1 Introduction

We consider the following coupled chemotaxis fluid model [1]:

$$\begin{aligned}& u_{t}+(u\cdot\nabla) u+\nabla\pi-\Delta u+n\nabla\phi=0, \end{aligned}$$
(1.1)
$$\begin{aligned}& \operatorname{div}u=0, \end{aligned}$$
(1.2)
$$\begin{aligned}& n_{t}+(u\cdot\nabla)n-\Delta n=-\nabla\cdot\bigl(n\chi(p)\nabla p \bigr), \end{aligned}$$
(1.3)
$$\begin{aligned}& p_{t}+(u\cdot\nabla)p=-nf(p), \end{aligned}$$
(1.4)
$$\begin{aligned}& (u,n,p) (x,0)=(u_{0},n_{0},p_{0}) (x) \quad \mbox{in } \mathbb{R}^{3}. \end{aligned}$$
(1.5)

Here u denotes the velocity vector field of the fluid and π is the pressure scalar, p and n denote the concentration of oxygen and bacteria, respectively. ∇ϕ is the gravitation force. \(f(p)\geq f(0)=0\) and \(\chi(p)\geq0\) are two given smooth functions of p.

When \(\phi=0\), (1.1) and (1.2) are the well-known Navier-Stokes system. Kozono et al. [2] and Kozono and Shimada [3] proved the following blow-up criteria:

$$\begin{aligned}& u\in L^{2}\bigl(0,T;\dot{B}^{0}_{\infty,\infty} \bigr), \end{aligned}$$
(1.6)
$$\begin{aligned}& u\in L^{\frac{2}{1-\theta}}\bigl(0,T;\dot{B}^{-\theta}_{\infty,\infty} \bigr)\quad \mbox{with }0< \theta< 1, \end{aligned}$$
(1.7)
$$\begin{aligned}& \omega:=\operatorname{curl}u\in L^{1}\bigl(0,T; \dot{B}^{0}_{\infty,\infty}\bigr). \end{aligned}$$
(1.8)

Here \(\dot{B}^{s}_{p,q}\) denotes the homogeneous Besov space. Zhang et al. [4] showed the following blow-up criterion in terms of pressure:

$$ \pi\in L^{\frac{2}{2+r}}\bigl(0,T;\dot{B}^{r}_{\infty,\infty} \bigr)\quad\mbox{with }{-}1\leq r\leq1. $$
(1.9)

When \(u=\nabla\phi=0\), (1.3) and (1.4) are the Keller-Segel model which was studied in [5, 6].

Very recently, Chae et al.[7] showed the local well-posedness of smooth solutions to problem (1.1)-(1.5) and the following blow-up criterion:

$$ u\in L^{\frac{2q}{q-3}}\bigl(0,T;L^{q}\bigr)\quad \mbox{and}\quad n\in L^{2}\bigl(0,T;L^{\infty}\bigr)\quad \mbox{with }3< q\leq\infty. $$
(1.10)

The aim of this paper is to refine (1.10) further; we will prove the following.

Theorem 1.1

Let the initial data \((u_{0},n_{0},p_{0})\) be given in \(H^{l}\times H^{l-1}\times H^{l}\) for \(l>\frac{5}{2}\) and \(n_{0}\), \(p_{0}\geq0\) in \(\mathbb{R}^{3}\) and \(\int_{\mathbb{R}^{3}}n_{0}\,dx<\infty\). Suppose that ϕ is a smooth function. Let \((u, n, p)\) be a local smooth solution on \([0,\tilde{T})\) for some \(\tilde{T}\leq\infty\). If u satisfies (1.6) or (1.7) or (1.8) or π satisfies (1.9) (\(r=-1\)) and n satisfies

$$ n\in L^{2}\bigl(0,T;L^{\infty}\bigr) $$
(1.11)

with \(\tilde{T}\leq T<\infty\), then the solution \((u, n ,p)\) can be extended beyond \(T>0\).

Corollary 1.1

If u satisfies (1.6) or (1.7) or (1.8) or π satisfies (1.9) andp satisfies

$$ \nabla p\in L^{\frac{2q}{q-3}}\bigl(0,T;L^{q}\bigr)\quad \textit{with }3< q\leq\infty, $$
(1.12)

with \(\tilde{T}\leq T<\infty\), then the solution \((u, n ,p)\) can be extended beyond \(T>0\).

