1 Introduction

For \(r\in\mathbb{R}\), the rth power mean \(M_{r}(a,b)\) of two distinct positive real numbers a and b is defined by

$$ M_{r}(a,b)= \textstyle\begin{cases} (\frac{a^{r}+b^{r}}{2} )^{1/r},& r\neq0, \\ \sqrt{ab}, & r=0. \end{cases} $$
(1.1)

It is well known that \(M_{r}(a,b)\) is continuous and strictly increasing with respect to \(r\in\mathbb{R}\) for fixed \(a, b>0\) with \(a\neq b\). Many classical means are special cases of the power mean, for example, \(M_{-1}(a,b)=2ab/(a+b)=H(a,b)\) is the harmonic mean, \(M_{0}(a,b)=\sqrt{ab}=G(a,b)\) is the geometric mean, \(M_{1}(a,b)=(a+b)/2=A(a,b)\) is the arithmetic mean, and \(M_{2}(a,b)=\sqrt{(a^{2}+b^{2})/2}=Q(a,b)\) is the quadratic mean. The main properties for the power mean are given in [1].

Let

$$\begin{aligned}& L(a,b)=\frac{a-b}{\log a-\log b},\quad\quad I(a,b)=\frac{1}{e} \biggl(\frac{a^{a}}{b^{b}} \biggr)^{1/(a-b)},\quad\quad P(a,b)=\frac{a-b}{2\arcsin(\frac{a-b}{a+b} )}, \\& U(a,b)=\frac{a-b}{\sqrt{2}\arctan(\frac{a-b}{\sqrt{2ab}} )},\quad\quad T^{\ast }(a,b)=\frac{2}{\pi} \int_{0}^{\pi/2}\sqrt{a^{2}\cos^{2} \theta+b^{2}\sin^{2}\theta}d\theta, \\& NS(a,b)=\frac{a-b}{2\sinh^{-1} (\frac{a-b}{a+b} )},\quad\quad X(a,b)=A(a,b)e^{G(a,b)/P(a,b)-1}, \\& T(a,b)=\frac{a-b}{2\arctan(\frac{a-b}{a+b} )},\quad\quad B(a,b)=Q(a,b)e^{A(a,b)/T(a,b)-1}, \end{aligned}$$

and

$$ V(a,b)=\frac{a-b}{\sqrt{2}\sinh^{-1} (\frac{a-b}{\sqrt{2ab}} )} $$
(1.2)

be, respectively, the logarithmic mean, identric mean, first Seiffert mean [2], first Yang mean [3], Toader mean [4], Neuman-Sándor mean [5, 6], Sándor mean [7], second Seiffert mean [8], Sándor-Yang mean [3], and second Yang mean [3] of two distinct positive real numbers a and b, where \(\sinh^{-1}(x)=\log(x+\sqrt {x^{2}+1})\) is the inverse hyperbolic sine function.

Recently, the bounds for certain bivariate means in terms of the power mean have attracted the attention of many mathematicians. Radó [9] (see also [1012]) proved that the double inequalities

$$ \begin{aligned} &M_{p}(a,b)< L(a,b)< M_{q}(a,b), \\ &M_{\lambda}(a,b)< I(a,b)< M_{\mu}(a,b) \end{aligned} $$
(1.3)

hold for all \(a, b>0\) with \(a\neq b\) if and only if \(p\leq0\), \(q\geq 1/3\), \(\lambda\leq2/3\), and \(\mu\geq\log2\).

In [1316], the authors proved that the double inequality

$$ M_{p}(a,b)< T^{\ast}(a,b)< M_{q}(a,b) $$

holds for all \(a, b>0\) with \(a\neq b\) if and only if \(p\leq3/2\) and \(q\geq\log2/(\log\pi-\log2)\).

