u}(\sigma ,G)\), the maximal term \(\mu (\sigma ,G)\) and the Borel line, and the order of analytic functions represented by Laplace-Stieltjes transforms convergent in the complex plane. After his works, considerable attention has been paid to the growth and value distribution of the functions represented by the Laplace-Stieltjes transform convergent in the half-plane or the whole complex plane in the field of complex analysis (see [1115]).

In 2012, Luo and Kong [16] studied the following form of Laplace-Stieltjes transform:

$$ F(s)= \int_{0}^{+\infty }e^{sx}\,d\alpha (x), \quad s= \sigma +it, $$
(5)

where \(\alpha (x)\) is stated as in (3), and \(\{\lambda_{n}\}\) satisfies (2),(4). Set

$$ A_{n}^{*}=\sup_{\lambda_{n}< x\leq \lambda_{n+1},-\infty < t< +\infty } \biggl\vert \int_{\lambda_{n}}^{x}e^{ity}\,d\alpha (y)\biggr\vert . $$

By using the same argument as in [10], we can get a similar result about the abscissa of uniform convergence of \(F(s)\) easily. If

$$ \limsup_{n\rightarrow +\infty }\frac{\log n}{\lambda_{n}}=D< \infty , \qquad \limsup_{n\rightarrow +\infty }\frac{\log A_{n}^{\ast }}{\lambda_{n}}=- \infty , $$
(6)

by (2), (4) and Theorem 1, one can get that \(\sigma_{u}^{F}=+\infty \), \(i.e\)., \(F(s)\) is an entire function.

Set

$$ M(\sigma ,F)=\sup_{-\infty < t< +\infty }\bigl\vert F(\sigma +it)\bigr\vert ,\qquad M _{u}(\sigma ,F)=\sup_{0< x< +\infty ,-\infty < t< +\infty }\biggl\vert \int_{0} ^{x}e^{(\sigma +it)y}\,d\alpha (y)\biggr\vert $$

and

$$ \mu (\sigma ,F)=\max_{n\in N}\bigl\{ A_{n}^{*}e^{\lambda_{n}\sigma } \bigr\} ( \sigma < +\infty ),\quad N(\sigma ,F)=\max \bigl\{ \lambda_{n}: ~A_{n}^{*}e ^{\lambda_{n}\sigma }=\mu (\sigma ,F)\bigr\} . $$

Since \(M(\sigma ,F)\) and \(M_{u}(\sigma ,F)\) tend to +∞ as \(\sigma \rightarrow +\infty \), in order to estimate the growth of \(F(s)\) more precisely, we will adapt some concepts of order, lower order, type, lower type as follows.

Definition 1.1

If Laplace-Stieltjes transform (5) satisfies \(\sigma_{u}^{F}=+\infty \) (the sequence \(\{\lambda_{n}\}\) satisfies (2), (4), and (6)) and

$$ \limsup_{\sigma \rightarrow +\infty }\frac{\log^{+}\log^{+}M_{u}( \sigma ,F)}{\sigma }=\rho , $$

we call \(F(s)\) of order ρ in the whole plane, where \(\log^{+}x= \max \{\log x,0\}\). If \(\rho \in (0,+\infty )\), we say that \(F(s)\) is an entire function of finite order in the whole plane. Moreover, the lower order of \(F(s)\) is defined by

$$ \liminf_{\sigma \rightarrow +\infty }\frac{\log^{+}\log^{+}M_{u}( \sigma ,F)}{\sigma }=\lambda . $$

Remark 1.1

We say that \(F(s)\) is of the regular growth, when \(\rho =\lambda \), and \(F(s)\) is of the irregular growth, when \(\rho \neq \lambda \).

Definition 1.2

If Laplace-Stieltjes transform (5) satisfies \(\sigma_{u}^{F}=+\infty \) (the sequence \(\{\lambda_{n}\}\) satisfies (2), (4), and (6)) and is of order ρ (\(0<\rho <\infty\)), then we define the type and lower type of L-S transform \(F(s)\) as follows:

$$ \limsup_{\sigma \rightarrow +\infty }\frac{\log^{+}M_{u}(\sigma ,F)}{e ^{\sigma \rho }}=T,\qquad \liminf _{\sigma \rightarrow +\infty }\frac{ \log^{+}M_{u}(\sigma ,F)}{e^{\sigma \rho }}=\tau . $$

Remark 1.2

The purpose of the definition of type is to compare the growth of class functions which all have the same order. For example, let \(f(s)=e^{e ^{s}}\), \(g(s)=e^{e^{2s}}\), by a simple computation, we have \(\rho (f)=1= \rho (g)\), but \(T(f)=1\) and \(T(g)=\infty \). Thus, we can see that the growth of \(g(s)\) is faster than \(f(s)\) as \(\vert s \vert \rightarrow +\infty \).

2 Results and discussion

Recently, many people studied some problems on analytic functions defined by the Laplace-Stieltjes transforms and obtained a number of interesting results. Kong, Sun, Huo and Xu investigated the growth of analytic functions with kinds of order defined by the Laplace-Stieltjes transforms (see [1622]), and Shang, Gao, and Sun investigated the value distribution of such functions (see [2326]). From these references, we get the following results.