Remark 1.1

By the very same calculations as those in Zhou [8], we can prove the following blow-up criteria:

$$ \pi\in L^{\frac{2q}{2q-3}}\bigl(0,T;L^{q}\bigr)\quad \mbox{with }3/2< q\leq\infty, $$
(1.13)

or

$$ \nabla\pi\in L^{\frac{2q}{3q-3}}\bigl(0,T;L^{q}\bigr)\quad \mbox{with }1< q\leq\infty, $$
(1.14)

and n satisfies (1.11). We omit the details here.

2 Preliminary

Here we recall the definitions and some properties of spaces.

Let \(\mathfrak{B}=\{\xi\in\mathbb{R}^{d}, \vert \xi \vert \le \frac{4}{3}\}\) and \(\mathfrak{C}=\{\xi\in\mathbb{R}^{d}, \frac{3}{4}\le \vert \xi \vert \le\frac{8}{3}\}\). Choose two nonnegative smooth radial functions χ, φ supported, respectively, in \(\mathfrak{B}\) and \(\mathfrak{C}\) such that

$$\begin{gathered} \chi(\xi)+\sum_{j\ge0}\varphi\bigl(2^{-j}\xi \bigr)=1,\quad\xi\in\mathbb{R}^{d}, \\ \sum_{j\in\mathbb{Z}}\varphi\bigl(2^{-j}\xi\bigr)=1, \quad\xi\in\mathbb {R}^{d}\setminus\{0\}. \end{gathered} $$

We denote \(\varphi_{j}=\varphi(2^{-j}\xi)\), \(h=\mathfrak{F}^{-1}\varphi \) and \(\tilde{h}=\mathfrak{F}^{-1}\chi\), where \(\mathfrak{F}^{-1}\) stands for the inverse Fourier transform. Then the dyadic blocks \(\Delta_{j}\) and \(S_{j}\) can be defined as follows:

$$\begin{gathered} \Delta_{j}f=\varphi\bigl(2^{-j}D\bigr)f=2^{jd} \int_{\mathbb{R}^{d}}h\bigl(2^{j}y\bigr)f(x-y)\,dy, \\ S_{j}f=\sum_{k\le j-1}\Delta_{k}f= \chi\bigl(2^{-j}D\bigr)f=2^{jd} \int_{\mathbb {R}^{d}}\tilde{h}\bigl(2^{j}y\bigr)f(x-y)\,dy. \end{gathered} $$

Formally, \(\Delta_{j}=S_{j}-S_{j-1}\) is a frequency projection to annulus \(\{\xi: C_{1}2^{j}\le \vert \xi \vert \le C_{2}2^{j}\}\), and \(S_{j}\) is a frequency projection to the ball \(\{\xi: \vert \xi \vert \le C2^{j}\}\). One can easily verify that, with our choice of φ,

$$\Delta_{j}\Delta_{k}f=0\quad \mbox{if } \vert j-k\vert \ge2\quad \mbox{and}\quad \Delta_{j}(S_{k-1}f\Delta_{k}f)=0 \quad \mbox{if }\vert j-k\vert \ge5. $$

With the introduction of \(\Delta_{j}\) and \(S_{j}\), let us recall the definition of the Besov space.

Definition 2.1

[9, 10]

Let \(s\in\mathbb{R}\), \((p,q)\in [1,\infty]^{2}\), the homogeneous space \(\dot{B}_{p,q}^{s}\) is defined by

$$\dot{B}_{p,q}^{s}=\bigl\{ f\in\mathfrak{S}'; \Vert f\Vert _{\dot {B}_{p,q}^{s}}< \infty\bigr\} , $$

where

$$ \Vert f\Vert _{\dot{B}_{p,q}^{s}}= \textstyle\begin{cases} (\sum _{j\in\mathbb{Z}}2^{sqj}\Vert \Delta_{j}f \Vert _{L^{p}}^{q})^{\frac{1}{q}},&\mbox{for } 1\le q< \infty, \\ \sup_{j\in\mathbb{Z}}2^{sj}\Vert \Delta_{j}f \Vert _{L^{p}},&\mbox{for } q=\infty, \end{cases} $$

and \(\mathfrak{S}'\) denotes the dual space of \(\mathfrak{S}=\{f\in \mathcal{S}(\mathbb{R}^{d}); \partial^{\alpha}\hat{f}(0)=0; \forall\alpha \in \mathbb{N}^{d} \mbox{ multi-index}\}\) and can be identified by the quotient space of \(\mathcal{S'}/\mathcal{P}\) with the polynomials space \(\mathcal{P}\).