Jagers [17], Hästö [18, 19], Yang [20], and Costin and Toader [21] proved that \(p_{1}=\log2/\log\pi\), \(q_{1}=2/3\), \(p_{2}=\log 2/(\log\pi-\log2)\), and \(q_{2}=5/3\) are the best possible parameters such that the double inequalities

$$ \begin{aligned} &M_{p_{1}}(a,b)< P(a,b)< M_{q_{1}}(a,b), \\ &M_{p_{2}}(a,b)< T(a,b)< M_{q_{2}}(a,b) \end{aligned} $$
(1.4)

hold for all \(a, b>0\) with \(a\neq b\).

In [2126], the authors proved that the double inequalities

$$\begin{aligned}& M_{\lambda_{1}}(a,b)< NS(a,b)< M_{\mu_{1}}(a,b), \\& M_{\lambda_{2}}(a,b)< U(a,b)< M_{\mu_{2}}(a,b), \\& M_{\lambda_{3}}(a,b)< X(a,b)< M_{\mu_{3}}(a,b), \end{aligned}$$

hold for all \(a, b>0\) with \(a\neq b\) if and only if \(\lambda_{1}\leq \log2/\log[2\log(1+\sqrt{2})]\), \(\mu_{1}\geq4/3\), \(\lambda_{2}\leq 2\log2/(2\log\pi-\log2)\), \(\mu_{2}\geq4/3\), \(\lambda_{3}\leq1/3\), and \(\mu_{3}\geq\log2/(1+\log2)\).

Very recently, Yang and Chu [27] showed that \(p=4\log2/(4+2\log2-\pi )\) and \(q=4/3\) are the best possible parameters such that the double inequality

$$ M_{p}(a,b)< B(a,b)< M_{q}(a,b) $$

holds for all \(a, b>0\) with \(a\neq b\).

The main purpose of this paper is to present the best possible parameters p and q such that the double inequality

$$ M_{p}(a,b)< V(a,b)< M_{q}(a,b) $$

holds for all \(a, b>0\) with \(a\neq b\).

2 Lemmas

In order to prove our main results we need three lemmas, which we present in this section.

Lemma 2.1

Let \(t>0\), \(p\in\mathbb{R}\), and

$$\begin{aligned} f(t, p) =& 2\sinh\bigl[2(p-1)t\bigr] +\sinh\bigl[2(p+1)t\bigr]+\sinh\bigl[2(p-2)t \bigr] \\ &{} +p\sinh(4t)-\sinh(2t). \end{aligned}$$
(2.1)

Then the following statements are true:

  1. (i)

    \(f(t,p)>0\) for all \(t>0\) if and only if \(p\geq2/3\);

  2. (ii)

    \(f(t,p)<0\) for all \(t>0\) if and only if \(p\leq0\).

Proof

It follows from (2.1) that

$$\begin{aligned} \frac{\partial f(t,p)}{\partial t} =&\sinh(4t)+4t\cosh\bigl[2(p-1)t\bigr] +2t\cosh\bigl[2(p+1)t\bigr]+2t\cosh\bigl[2(p-2)t\bigr] \\ >&0 \end{aligned}$$
(2.2)

for all \(t>0\) and \(p\in\mathbb{R}\).

(i) If \(f(t,p)>0\) for all \(t>0\), then (2.1) leads to

$$ \lim_{t\rightarrow0^{+}}\frac{f(t, p)}{t}=12 \biggl(p-\frac{2}{3} \biggr)\geq0, $$

which gives \(p\geq2/3\).

If \(p\geq2/3\), then (2.1) and (2.2) lead to the conclusion that

$$\begin{aligned} f(t,p) \geq& f \biggl(t, \frac{2}{3} \biggr)=\frac{2}{3}\sinh(4t)- \sinh(2t)-2\sinh\biggl(\frac{2}{3}t \biggr) -\sinh\biggl( \frac{8}{3}t \biggr)+\sinh\biggl(\frac{10}{3}t \biggr) \\ =&\frac{8}{3}\sinh^{3} \biggl(\frac{2}{3}t \biggr) \cosh\biggl(\frac{2}{3}t \biggr) \biggl[8\cosh^{2} \biggl( \frac{2}{3}t \biggr) +6\cosh\biggl(\frac{2}{3}t \biggr)-3 \biggr]>0 \end{aligned}$$

for all \(t>0\).