Theorem 2.1

If Laplace-Stieltjes transform (5) satisfies \(\sigma_{u}^{F}=+\infty \) (the sequence \(\{\lambda_{n}\}\) satisfies (2), (4), and (6)), and is of order ρ (\(0<\rho <\infty\)) and of type T, then

$$ \rho =\limsup_{n\rightarrow +\infty }\frac{\lambda_{n}\log \lambda _{n}}{-\log A_{n}^{*}}, \qquad T=\limsup _{n\rightarrow +\infty }\frac{ \lambda_{n}}{\rho e}\bigl(A_{n}^{*} \bigr)^{\frac{\rho }{\lambda_{n}}}. $$

Furthermore, if \(F(s)\) is of the lower order λ and the lower type τ, and \(\lambda_{n}\sim \lambda_{n+1}\) and the function

$$ \psi (n)=\frac{\log A^{*}_{n}-\log A^{*}_{n+1}}{\lambda_{n+1}-\lambda _{n}} $$

forms a non-decreasing function of n for \(n>n_{0}\), then we have

$$ \lambda =\liminf_{n\rightarrow +\infty }\frac{\lambda_{n}\log \lambda _{n}}{-\log A_{n}^{*}}, \qquad \tau = \liminf _{n\rightarrow +\infty }\frac{ \lambda_{n}}{\rho e}\bigl(A_{n}^{*} \bigr)^{\frac{\rho }{\lambda_{n}}}. $$

From Definition 1.2, a natural question to ask is: What happened if \(e^{\sigma \rho }\) is replaced by \(e^{\lambda \sigma }\) in the definition of lower type when \(\rho \neq \lambda \)? We are going to consider this question.

Definition 2.1

If Laplace-Stieltjes transform (5) satisfies \(\sigma_{u}^{F}=+\infty \) (the sequence \(\{\lambda_{n}\}\) satisfies (2), (4), and (6)), and is of order ρ (\(0<\rho <\infty\)) and of the lower order λ (\(0<\lambda <\infty\)), if \(\lambda \neq \rho \), and

$$ \liminf_{\sigma \rightarrow +\infty }\frac{\log^{+}M_{u}(\sigma ,F)}{e ^{\sigma \lambda }}=\tau_{\lambda }, $$

we say that \(\tau_{\lambda }\) is the λ-type of \(F(s)\).

Remark 2.1

Obviously, \(\tau_{\lambda }\geq \tau \) and \(\tau_{\lambda }=\tau \) as \(\rho =\lambda \). But we cannot confirm whether \(\tau_{\lambda } \geq T\) or \(\tau_{\lambda }\leq T\).

The following results are the main theorems of this paper.

Theorem 2.2

If Laplace-Stieltjes transform (5) satisfies \(\sigma_{u}^{F}=+\infty \) (the sequence \(\{\lambda_{n}\}\) satisfies (2), (4), and (6)), and is of order ρ and of the lower order λ, \(0\leq \lambda \neq \rho <\infty \), then we have

$$ \liminf_{\sigma \rightarrow \infty }\frac{\log M(\sigma ,F)}{e^{ \rho \sigma }}= \liminf _{\sigma \rightarrow \infty }\frac{\log \mu ( \sigma ,F)}{e^{\rho \sigma }}=0, $$
(7)

and

$$ \liminf_{\sigma \rightarrow \infty }\frac{N(\sigma ,F)}{e^{\rho \sigma }}=0. $$
(8)

Theorem 2.3

If Laplace-Stieltjes transform (5) satisfies \(\sigma_{u}^{F}=+\infty \) (the sequence \(\{\lambda_{n}\}\) satisfies (2), (4), and (6)), and is of order ρ and of the lower order λ, \(0< \lambda \neq \rho <\infty \), type T, λ-type \(\tau_{\lambda }\),

$$ \limsup_{\sigma \rightarrow +\infty }\frac{N(\sigma ,F)}{e^{\rho \sigma }}=H, \qquad \liminf _{\sigma \rightarrow +\infty }\frac{N(\sigma ,F)}{e^{\rho \sigma }}=h, $$

and let

$$ T_{\rho }(\sigma ,F)=\frac{\log \mu (\sigma ,F)}{\exp (\rho \sigma )},\qquad T_{\lambda }(\sigma ,F)= \frac{\log \mu (\sigma ,F)}{\exp (\lambda \sigma )}, $$

then we have

$$\begin{aligned}& H-\rho T\leq \limsup_{\sigma \rightarrow +\infty }T'_{\rho }( \sigma ,F) \leq H, \end{aligned}$$
(9)
$$\begin{aligned}& -\infty \leq \liminf_{\sigma \rightarrow +\infty }T'_{\lambda }( \sigma ,F)\leq h-\lambda \tau_{\lambda } \end{aligned}$$
(10)

for almost all values of \(\sigma >\sigma_{0}\), where \(T'_{\rho }( \sigma )\) and \(T'_{\lambda }(\sigma )\) are the derivatives of \(T_{\rho }(\sigma )\) and \(T_{\lambda }(\sigma )\) with respect to σ.

Theorem 2.4

If Laplace-Stieltjes transform (5) satisfies \(\sigma_{u}^{F}=+\infty \) (the sequence \(\{\lambda_{n}\}\) satisfies (2), (4), and (6)), and is of the lower order λ (\(0\leq \lambda \neq \rho <\infty\)), if \(\lambda_{n}\sim \lambda_{n+1}\), then

$$ \tau_{\lambda }\geq \liminf_{n\rightarrow \infty } \biggl( \frac{\lambda _{n}}{e\lambda } \biggr) \bigl(A^{*}_{n} \bigr)^{\frac{\lambda }{\lambda_{n}}} \quad (0\leq \tau_{\lambda }\leq \infty ). $$
(11)

Furthermore, there exists a positive integer \(n_{0}\) such that

$$ \psi (n)=\frac{\log A^{*}_{n}-\log A^{*}_{n+1}}{\lambda_{n+1}-\lambda _{n}} $$

forms a non-decreasing function of n for \(n>n_{0}\), then we have

$$ \tau_{\lambda }= \liminf_{n\rightarrow \infty } \biggl( \frac{\lambda _{n}}{e\lambda } \biggr) \bigl(A^{*}_{n} \bigr)^{\frac{\lambda }{\lambda_{n}}} \quad (0\leq \tau_{\lambda }\leq \infty ). $$
(12)