Lemma 2.1

[4]

Let a measurable function π satisfy

$$\pi\in\dot{B}_{\infty,\infty}^{r}\bigl(\mathbb{R}^{3}\bigr) $$

for some r with \(-1\leq r\leq1\), then there exists a decomposition \(\pi:=\pi_{\ell}+\pi_{h}\) such that

$$\nabla^{2}\pi_{\ell}\in L^{\infty}\bigl( \mathbb{R}^{3}\bigr)\quad \textit{and}\quad \pi _{h}\in W^{-1,\infty}\bigl(\mathbb{R}^{3}\bigr), $$

and

$$\begin{aligned}& \bigl\Vert \nabla^{2}\pi_{\ell}\bigr\Vert _{L^{\infty}}^{\frac{1}{2}}+\Vert \pi_{h}\Vert _{ W^{-1,\infty}}^{2}\leq C\bigl(e+\Vert \pi \Vert _{\dot{B}_{\infty,\infty}^{r}}^{\frac{2}{2+r}}\bigr), \\& \Vert \pi_{\ell} \Vert _{L^{2}}\leq C\Vert \pi \Vert _{L^{2}}, \Vert \nabla\pi_{h}\Vert _{L^{2}}\leq C \Vert \nabla \pi \Vert _{L^{2}}. \end{aligned}$$

3 Proof of Theorem 1.1

This section is devoted to the proof of Theorem 1.1. Since local existence results have been proved in [7], we only need to prove a priori estimates.

To begin with, it is easy to see that

$$ n\geq0,\qquad 0\leq p\leq C,\qquad \int_{\mathbb{R}^{3}}n\,dx= \int_{\mathbb {R}^{3}}n_{0}\,dx< \infty. $$
(3.1)

Case 1. Let (1.6) and (1.11) hold true.

Testing (1.1) by u and using (1.2), we infer that

$$\begin{aligned} \frac{1}{2}\frac{d}{dt} \int_{\mathbb{R}^{3}}\vert u\vert ^{2}\,dx+ \int_{\mathbb{R}^{3}}\vert \nabla u\vert ^{2}\,dx =& \int _{\mathbb{R}^{3}}n\nabla\phi u\,dx \\ \leq&\Vert n\Vert _{L^{\infty}} \Vert \nabla\phi \Vert _{L^{2}} \Vert u\Vert _{L^{2}}, \end{aligned}$$

which leads to

$$ \Vert u\Vert _{L^{\infty}(0,T;L^{2})}+\Vert u\Vert _{L^{2}(0,T;H^{1})} \leq C. $$
(3.2)

In the following calculations, we will use the following elegant inequality [11, 12]:

$$\Vert \nabla u\Vert _{L^{4}}^{2}\leq C\Vert u\Vert _{\dot{B}_{\infty,\infty}^{0}}\Vert \Delta u\Vert _{L^{2}}. $$