(ii) If \(f(t, p)<0\) for all \(t>0\), then from part (i) we know that \(p<2/3\). We assert that \(p\leq0\), otherwise \(0< p<2/3\) and (2.1) leads to

$$\begin{aligned}& \lim_{t\rightarrow+\infty}\frac{f(t, p)}{e^{4t}} \\& \quad=\lim_{t\rightarrow+\infty}\frac{-2\sinh[2(1-p)t]+\sinh[2(1+p)t]-\sinh [2(2-p)t]+p\sinh(4t)-\sinh(2t)}{e^{4t}} \\& \quad=\frac{p}{2}>0, \end{aligned}$$

which contradicts with \(f(t, p)<0\) for all \(t>0\). 

If \(p\leq0\), then from (2.1) and (2.2) we have

$$ f(t,p)\leq f(t, 0)=-2\sinh(2t)-\sinh(4t)< 0 $$

for all \(t>0\). □

Lemma 2.2

The double inequality

$$ \bigl[\cosh(pt)\bigr]^{1/p}< \frac{\sqrt{2}\sinh(t)}{\sinh^{-1}[\sqrt {2}\sinh(t)]}< \bigl[\cosh(qt) \bigr]^{1/q} $$
(2.3)

holds for all \(t>0\) if and only if \(p\leq0\) and \(q\geq2/3\). Here

$$\bigl[\cosh(pt)\bigr]^{1/p}\big|_{p=0}:=\lim_{p\rightarrow0}\bigl[\cosh(pt)\bigr]^{1/p}. $$

Proof

Let \(t>0\), \(p\in\mathbb{R}\) and \(F(t, p)\) be defined by

$$ F(t, p)=\log\biggl[\frac{\sqrt{2}\sinh(t)}{\sinh^{-1} (\sqrt{2}\sinh (t) )} \biggr]-\frac{1}{p}\log\bigl[ \cosh(pt)\bigr]. $$
(2.4)

Then making use of the power series formulas

$$\begin{aligned}& \sinh(t)=t+\frac{t^{3}}{3!}+\frac{t^{5}}{5!}+\frac{t^{7}}{7!}+\cdots =\sum _{n=0}^{\infty}\frac{t^{2n+1}}{(2n+1)!}, \\& \cosh(t)=1+\frac{t^{2}}{2!}+\frac{t^{4}}{4!}+\frac{t^{6}}{6!}+\cdots =\sum _{n=0}^{\infty}\frac{t^{2n}}{(2n)!}, \\& \sinh^{-1}(t)=t-\frac{1}{2}\times\frac{t^{3}}{3}+ \frac{1\times3}{2\times4}\times\frac{t^{5}}{5}-\frac{1\times3\times 5}{2\times4\times6}\times \frac{t^{7}}{7}+\cdots \\& \hphantom{\sinh^{-1}(t)}=\sum_{n=0}^{\infty}\frac{(-1)^{n}(2n)!t^{2n+1}}{2^{2n}(n!)^{2}(2n+1)} \end{aligned}$$

we get

$$ \log\biggl[\frac{\sqrt{2}\sinh(t)}{\sinh^{-1} (\sqrt{2}\sinh(t) )} \biggr]=\frac{t^{2}}{3}+o \bigl(t^{2} \bigr),\quad\quad \frac{1}{p}\log\bigl[\cosh(pt)\bigr]=- \frac{1}{2}pt^{2}+o\bigl(t^{2}\bigr) $$
(2.5)

for \(t\rightarrow0^{+}\).