We denote by \(\overline{L}_{\beta }\) the class of all the functions \(F(s)\) of the form (5) which are analytic in the half-plane \(\Re s<\beta\) (\(-\infty <\beta <\infty\)) and the sequence \(\{\lambda _{n}\}\) satisfies (2) and (4); and we denote by \(L_{\infty }\) the class of all the functions \(F(s)\) of the form (5) which are analytic in the half-plane \(\Re s<+\infty \) and the sequence \(\{\lambda_{n}\}\) satisfies (2), (4), and (6). Thus, if \(-\infty <\beta <+\infty \) and \(F(s) \in \overline{L}_{\beta }\), then \(F(s)\in L_{\infty }\). If Laplace-Stieltjes transform (5) \(A^{*}_{n}=0\) for \(n\geq k+1\) and \(A^{*}_{n}\neq 0\), then \(F(s)\) will be called an exponential polynomial of degree k usually denoted by \(p_{k}\), \(i.e\)., \(p_{k}(s)= \int^{\lambda_{k}}_{0}\exp (sy)\,d\alpha (y)\). When we choose a suitable function \(\alpha (y)\), the function \(p_{k}(s)\) may be reduced to a polynomial in terms of \(\exp (s\lambda_{i})\), that is, \(\sum_{i=1} ^{k}b_{i}\exp (s\lambda_{i})\).

For \(F(s)\in \overline{L}_{\beta }\), \(-\infty <\beta <+\infty \), we denote by \(E_{n}(F,\beta )\) the error in approximating the function \(F(s)\) by exponential polynomials of degree n in uniform norm as

$$ E_{n}(F,\beta )=\inf_{p\in \Pi_{n}}\Vert F-p \Vert _{\beta }, \quad n=1,2,\ldots , $$

where

$$ \Vert F-p \Vert _{\beta }=\max_{-\infty < t< +\infty }\bigl\vert F( \beta +it)-p(\beta +it) \bigr\vert . $$

In this paper, we will further investigate the relation between \(E_{n}(F,\beta )\) and the growth of an entire function defined by the L-S transform with irregular growth. It seems that this problem has never been treated before. Our main result is as follows.

Theorem 2.5

If the Laplace-Stieltjes transform \(F(s)\in L_{\infty }\) and is of lower order λ (\(0\leq \lambda \neq \rho <\infty\)), if \(\lambda_{n}\sim \lambda_{n+1}\), then for any real number \(-\infty < \beta <+\infty \), we have

$$ \tau_{\lambda }\geq \liminf_{n\rightarrow \infty } \biggl( \frac{\lambda _{n}}{e\lambda } \biggr) \bigl(E_{n-1}(F,\beta )\exp (-\beta \lambda_{n})\bigr)^{\frac{ \lambda }{\lambda_{n}}}\quad (0\leq \tau_{\lambda }\leq \infty ). $$
(13)

Furthermore, there exists a positive integer \(n_{0}\) such that

$$ \psi_{1}(n)=\frac{\log A^{*}_{n}-\log A^{*}_{n+1}}{\lambda_{n+1}- \lambda_{n}} $$

forms a non-decreasing function of n for \(n>n_{0}\), then we have

$$ \tau_{\lambda }= \liminf_{n\rightarrow \infty } \biggl( \frac{\lambda _{n}}{e\lambda } \biggr) \bigl(E_{n-1}(F,\beta )\exp (-\beta \lambda_{n}) \bigr)^{\frac{ \lambda }{\lambda_{n}}}\quad (0\leq \tau_{\lambda }\leq \infty ), $$

i.e.,

$$ \exp (\beta \lambda )e\lambda \tau_{\lambda }= \liminf _{n\rightarrow \infty }\lambda_{n}\bigl(E_{n-1}(F,\beta ) \bigr)^{\frac{ \lambda }{\lambda_{n}}}. $$
(14)

3 Conclusions

From Theorems 2.2-2.5, we can see that the growth of Laplace-Stieltjes transforms is investigated under the assumption \(\rho \neq \lambda \), and that some theorems about the λ-lower type \(\tau_{\lambda }\), \(\lambda_{n}\), \(A_{n}^{*}\), and λ are obtained. In addition, we also study the problem on the error in approximating entire functions defined by the Laplace-Stieltjes transforms. This project is a new issue of Laplace-Stieltjes transforms in the field of complex analysis. Our results are generalization and improvement of the previous conclusions given by Luo and Kong [16, 27], Singhal and Srivastava [28].

4 Methods

4.1 Proofs of Theorems 2.2 and 2.3

To prove the above theorems, we require the following lemmas.

Lemma 4.1

see [27], Lemma 2.1

If the L-S transform \(F(s)\in L_{ \infty }\), for any \(\sigma (-\infty <\sigma <+\infty )\) and \(\varepsilon (>0)\), we have

$$ \frac{1}{2}\mu (\sigma ,F)\leq M_{u}(\sigma ,F)\leq C\mu \bigl((1+2\varepsilon )\sigma ,F\bigr), $$

where C is a constant.

Lemma 4.2

see [16], Lemma 2.2

If the L-S transform \(F(s)\in L_{ \infty }\), then we have

$$ \log \mu (\sigma ,F)=\log \mu (\sigma_{0},F)+ \int_{\sigma_{0}}^{ \sigma }N(t,F)\,dt $$

for \(\sigma_{0}>0\).