Testing (1.1) by Δu, using (1.2) and the above inequality, we find that

$$\begin{aligned}& \frac{1}{2}\frac{d}{dt} \int_{\mathbb{R}^{3}}\vert \nabla u\vert ^{2}\,dx+ \int_{\mathbb{R}^{3}}\vert \Delta u\vert ^{2}\,dx \\& \quad = \int_{\mathbb{R}^{3}}(u\cdot\nabla)u\cdot\Delta u \,dx+ \int _{\mathbb{R}^{3}}n\nabla\phi\Delta u\,dx \\& \quad = \sum_{i,j} \int_{\mathbb{R}^{3}}u_{i}\partial_{i}u \,\partial_{j}^{2}u\,dx+ \int _{\mathbb{R}^{3}}n\nabla\phi\Delta u\,dx \\& \quad = -\sum_{i,j} \int_{\mathbb{R}^{3}}\partial_{j}u_{i} \,\partial_{i}u\partial _{j}udx+ \int_{\mathbb{R}^{3}}n\nabla\phi\Delta u\,dx \\& \quad \leq C\Vert \nabla u\Vert _{L^{4}}^{2}\Vert \nabla u\Vert _{L^{2}}+\Vert n\Vert _{L^{\infty}} \Vert \nabla\phi \Vert _{L^{2}}\Vert \Delta u\Vert _{L^{2}} \\& \quad \leq C\Vert u\Vert _{\dot{B}_{\infty,\infty}^{0}}\Vert \Delta u\Vert _{L^{2}}\Vert \nabla u\Vert _{L^{2}}+C\Vert n\Vert _{L^{\infty}} \Vert \Delta u\Vert _{L^{2}} \\& \quad \leq\frac{1}{2}\Vert \Delta u\Vert _{L^{2}}^{2}+C \Vert u\Vert _{\dot{B}_{\infty,\infty}^{0}}^{2}\Vert \nabla u\Vert _{L^{2}}^{2}+C\Vert n\Vert _{L^{\infty}}^{2}, \end{aligned}$$

which gives

$$ \Vert u\Vert _{L^{\infty}(0,T;H^{1})}+\Vert u\Vert _{L^{2}(0,T;H^{2})} \leq C. $$
(3.3)

By (1.10), this completes the proof of Case 1.

Case 2. Let (1.7) and (1.11) hold true.

Testing (1.1) by \(-\Delta u\), using (1.2) and the following inequalities [3, 11]:

$$\begin{aligned}& \Vert u\cdot\nabla u\Vert _{L^{2}}\leq C\Vert u \Vert _{\dot{B}_{\infty,\infty}^{-\theta}} \Vert u\Vert _{\dot {B}_{2,1}^{1+\theta}}, 0< \theta< 1, \end{aligned}$$
(3.4)
$$\begin{aligned}& \Vert u\Vert _{\dot{B}_{2,1}^{\theta}}\leq C\Vert u\Vert _{L^{2}}^{1-\theta} \Vert \nabla u\Vert _{L^{2}}^{\theta}, 0< \theta< 1, \end{aligned}$$
(3.5)

we derive

$$\begin{aligned}& \frac{1}{2}\frac{d}{dt} \int_{\mathbb{R}^{3}}\vert \nabla u\vert ^{2}\,dx+ \int_{\mathbb{R}^{3}}\vert \Delta u\vert ^{2}\,dx \\& \quad= \int_{\mathbb{R}^{3}}(u\cdot\nabla)u \cdot\Delta u \,dx+ \int_{\mathbb {R}^{3}}n\nabla\phi\Delta u\,dx \\& \quad\leq \Vert u\cdot\nabla u\Vert _{L^{2}}\Vert \Delta u\Vert _{L^{2}}+\Vert n\Vert _{L^{\infty}} \Vert \nabla \phi \Vert _{L^{2}}\Vert \Delta u\Vert _{L^{2}} \\& \quad\leq C\Vert u\Vert _{\dot{B}_{\infty,\infty}^{-\theta }}\Vert \nabla u\Vert _{L^{2}}^{1-\theta} \Vert \Delta u\Vert _{L^{2}}^{1+\theta}+C \Vert n\Vert _{L^{\infty}} \Vert \Delta u\Vert _{L^{2}} \\& \quad\leq\frac{1}{2}\Vert \Delta u\Vert _{L^{2}}^{2}+C \Vert u\Vert _{\dot{B}_{\infty,\infty}^{\frac{2}{1-\theta}}} \Vert \nabla u\Vert _{L^{2}}^{2}+C \Vert n\Vert _{L^{\infty}}^{2}, \end{aligned}$$

which yields (3.3); this completes the proof of Case 2 again by (1.10).

Case 3. Let (1.8) and (1.11) hold true.