It follows from (2.4) and (2.5) that

$$\begin{aligned}& F\bigl(0^{+}, p\bigr)=0, \end{aligned}$$
(2.6)
$$\begin{aligned}& \frac{\partial F(t, p)}{\partial t}=\frac{\cosh[(p-1)t]}{\sinh(t)\cosh (pt)\sinh^{-1}[\sqrt{2}\sinh(t)]}f_{1}(t, p), \end{aligned}$$
(2.7)

where

$$\begin{aligned}& f_{1}(t, p)=\sinh^{-1}\bigl[\sqrt{2}\sinh(t)\bigr]- \frac{\sqrt{2}\sinh(t)\cosh(pt)\cosh(t)}{\sqrt{\cosh(2t)}\cosh[(p-1)t]}, \end{aligned}$$
(2.8)
$$\begin{aligned}& f_{1}(0, p)=0, \end{aligned}$$
(2.9)
$$\begin{aligned}& \frac{\partial f_{1}(t, p)}{\partial t}=-\frac{\sqrt{2}\sinh(t)}{4[\cosh (2t)]^{3/2}\cosh^{2}[(p-1)t]}f(t,p), \end{aligned}$$
(2.10)

where \(f(t,p)\) is defined by Lemma 2.1.

$$ \lim_{t\rightarrow0}\frac{F(t,p)}{t^{2}}=-\frac{1}{2} \biggl(p- \frac{2}{3} \biggr) $$
(2.11)

and

$$ \lim_{t\rightarrow+\infty}F(t,p)=-\infty $$
(2.12)

if \(p>0\).

We first prove that the inequality

$$ \frac{\sqrt{2}\sinh(t)}{\sinh^{-1}[\sqrt{2}\sinh(t)]}< \bigl[\cosh (pt)\bigr]^{1/p} $$
(2.13)

holds for all \(t>0\) if and only if \(p\geq2/3\).

If \(p\geq2/3\), then inequality (2.13) holds for all \(t>0\) follows easily from Lemma 2.1(i), (2.4), (2.6), (2.7), (2.9), and (2.10).

If inequality (2.13) holds for all \(t>0\), then (2.4) and (2.11) lead to \(p\geq2/3\).

Next, we prove that the inequality

$$ \frac{\sqrt{2}\sinh(t)}{\sinh^{-1}[\sqrt{2}\sinh(t)]}>\bigl[\cosh (pt)\bigr]^{1/p} $$
(2.14)

holds for all \(t>0\) if and only if \(p\leq0\).

If \(p\leq0\), then that inequality (2.14) holds for all \(t>0\) follows easily from Lemma 2.1(ii), (2.4), (2.6), (2.7), (2.9), and (2.10).

If inequality (2.14) holds for all \(t>0\), then (2.4) leads to \(F(t,p)>0\). We assert that \(p\leq0\), otherwise \(p>0\) and (2.12) implies that there exists large enough \(T_{0}>0\) such that \(F(t, p)<0\) for \(t\in(T_{0}, \infty)\). □

Lemma 2.3

Let \(t>0\), \(p\in\mathbb{R}\), and \(f_{1}(t,p)\) be defined by (2.8). Then the following statements are true:

  1. (i)

    \(f_{1}(t,p)<0\) for all \(t>0\) if and only if \(p\geq2/3\);

  2. (ii)

    \(f(t,p)>0\) for all \(t>0\) if and only if \(p\leq0\).

Proof

(i) If \(p\geq2/3\), then \(f_{1}(t,p)<0\) for all \(t>0\) follows easily from (2.9) and (2.10) together with Lemma 2.1(i).

If \(f_{1}(t,p)<0\) for all \(t>0\), then (2.8) leads to

$$ \lim_{t\rightarrow0}\frac{f_{1}(t,p)}{t^{3}}=\frac{-\sqrt{2} (p-\frac {2}{3} )t^{3}+o(t^{3})}{t^{3}}=-\sqrt{2} \biggl(p-\frac{2}{3} \biggr)\leq0, $$

which gives \(p\geq2/3\).