4.1.1 The proof of Theorem 2.2

Since \(\rho >\lambda >0\) and \(F(s)\) is of the lower order λ, that is,

$$ \lambda =\liminf_{\sigma \rightarrow +\infty }\frac{\log \log M_{u}( \sigma ,F)}{\sigma }, $$
(15)

for any small \(\varepsilon (0<\varepsilon <\rho -\lambda )\), it follows from (15) that there exists a constant \(\sigma_{0}\) such that, for \(\sigma >\sigma_{0}\),

$$ \log M_{u}(\sigma ,F)>\exp \bigl\{ (\lambda -\varepsilon )\sigma \bigr\} , $$
(16)

and there exists a sequence \(\{\sigma_{k}\}\) tending to +∞ such that

$$ \log M_{u}(\sigma_{k},F)< \exp \bigl\{ ( \lambda +\varepsilon )\sigma_{k}\bigr\} . $$
(17)

Since \(0<\varepsilon <\rho -\lambda \), it follows from (16) and (17) that

$$ \liminf_{\sigma \rightarrow +\infty }\frac{\log M_{u}(\sigma ,F)}{ \exp (\rho \sigma )}=0. $$
(18)

From Lemmas 4.1 and 4.2, we have

$$ \rho =\limsup_{\sigma \rightarrow +\infty }\frac{\log \log M_{u}( \sigma ,F)}{\sigma } =\limsup _{\sigma \rightarrow +\infty }\frac{ \log \log \mu (\sigma ,F)}{\sigma } =\limsup_{\sigma \rightarrow + \infty } \frac{\log N(\sigma ,F)}{\sigma } $$

and

$$ \lambda =\liminf_{\sigma \rightarrow +\infty }\frac{\log \log M_{u}( \sigma ,F)}{\sigma } =\liminf _{\sigma \rightarrow +\infty }\frac{ \log \log \mu (\sigma ,F)}{\sigma } =\liminf_{\sigma \rightarrow + \infty } \frac{\log N(\sigma ,F)}{\sigma }. $$

Thus, similar to the process of (18), we can easily prove

$$ \liminf_{\sigma \rightarrow +\infty }\frac{\log \mu (\sigma ,F)}{ \exp (\rho \sigma )}= \liminf_{\sigma \rightarrow +\infty } \frac{N( \sigma ,F)}{\exp (\rho \sigma )}=0. $$

Hence, this completes the proof of Theorem 2.2.

4.1.2 The proof of Theorem 2.3

From Lemma 4.2, it follows that

$$ \limsup_{\sigma \rightarrow +\infty }\frac{\int_{\sigma_{0}}^{\sigma }N(t,F)\,dt}{e^{\rho \sigma }} =\limsup _{\sigma \rightarrow +\infty }\frac{ \log \mu (\sigma ,F)}{e^{\rho \sigma }}= \limsup_{\sigma \rightarrow +\infty }T_{\rho }( \sigma ,F)=T $$
(19)

and

$$ \liminf_{\sigma \rightarrow +\infty }\frac{\int_{\sigma_{0}}^{\sigma }N(t,F)\,dt}{e^{\lambda \sigma }} =\liminf _{\sigma \rightarrow +\infty }\frac{\log \mu (\sigma ,F)}{e^{\lambda \sigma }}= \liminf_{\sigma \rightarrow +\infty }T_{\lambda }( \sigma ,F)= \tau_{\lambda }. $$
(20)

Dividing two sides of the equality in Lemma 4.2 by \(e^{\rho \sigma }\) and differentiating it with respect to σ, for almost all values \(\sigma >\sigma_{0}\), we have

$$ T'_{\rho }(\sigma ,F)=-\rho \frac{\log \mu (\sigma_{0},F)}{e^{\rho \sigma }}-\frac{\rho }{e^{\rho \sigma }} \int_{\sigma_{0}}^{\sigma }N(t,F)\,dt+\frac{N( \sigma ,F)}{e^{\rho \sigma }}. $$
(21)

On the basis of the assumptions of Theorem 2.3, taking lim sup in (21) when \(\sigma \rightarrow +\infty \), from Theorem 2.2 and (19), we get (9) easily.

Similarly, dividing two sides of the equality in Lemma 4.2 by \(e^{\lambda \sigma }\) and differentiating it with respect to σ, for almost all values \(\sigma >\sigma_{0}\),

$$ T'_{\lambda }(\sigma ,F)=-\lambda \frac{\log \mu (\sigma_{0},F)}{e ^{\lambda \sigma }}-\frac{\lambda }{e^{\lambda \sigma }} \int_{\sigma _{0}}^{\sigma }N(t,F)\,dt+\frac{N(\sigma ,F)}{e^{\lambda \sigma }}. $$
(22)

On the basis of the assumptions of Theorem 2.3, taking lim inf in (22) when \(\sigma \rightarrow +\infty \), from Theorem 2.1 and (20), we get (10) easily.

Thus, this completes the proof of Theorem 2.3.