Testing (1.1) by \(-\Delta u\), using (1.2), we deduce that

$$ \begin{aligned}[b] &\frac{1}{2}\frac{d}{dt} \int_{\mathbb{R}^{3}}\vert \nabla u\vert ^{2}\,dx+ \int_{\mathbb{R}^{3}}\vert \Delta u\vert ^{2}\,dx \\ &\quad=-\sum_{i,j} \int_{\mathbb{R}^{3}}\partial_{j}u_{i} \,\partial_{i}u\partial _{j}udx+ \int_{\mathbb{R}^{3}}n\nabla\phi\Delta u\,dx \\ &\quad=:I_{1}+ \int_{\mathbb{R}^{3}}n\nabla\phi\Delta u \,dx. \end{aligned} $$
(3.6)

By the very same calculations as those in [13], we get

$$ I_{1}\leq\frac{1}{8}\Vert \Delta u\Vert _{L^{2}}^{2}+C\Vert \nabla u\Vert _{L^{2}}^{2}+C \Vert \nabla u\Vert _{\dot {B}_{\infty,\infty}^{0}}\Vert \nabla u\Vert _{L^{2}}^{2}\operatorname{log}\bigl(e+\Vert \nabla u\Vert _{L^{2}}^{2}\bigr). $$
(3.7)

Inserting (3.7) into (3.6) and solving the resulting inequality, we arrive at (3.3). This completes the proof of Case 3.

Case 4. Let (1.9) (\(r=-1\)) and (1.11) hold true.

Testing (1.1) by \(\vert u\vert ^{2}u\) and using (1.2), we observe that

$$ \begin{aligned}[b] &\frac{1}{4}\frac{d}{dt} \int_{\mathbb{R}^{3}}\vert u\vert ^{4}\,dx+ \int_{\mathbb{R}^{3}}\vert u\vert ^{2}\vert \nabla u\vert ^{2}\,dx+\frac{1}{2} \int_{\mathbb{R}^{3}}\bigl\vert \nabla \vert u\vert ^{2} \bigr\vert ^{2}\,dx \\ &\quad=- \int_{\mathbb{R}^{3}}(u\cdot\nabla)\pi \vert u\vert ^{2}\,dx- \int_{\mathbb{R}^{3}}n\nabla\phi \vert u\vert ^{2} u\,dx \\ &\quad=:I_{2}+I_{3}. \end{aligned} $$
(3.8)

\(I_{3}\) can be bounded as follows:

$$ I_{3}\leq \Vert n\Vert _{L^{\infty}} \Vert \nabla \phi \Vert _{L^{4}}\Vert u\Vert _{L^{4}}^{3}. $$
(3.9)

We bounded \(I_{2}\) as follows:

$$\begin{aligned} I_{2}&= \int_{\mathbb{R}^{3}}\pi u \cdot\nabla \vert u\vert ^{2}\,dx \\ &\leq \Vert \pi \Vert _{L^{4}}\Vert u\Vert _{L^{4}}\bigl\Vert \nabla \vert u\vert ^{2}\bigr\Vert _{L^{2}} \\ &\leq \Vert \pi \Vert _{\dot{B}_{\infty,\infty}^{-1}}^{\frac {1}{2}}\Vert \nabla\pi \Vert _{L^{2}}^{1/2}\Vert u\Vert _{L^{4}}\bigl\Vert \nabla \vert u\vert ^{2}\bigr\Vert _{L^{2}} \\ &\leq \Vert \pi \Vert _{\dot{B}_{\infty,\infty}^{-1}}^{\frac {1}{2}}\bigl(\Vert u\cdot\nabla u\Vert _{L^{2}}+\Vert n\nabla \phi \Vert _{L^{2}} \bigr)^{1/2}\Vert u\Vert _{L^{4}}\bigl\Vert \nabla \vert u \vert ^{2}\bigr\Vert _{L^{2}} \\ &\leq \Vert \pi \Vert _{\dot{B}_{\infty,\infty}^{-1}}^{\frac {1}{2}}\bigl(\bigl\Vert u \vert \nabla u\vert \bigr\Vert _{L^{2}}+\Vert n\Vert _{L^{\infty}}\bigr)^{1/2}\Vert u\Vert _{L^{4}}\bigl\Vert \nabla \vert u\vert ^{2}\bigr\Vert _{L^{2}} \\ &\leq\frac{1}{8}\bigl\Vert \nabla \vert u\vert ^{2}\bigr\Vert _{L^{2}}^{2}+\frac{1}{8}\bigl\Vert u\vert \nabla u\vert \bigr\Vert _{L^{2}}^{2}+C\Vert \pi \Vert _{\dot{B}_{\infty,\infty }^{-1}}^{2}\Vert u\Vert _{L^{4}}^{4}+C \Vert n\Vert _{L^{\infty}}^{2}, \end{aligned}$$
(3.10)