(ii) If \(p\leq0\), then \(f_{1}(t,p)>0\) for all \(t>0\) follows easily from (2.9) and (2.10) together with Lemma 2.1(ii).

Note that

$$\begin{aligned}& \frac{f_{1}(t,p)}{e^{(|p|-|p-1|)t}\sinh(t)} \\& \quad=\frac{\sinh^{-1}[\sqrt{2}\sinh(t)]}{e^{(|p|-|p-1|)t}\sinh(t)}-\frac {\sqrt{2}\cosh(t)\cosh(pt)}{e^{(|p|-|p-1|)t}\cosh[(p-1)t]\sqrt{\cosh(2t)}} \\& \quad=\frac{\log[\sqrt{2}\sinh(t)+\sqrt{\cosh(2t)} ]}{e^{(|p|-|p-1|)t}\sinh (t)}-\frac{\sqrt{2} (1+e^{-2|p|t} )\cosh(t)}{ (1+e^{-2|p-1|t} )\sqrt{\cosh(2t)}}. \end{aligned}$$
(2.15)

If \(f_{1}(t,p)>0\) for all \(t>0\), then

$$ \lim_{t\rightarrow+\infty}\frac{f_{1}(t,p)}{e^{(|p|-|p-1|)t}\sinh (t)}\geq0 $$

and we assert that \(p\leq0\). Otherwise, equation (2.15) leads to

$$ \lim_{t\rightarrow+\infty}\frac{f_{1}(t,p)}{e^{(|p|-|p-1|)t}\sinh (t)}=-\frac{\sqrt{2}}{2}< 0 $$

if \(p=1\) and

$$ \lim_{t\rightarrow+\infty}\frac{f_{1}(t,p)}{e^{(|p|-|p-1|)t}\sinh (t)}=-\sqrt{2}< 0 $$

if \(p\in(0, 1)\cup(1, \infty)\). □

3 Main results

Theorem 3.1

The double inequality

$$ M_{p}(a,b)< V(a,b)< M_{q}(a,b) $$

holds for all \(a, b>0\) with \(a\neq b\) if and only if \(p\leq0\) and \(q\geq2/3\).

Proof

Since both \(M_{r}(a,b)\) and \(V(a,b)\) are symmetric and homogeneous of degree 1, without loss of generality, we assume that \(a>b>0\). Let \(t=\frac{1}{2}\log(a/b)>0\) and \(r\in\mathbb{R}\), then (1.1) and (1.2) lead to

$$ V(a,b)=\sqrt{ab}V \biggl(\sqrt{\frac{a}{b}}, \sqrt{\frac{b}{a}} \biggr)=\sqrt{ab}V \bigl(e^{t}, e^{-t} \bigr) = \frac{\sqrt{2ab}\sinh(t)}{\sinh^{-1}[\sqrt{2}\sinh(t)]} $$
(3.1)

and

$$ M_{r}(a,b)=\sqrt{ab}M_{r} \biggl(\sqrt{\frac{a}{b}}, \sqrt{\frac{b}{a}} \biggr)=\sqrt{ab}M_{r} \bigl(e^{t}, e^{-t} \bigr) =\sqrt{ab}\bigl[\cosh(rt)\bigr]^{1/r}. $$
(3.2)

Therefore, Theorem 3.1 follows easily from (3.1) and (3.2) together with Lemma 2.2. □

Theorem 3.2

The double inequality

$$ \frac{a^{p-1}+b^{p-1}}{a^{p}+b^{p}}\frac{ab\sqrt{2 (a^{2}+b^{2} )}}{a+b}< V(a,b) < \frac{a^{q-1}+b^{q-1}}{a^{q}+b^{q}} \frac{ab\sqrt{2 (a^{2}+b^{2} )}}{a+b} $$

holds for all \(a, b>0\) with \(a\neq b\) if and only if \(p\geq2/3\) and \(q\leq0\).