4.2 The proof of Theorem 2.4

Let

$$ \vartheta =\liminf_{n\rightarrow +\infty }\frac{\lambda_{n}}{e\lambda } \bigl(A_{n}^{*}\bigr)^{\frac{\lambda }{\lambda_{n}}}\quad (0< \vartheta < + \infty ). $$

Thus, for any \(\varepsilon >0\), there exists an integer \(n_{0}(\varepsilon )\) such that, for \(n>n_{0}(\varepsilon )\),

$$ \lambda_{n}\bigl(A_{n}^{*} \bigr)^{\frac{\lambda }{\lambda_{n}}}>(\vartheta - \varepsilon )e\lambda . $$
(23)

By Lemma 4.1, it follows from (23) that for \(n>n_{0}(\varepsilon )\)

$$\begin{aligned} \frac{\log M_{u}(\sigma ,F)}{e^{\lambda \sigma }} &\geq \frac{\log A _{n}^{*}+\lambda_{n}\sigma -\log 2}{e^{\lambda \sigma }} \\ & >e^{-\lambda \sigma } \biggl( \lambda_{n}\sigma +\frac{\lambda_{n}}{ \lambda }\log \bigl[(\vartheta -\varepsilon )e\lambda \bigr] -\frac{\lambda_{n}}{ \lambda }\log \lambda_{n}-\log 2 \biggr) . \end{aligned}$$
(24)

Let

$$ \biggl( \frac{\lambda_{n}}{\lambda \vartheta } \biggr) ^{\frac{1}{\lambda}}\leq e^{\sigma }< \biggl( \frac{\lambda_{n+1}}{\lambda \vartheta } \biggr) ^{\frac{1}{\lambda }}, $$

and take

$$ \sigma =\frac{1}{\lambda }\log \biggl(\frac{\lambda_{n}}{\lambda \vartheta }\biggr)+o\biggl( \frac{1}{\lambda_{n}}\biggr). $$

Then from (24) it follows

$$ \frac{\log M_{u}(\sigma ,F)}{e^{\lambda \sigma }}\geq \frac{\lambda \vartheta }{\lambda_{n+1}} \biggl( \frac{\lambda_{n}}{\lambda }\log \frac{1}{ \lambda \vartheta } +\frac{\lambda_{n}}{\lambda }\log \bigl((\vartheta - \varepsilon )e\lambda \bigr)-\log 2+o(1) \biggr) . $$
(25)

Since \(\lambda_{n}\sim \lambda_{n+1}\) and \(\lambda_{n}\rightarrow + \infty \) as \(n\rightarrow +\infty \), thus by a simple computation, from (25) we have \(\tau_{\lambda }\geq \vartheta \). When \(\vartheta =0\), \(\tau_{\lambda }\geq \vartheta \) is obvious; if \(\vartheta =\infty \), we also prove that \(\tau_{\lambda }\geq \vartheta \) by using the same argument as above. Hence we prove that (11) holds.

Let \(\mu (\sigma ,F)\) denote the maximum term for \(\Re s=\sigma\), \(- \infty < t<+\infty \). Since

$$ \psi (n)=\frac{\log A^{*}_{n}-\log A^{*}_{n+1}}{\lambda_{n+1}-\lambda _{n}} $$

forms a non-decreasing function of n for \(n>n_{0}\), then for \(\psi (n-1)\leq \sigma <\psi (n)\)

$$ \log \mu (\sigma ,F)=\log A_{n}^{*}+\lambda_{n} \sigma . $$

Since \(\tau_{\lambda }<\infty \), for any small \(\varepsilon >0\), it follows from (20) that

$$ \log \mu (\sigma ,F)=\log A_{n}^{*}+ \lambda_{n}\sigma \geq ( \tau_{\lambda }-\varepsilon )\exp (\lambda \sigma ) $$
(26)

for \(\sigma >\sigma_{0}\) and all n such that \(\psi (n-1)\leq \sigma <\psi (n)\).

Let \(\Re s=\sigma >\sigma_{0}\) and \(A_{n_{1}}^{*}\exp (\sigma \lambda_{n_{1}})\) and \(A_{n_{2}}^{*}\exp (\sigma \lambda_{n_{2}})\) (\(n_{1}>n_{0}, \psi (n-1)>\sigma_{0}\)) be two consecutive maximum terms such that \(n_{2}-1\geq n_{1}\), it follows from (26) that

$$ \log A_{n_{2}}^{*}+\lambda_{n_{2}}\sigma \geq ( \tau_{\lambda }-\varepsilon )\exp (\lambda \sigma ) $$

for all \(\sigma >\sigma_{0}\) satisfying \(\psi (n_{2}-1)\leq \sigma < \psi (n_{2})\). Let \(n_{1}\leq n\leq n_{2}-1\), then

$$ \psi (n_{1})=\psi (n_{1}+1)=\cdots =\psi (n)=\cdots =\psi (n_{2}-1) $$

and \(A_{n}^{*}\exp (\lambda_{n}\sigma )=A_{n_{2}}^{*}\exp (\lambda _{n_{2}}\sigma )\) for \(\sigma =\psi (n)\). Then there exists a positive integer \(n_{1}\) such that, for \(n>n_{1}\) and \(\sigma >\sigma_{0}\),

$$ \log A_{n}^{*}>(\tau_{\lambda }-\varepsilon )e^{\lambda \sigma }- \lambda_{n}\sigma . $$

Since \(e^{x}\geq ex\) for any x, so it follows

$$ \lambda_{n}\bigl(A_{n}^{*} \bigr)^{\frac{\lambda }{\lambda_{n}}}> \frac{\lambda _{n}}{e^{\lambda \sigma }} \exp \biggl\{ \frac{\lambda (\tau_{\lambda }- \varepsilon )}{\lambda_{n}}e^{\lambda \sigma } \biggr\} >\frac{\lambda _{n}}{e^{\lambda \sigma }}\frac{e(\tau_{\lambda }-\varepsilon )\lambda }{\lambda_{n}}e^{\lambda \sigma } =e( \tau_{\lambda }-\varepsilon ) \lambda . $$
(27)

Thus, for \(\varepsilon \rightarrow 0\) and \(n\rightarrow +\infty \), from (27) it follows

$$ \vartheta =\liminf_{n\rightarrow +\infty }\frac{\lambda_{n}}{e\lambda } \bigl(A_{n}^{*}\bigr)^{\frac{\lambda }{\lambda_{n}}}\geq \tau_{\lambda }. $$
(28)

Hence, this proves that (12) holds.