where we have used the elegant inequality [11, 12]

$$ \Vert \pi \Vert _{L^{4}}^{2}\leq C\Vert \pi \Vert _{\dot {B}_{\infty,\infty}^{-1}}\Vert \nabla\pi \Vert _{L^{2}}, $$
(3.11)

and the pressure estimate

$$ \Vert \nabla\pi \Vert _{L^{2}}\leq C\bigl(\Vert u\cdot \nabla u\Vert _{L^{2}}+\Vert n\nabla\phi \Vert _{L^{2}}\bigr). $$
(3.12)

Inserting (3.9) and (3.10) into (3.8) and using the Gronwall inequality, we conclude that

$$ \Vert u\Vert _{{L^{\infty}}(0,T;{L^{4}})}\leq C. $$
(3.13)

By (1.10), this completes the proof of Case 4.

4 Proof of Corollary 1.1

Testing (1.3) by \(n^{m-1}\) (\(m\geq2\)), using (1.2) and (3.1) and denoting \(w:=n^{\frac{m}{2}}\), we have

$$\begin{aligned}& \frac{1}{m}\frac{d}{dt} \int_{\mathbb{R}^{3}}w^{2}\,dx+\frac{4(m-1)}{m^{2}} \int _{\mathbb{R}^{3}}\vert \nabla w\vert ^{2}\,dx \\& \quad\leq C\biggl\vert \int\chi(p)\nabla p\cdot w\nabla w \,dx\biggr\vert \\& \quad\leq C\Vert \nabla p\Vert _{L^{q}}\Vert w\Vert _{L^{\frac{2q}{q-2}}}\Vert \nabla w\Vert _{L^{2}} \\& \quad\leq C\Vert \nabla p\Vert _{L^{q}}\Vert w\Vert _{L^{2}}^{1-\frac{3}{q}}\Vert \nabla w\Vert _{L^{2}}^{1+\frac{3}{q}} \\& \quad\leq\frac{m-1}{m^{2}}\Vert \nabla w\Vert _{L^{2}}^{2}+C \Vert \nabla p\Vert _{L^{q}}^{\frac{2q}{q-3}}\Vert w\Vert _{L^{2}}^{2}, \end{aligned}$$

which implies

$$ \Vert n\Vert _{{L^{\infty}}(0,T;{L^{m}})}\leq C\quad\mbox{for }m>2. $$
(4.1)

Here we used the Gagliardo-Nirenberg inequality

$$ \Vert w\Vert _{L^{\frac{2q}{q-2}}}\leq C\Vert w\Vert _{L^{2}}^{1-\frac{3}{q}}\Vert \nabla w\Vert _{L^{2}}^{\frac {3}{q}} \quad\mbox{with }3< q\leq\infty. $$
(4.2)

Now, since the proofs of other cases are very similar to those in Case 1, Case 2, Case 3 and Case 4, we only prove the following case: Let (1.9) (\(-1< r\leq1\)) and (1.12) hold true.

We still have (3.8) and (3.9).

Using Lemma 2.1, (3.11), (3.12) and the pressure estimate

$$ \begin{aligned}[b] \Vert \pi \Vert _{L^{2}}& \leq C\bigl(\Vert u\Vert _{L^{4}}^{2}+\bigl\Vert (- \Delta)^{-\frac{1}{2}}(n\nabla\phi)\bigr\Vert _{L^{2}}\bigr) \\ &\leq C\bigl(\Vert u\Vert _{L^{4}}^{2}+\Vert n\nabla\phi \Vert _{L^{\frac{6}{5}}}\bigr) \\ &\leq C\bigl(\Vert u\Vert _{L^{4}}^{2}+1\bigr), \end{aligned} $$
(4.3)