4.3 The proof of Theorem 2.5

To prove this theorem, we require the following lemma.

Lemma 4.3

If the abscissa \(\sigma_{u}^{F}=+\infty \) of uniform convergence of the Laplace-Stieltjes transformation \(F(s)\) and sequence (2) satisfies (4), (6), then for any real number β, we have

$$ \biggl\vert \int_{\lambda_{k}}^{\infty }\exp \bigl\{ (\beta +it)y\bigr\} \,d\alpha (y)\biggr\vert \leq 2\sum_{n=k}^{+\infty }A_{n}^{*} \exp \{\beta \lambda_{n+1}\}, $$

where

$$ A_{n}^{*}=\sup_{\lambda_{n}< x\leq \lambda_{n+1},-\infty < t< +\infty } \biggl\vert \int_{\lambda_{n}}^{x}e^{ity}\,d\alpha (y)\biggr\vert . $$

Proof

Set

$$ I(x;it)= \int_{0}^{x}\exp \{ity\}\,d\alpha (y). $$

For any real number β, since

$$ \biggl\vert \int_{\lambda_{k}}^{\infty }\exp \bigl\{ (\beta +it)y\bigr\} \,d\alpha (y)\biggr\vert =\lim_{b\rightarrow +\infty }\biggl\vert \int_{\lambda_{k}}^{b} \exp \bigl\{ (\beta +it)y\bigr\} \,d \alpha (y)\biggr\vert . $$

Set \(I_{j+k}(b;it)=\int_{\lambda_{j+k}}^{b}\exp \{ity\}\,d\alpha (y)\), \((\lambda_{j+k}< b\leq \lambda_{j+k+1})\), then we have \(\vert I_{j+k}(b;it) \vert \leq A_{j+k}^{*}\). Thus, it follows

$$\begin{aligned}& \biggl\vert \int_{\lambda_{k}}^{b}\exp \bigl\{ (\beta +it)y\bigr\} \,d \alpha (y)\biggr\vert \\& \quad = \Biggl\vert \sum_{j=k}^{n+k-1} \int_{\lambda_{j}}^{\lambda_{j+1}}\exp \{ \beta y\}d_{y}I_{j}(y;it)+ \int_{\lambda_{n+k}}^{b}\exp \{\beta y\}d _{y}I_{n+k}(y;it) \Biggr\vert \\& \quad = \Biggl\vert \Biggl[ \sum_{j=k}^{n+k-1}e^{\lambda_{j+1}\beta }I_{j}( \lambda_{j+1};it)-\beta \int_{\lambda_{j}}^{\lambda_{j+1}}e^{\beta y}I_{j}(y;it) \,dy\Biggr] \\& \quad \quad {} +e^{\beta b}I_{n+k}(b;it)-\beta \int_{\lambda_{n+k}}^{b}e^{\beta y}I_{j}(y;it) \,dy\Biggr\vert \\& \quad \leq \sum_{j=k}^{n+k-1}\bigl[ A_{j}^{*}e^{\lambda_{j+1}\beta }+A_{j} ^{*} \bigl(e^{\lambda_{j+1}\beta }-e^{\lambda_{j}\beta }\bigr)\bigr] +2e^{\beta \lambda_{n+k+1}}A_{n+k}^{*}-e^{\beta \lambda_{n+k}}A_{n+k}^{*} \\& \quad \leq 2\sum_{j=k}^{n+k} A_{n}^{*}e^{\lambda_{n+1}\beta }. \end{aligned}$$

When \(n\rightarrow +\infty \), we have \(b\rightarrow +\infty \), thus we have

$$ \biggl\vert \int_{\lambda_{k}}^{\infty }\exp \bigl\{ (\beta +it)y\bigr\} \,d\alpha (y)\biggr\vert \leq 2\sum_{n=k}^{+\infty }A_{n}^{*} \exp \{\beta \lambda_{n+1}\}. $$

 □

Now, we are going to prove Theorem 2.5.

4.4 The proof of Theorem 2.5

Let

$$ \vartheta_{1}= \liminf_{n\rightarrow \infty } \biggl( \frac{\lambda_{n}}{e \lambda } \biggr) \bigl(E_{n-1}(F,\beta )\exp (-\beta \lambda_{n})\bigr)^{\frac{ \lambda }{\lambda_{n}}} \quad (0< \vartheta_{1}< + \infty ). $$

Then, for any small \(\varepsilon >0\), there exists an integer \(n_{0}(\varepsilon )\) such that, for any \(n>n_{0}(\varepsilon )\),

$$ \log \bigl(E_{n-1}(F,\beta )\exp (-\beta \lambda_{n})\bigr)>\frac{\lambda_{n}}{ \lambda }\log \frac{(\vartheta_{1}-\varepsilon )e\lambda }{\lambda _{n}}. $$
(29)

Since \(F(s)\in L_{\infty }\), thus for any constant β (\(-\infty <\beta <+\infty\)), we have \(F(s)\in \overline{L}_{\beta }\). For \(\beta <\sigma <+\infty \). It follows from the definitions of \(E_{n}(F,\beta )\) and \(p_{n}\) that

$$\begin{aligned} E_{n}(F,\beta ) &\leq \Vert F-p_{n} \Vert _{\beta }\leq \bigl\vert F(\beta +it)-p_{n}(\beta +it) \bigr\vert \\ &\leq \biggl\vert \int_{0}^{+\infty }\exp \bigl\{ (\beta +it)y\bigr\} \,d\alpha (y)- \int_{0}^{\lambda_{n}}\exp \bigl\{ (\beta +it)y\bigr\} \,d \alpha (y)\biggr\vert \\ &=\biggl\vert \int_{\lambda_{n}}^{\infty }\exp \bigl\{ (\beta +it)y\bigr\} \,d\alpha (y)\biggr\vert . \end{aligned}$$
(30)

Thus, from the definition of \(A_{n}^{*}\) and \(M_{u}(\sigma ,F)\), and by Lemma 4.1, we have \(A_{n}^{*}\leq 2 M_{u}(\sigma ,F)e^{-\sigma \lambda _{n}}\) for any σ (\(\beta <\sigma <+\infty\)). It follows from (30) and Lemma 4.3 that

$$ E_{n}(F,\beta )\leq 2\sum_{k=n+1}^{\infty }A_{k-1}^{*} \exp \{\beta \lambda_{k}\}\leq 4M_{u}(\sigma ,F)\sum _{k=n+1}^{\infty }\exp \bigl\{ ( \beta -\sigma ) \lambda_{k}\bigr\} . $$
(31)

From (4), take \(h'\) (\(0< h'< h\)) such that \((\lambda_{n+1} -\lambda_{n}) \geq h'\) for \(n\geq 0\). Then, for \(\sigma \geq \frac{\beta }{2}\), it follows from (31) that

$$\begin{aligned} E_{n}(F,\beta ) &\leq 4M_{u}(\sigma ,F)\exp \bigl\{ \lambda_{n+1}(\beta - \sigma )\bigr\} \sum_{k=n+1}^{\infty } \exp \bigl\{ (\lambda_{k}-\lambda_{n+1}) ( \beta -\sigma )\bigr\} \\ &\leq 4M_{u}(\sigma ,F)\exp \bigl\{ \lambda_{n+1}(\beta - \sigma )\bigr\} \exp \biggl\{ -\frac{ \beta }{2}h'(n+1)\biggr\} \sum _{k=n+1}^{\infty }\biggl(\exp \biggl\{ \frac{\beta }{2}h'k \biggr\} \biggr) \\ &=4M_{u}(\sigma ,F)\exp \bigl\{ \lambda_{n+1}(\beta -\sigma ) \bigr\} \biggl( 1- \exp \biggl\{ \frac{\beta }{2}h'\biggr\} \biggr) ^{-1}, \end{aligned}$$

that is,

$$ E_{n-1}(F,\beta )\leq KM_{u}(\sigma ,F)\exp \bigl\{ \lambda_{n}(\beta - \sigma )\bigr\} , $$
(32)

where K is a constant. Let

$$ \gamma_{n}= E_{n-1}(F,\beta )\exp (-\beta\lambda_{n})\quad (n=1,2,\ldots ). $$

Thus, from (29) and (32), it follows that for \(n>n_{0}(\varepsilon )\)

$$\begin{aligned} \frac{\log M_{u}(\sigma ,F)}{e^{\lambda \sigma }} &\geq \frac{\log \gamma_{n}+\lambda_{n}\sigma -\log K}{e^{\lambda \sigma }} \\ & >e^{-\lambda \sigma } \biggl( \lambda_{n}\sigma +\frac{\lambda_{n}}{ \lambda }\log \bigl[(\vartheta_{1}-\varepsilon )e\lambda \bigr]-\frac{\lambda _{n}}{\lambda } \log \lambda_{n}-\log K \biggr) . \end{aligned}$$
(33)

By using the same argument as in Theorem 2.4, we can easily prove that \(\tau_{\lambda }\geq \vartheta_{1}\).

From the proof of Theorem 2.4, we have that there exists a positive integer \(n_{1}\) such that

$$ \log A_{n}^{*}>(\tau_{\lambda }-\varepsilon )e^{\lambda \sigma }- \lambda_{n}\sigma $$

for \(n>n_{1}\) and \(\sigma >\sigma_{0}\). Since for any \(\beta <+\infty \), from the definition of \(E_{k}(F,\beta )\), there exists \(p_{1} \in \Pi_{n-1}\) such that

$$ \Vert F-p_{1} \Vert \leq 2E_{n-1}(F,\beta ). $$
(34)

And since

$$\begin{aligned} A_{n}^{*}\exp \{\beta \lambda_{n}\} & = \sup_{\lambda_{n}< x\leq \lambda_{n+1},-\infty < t< +\infty }\biggl\vert \int _{\lambda_{n}}^{x}\exp \{ity\}\,d\alpha (y)\biggr\vert \exp \{\beta \lambda _{n}\} \\ &\leq \sup_{\lambda_{n}< x\leq \lambda_{n+1},-\infty < t< + \infty }\biggl\vert \int_{\lambda_{n}}^{x}\exp \bigl\{ (\beta +it)y\bigr\} \,d\alpha (y)\biggr\vert \\ &\leq \sup_{-\infty < t< +\infty }\biggl\vert \int_{\lambda_{n}}^{ \infty }\exp \bigl\{ (\beta +it)y\bigr\} \,d \alpha (y)\biggr\vert , \end{aligned}$$

thus for any \(p\in \Pi_{n-1}\), it follows

$$ A_{n}^{*}\exp \{\beta \lambda_{n} \}\leq \bigl\vert F(\beta +it)-p(\beta +it) \bigr\vert \leq \Vert F-p \Vert _{\beta }. $$
(35)