. we bound \(I_{2}\) as follows:

$$ \begin{aligned}[b] I_{2}&=- \int_{\mathbb{R}^{3}}u\nabla\pi_{\ell} \vert u\vert ^{2}\,dx- \int_{\mathbb{R}^{3}}u\nabla\pi_{h}\vert u\vert ^{2}\,dx \\ &\leq \Vert \nabla\pi_{\ell} \Vert _{L^{4}}\Vert u\Vert _{L^{4}}^{3}+ \int_{\mathbb{R}^{3}}u\pi_{h}\nabla \vert u\vert ^{2}\,dx \\ &\leq \Vert \pi_{\ell} \Vert _{L^{2}}^{\frac{1}{2}}\bigl\Vert \nabla^{2}\pi_{\ell}\bigr\Vert _{L^{\infty}}^{{\frac{1}{2}}} \Vert u\Vert _{L^{4}}^{3}+\Vert u\Vert _{L^{4}} \Vert \pi _{h}\Vert _{L^{4}}\bigl\Vert \nabla \vert u \vert ^{2}\bigr\Vert _{L^{2}} \\ &\leq \Vert \pi_{\ell} \Vert _{L^{2}}^{\frac{1}{2}}\bigl\Vert \nabla^{2}\pi_{\ell}\bigr\Vert _{L^{\infty}}^{{\frac{1}{2}}} \Vert u\Vert _{L^{4}}^{4}+\Vert u\Vert _{L^{4}} \Vert \pi _{h}\Vert _{W^{-1,\infty}}^{\frac{1}{2}}\Vert \nabla \pi_{h}\Vert _{L^{2}}^{\frac{1}{2}}\bigl\Vert \nabla \vert u\vert ^{2}\bigr\Vert _{L^{2}} \\ &\leq\bigl\Vert \nabla^{2}\pi_{\ell}\bigr\Vert _{L^{\infty}}^{\frac {1}{2}}\bigl(\Vert u\Vert _{L^{4}}^{4}+1 \bigr)+C\Vert \pi_{h}\Vert _{W^{-1,\infty}}^{\frac{1}{2}}\bigl( \Vert u\cdot\nabla u\Vert _{L^{2}}+1\bigr)^{\frac{1}{2}}\Vert u \Vert _{L^{4}}\bigl\Vert \nabla \vert u\vert ^{2}\bigr\Vert _{L^{2}} \\ &\leq\frac{1}{8}\bigl\Vert \nabla \vert u\vert ^{2}\bigr\Vert _{L^{2}}^{2}+\frac{1}{8}\Vert u\cdot\nabla u \Vert _{L^{2}}^{2}+C\bigl(e+\Vert \pi \Vert _{B_{\infty,\infty}^{r}} \bigr)^{\frac {2}{2+r}}\bigl(\Vert u\Vert _{L^{4}}^{4}+1 \bigr)+C. \end{aligned} $$
(4.4)

Inserting (3.9) and (4.4) into (3.8), we obtain (3.13).

By the classical regularity theory of parabolic equations [14], it follows from (1.2), (1.3), (3.13) and (4.4) that

$$ \begin{aligned}[b] \Vert \nabla n\Vert _{L^{2}(0,T;L^{\tilde{r}})}&\leq C\bigl(1+\Vert un\Vert _{L^{2}(0,T;L^{\tilde{r}})}+\bigl\Vert n \chi(p)\nabla p\bigr\Vert _{L^{2}(0,T;L^{\tilde{r}})}\bigr) \\ &\leq C\bigl(1+\Vert u\Vert _{L^{\infty}(0,T;L^{4})}\Vert n\Vert _{L^{\infty}(0,T;L^{\frac{4\tilde{r}}{4-\tilde{r}}})}+\Vert n\Vert _{L^{\infty}(0,T;L^{\frac{q\tilde{r}}{q-\tilde {r}}})}\Vert \nabla p\Vert _{L^{2}(0,T;L^{q})}\bigr)\hspace{-10pt} \\ &\leq C \end{aligned} $$
(4.5)

for some \(3<\tilde{r}<4\) and \(\tilde{r}< q\).

Therefore,

$$ \Vert n\Vert _{L^{2}(0,T;L^{\infty})}\leq C. $$
(4.6)

This completes the proof.