Hence from (34) and (35), for any \(\beta <+\infty \) and \(F(s)\in L _{\infty }\), we have

$$ A_{n}^{*}\exp \{\beta \lambda_{n}\}\leq 2E_{n-1}(F,\beta ). $$

Since \(e^{x}\geq ex\) for any x, so it follows

$$\begin{aligned} \lambda_{n}(\gamma_{n})^{\frac{\lambda }{\lambda_{n}}}&> \frac{\lambda _{n}}{e^{\lambda \sigma }} \exp \biggl\{ \frac{\lambda (\tau_{\lambda }- \varepsilon )}{\lambda_{n}}e^{\lambda \sigma }- \frac{\lambda \log 2}{ \lambda_{n}} \biggr\} \\ &>\frac{\lambda_{n}}{e^{\lambda \sigma }} \biggl( \frac{e(\tau_{\lambda }-\varepsilon )\lambda }{\lambda_{n}}e^{\lambda \sigma }\exp \bigl\{ o(1) \bigr\} \biggr) =e(\tau_{\lambda }-\varepsilon )\lambda . \end{aligned}$$
(36)

Thus, for \(\varepsilon \rightarrow 0\) and \(n\rightarrow +\infty \), from (36) it follows

$$ \vartheta_{1}=\liminf_{n\rightarrow \infty }\frac{\lambda_{n}}{e \lambda }( \gamma_{n})^{\frac{\lambda }{\lambda_{n}}}\geq \tau_{\lambda }. $$

Since \([E_{n-1}(F,\beta )\exp (-\beta \lambda_{n})]^{\frac{\lambda }{ \lambda_{n}}}=[E_{n-1}(F,\beta )]^{\frac{\lambda }{\lambda_{n}}} \exp (-\beta \lambda )\), then (14) follows.

Therefore, we complete the proof of Theorem 2.5.

4.5 Remarks

From the proof of Theorem 2.5, and combining those results of the Laplace-Stieltjes transforms in Ref. [14, 16, 27], we can obtain the following results on the approximation of Laplace-Stieltjes transforms, which can be found partly in [28].

Theorem 4.1

If the L-S transform \(F(s)\in L_{\infty }\) and is of order ρ (\(0<\rho <\infty\)) and of type T, then for any real number \(-\infty < \beta <+\infty \), we have

$$ \rho =\limsup_{n\rightarrow +\infty }\frac{\lambda_{n}\log \lambda _{n}}{-\log E_{n-1}(F,\beta )\exp (-\beta \lambda_{n})}= \limsup _{n\rightarrow +\infty }\frac{\lambda_{n}\log \lambda_{n}}{- \log E_{n-1}(F,\beta )} $$

and

$$ \begin{aligned} T&=\limsup_{n\rightarrow +\infty }\frac{\lambda_{n}}{\rho e}\bigl(E_{n-1}(F, \beta )\exp (-\beta \lambda_{n})\bigr)^{\frac{\rho }{\lambda_{n}}} \\ &= \limsup _{n\rightarrow +\infty }\frac{\lambda_{n}}{\rho \exp (\rho \beta +1)}\bigl(E_{n-1}(F,\beta ) \bigr)^{\frac{\rho }{\lambda_{n}}}. \end{aligned} $$

Furthermore, if \(F(s)\) is of the lower order λ and the lower type τ, and \(\lambda_{n}\sim \lambda_{n+1}\) and the function

$$ \psi (n)=\frac{\log A^{*}_{n}-\log A^{*}_{n+1}}{\lambda_{n+1}-\lambda _{n}} $$

forms a non-decreasing function of n for \(n>n_{0}\), then we have

$$ \lambda =\liminf_{n\rightarrow +\infty }\frac{\lambda_{n}\log \lambda _{n}}{-\log E_{n-1}(F,\beta )}, \qquad \tau = \liminf _{n\rightarrow + \infty }\frac{\lambda_{n}}{\rho \exp (\rho \beta +1)}\bigl(E_{n-1}(F, \beta ) \bigr)^{\frac{\rho }{\lambda_{n}}}. $$

Theorem 4.2

If the L-S transform \(F(s)\in L_{\infty }\), then for any real number \(-\infty <\beta <+\infty \). For \(p=1\), we have

$$ \limsup_{\sigma \rightarrow +\infty }\frac{h(\log M_{u}(\sigma ,F))}{h( \sigma )}-1= \limsup _{n\rightarrow +\infty }\frac{h(\lambda_{n})}{h ( -\frac{1}{\lambda_{n}} \log [E_{n-1}(F,\beta )\exp (-\beta \lambda_{n})] ) }, $$

and for \(p=2,3,\ldots \) , we have

$$\begin{aligned} &\limsup_{n\rightarrow +\infty }\frac{h(\lambda_{n})}{h ( -\frac{1}{ \lambda_{n}} \log [E_{n-1}(F,\beta )\exp (-\beta \lambda_{n})] ) } \\ &\quad \leq \limsup _{\sigma \rightarrow +\infty }\frac{h(\log M_{u}(\sigma ,F))}{h( \sigma )} \\ &\quad \leq \limsup_{n\rightarrow +\infty }\frac{h(\lambda_{n})}{h ( -\frac{1}{ \lambda_{n}} \log [E_{n-1}(F,\beta )\exp (-\beta \lambda_{n})] ) }+1, \end{aligned}$$

where \(h(x)\) satisfies the following conditions:

  1. (i)

    \(h(x)\) is defined on \([a,+\infty )\) and is positive, strictly increasing, differentiable and tends to +∞ as \(x\rightarrow + \infty \);

  2. (ii)

    \(\lim_{x\rightarrow +\infty } \frac{d(h(x))}{d(\log^{[p]}x)}=k\in (0,+\infty )\), \(p\geq 1, p\in \mathbb{N}^{+}\), where \(\log^{[0]}x=x, \log^{[1]}x=\log x\) and \(\log^{[p]}x=\log (\log^{[p-1]}x)\).