Proof

Without loss of generality, we assume that \(a>b>0\). Let \(t=\frac{1}{2}\log(a/b)>0\) and \(r\in\mathbb{R}\), then

$$ \frac{a^{r-1}+b^{r-1}}{a^{r}+b^{r}}\frac{ab\sqrt{2 (a^{2}+b^{2} )}}{a+b}=\frac{\sqrt{ab}\cosh[(r-1)t]\sqrt{\cosh(2t)}}{\cosh(t)\cosh(rt)}. $$
(3.3)

Therefore, Theorem 3.2 follows easily from (3.1) and (3.3) together with Lemma 2.3. □

Let \(p\in\mathbb{R}\) and \(a, b>0\). Then the pth Lehmer mean [28] \(L_{p}(a,b)=\frac{a^{p+1}+b^{p+1}}{a^{p}+b^{p}}\) is strictly increasing with respect to \(p\in\mathbb{R}\) for fixed \(a, b>0\) with \(a\neq b\). From Theorem 3.2 we get Corollary 3.3 immediately.

Corollary 3.3

The double inequality

$$ \frac{Q(a,b)G^{2}(a,b)}{A(a,b)L_{p-1}(a,b)}< V(a,b)< \frac {Q(a,b)G^{2}(a,b)}{A(a,b)L_{q-1}(a,b)} $$

holds for all \(a, b>0\) with \(a\neq b\) if and only if \(p\geq2/3\) and \(q\leq0\).

Let \(p=2/3, 1, 2, +\infty\) and \(q=0, -1/2, -1, -2, -\infty\). Then Corollary 3.3 leads to

Corollary 3.4

The inequalities

$$\begin{aligned} \min\{a, b\}\frac{Q(a,b)}{A(a,b)} < &\frac{G^{2}(a,b)}{Q(a,b)}< \frac {G^{2}(a,b)Q(a,b)}{A^{2}(a,b)} \\ < &\frac {Q(a,b)G^{4/3}(a,b)M^{1/3}_{1/3}(a,b)}{A(a,b)M^{2/3}_{2/3}(a,b)}< V(a,b) < Q(a,b) \\ < &\frac{Q(a,b)[2A(a,b)-G(a,b)]}{A(a,b)} \\ < &\frac{Q^{3}(a,b)}{A^{2}(a,b)} < \frac {2Q^{2}(a,b)-G^{2}(a,b)}{Q(a,b)}< \max\{a, b\}\frac{Q(a,b)}{A(a,b)} \end{aligned}$$

hold for all \(a, b>0\) with \(a\neq b\).

From (1.3), (1.4), and Theorem 3.1 we clearly see that \(M_{2/3}(a,b)\) is the sharp upper power mean bound for the 2-order generalized logarithmic mean \(L^{1/2}(a^{2}, b^{2})\), the first Seiffert mean \(P(a,b)\), and the second Yang mean \(V(a,b)\). In [29], Theorem 3, Yang and Chu proved that the inequality

$$ P(a,b)>L^{1/r} \bigl(a^{r}, b^{r} \bigr) $$
(3.4)

holds for all \(a, b>0\) with \(a\neq b\) if and only if \(r\leq2\).

As a result of comparing \(V(a,b)\) with \(L^{1/2} (a^{2}, b^{2} )\), we have the following.

Theorem 3.5

The inequality

$$ V(a,b)< L^{1/2} \bigl(a^{2}, b^{2} \bigr) $$

holds for all \(a, b>0\) with \(a\neq b\).

Proof

We assume that \(a>b\). Let \(t=\frac{1}{2}\log(a/b)>0\), then

$$ L^{1/2} \bigl(a^{2}, b^{2} \bigr)= \biggl( \frac{a^{2}-b^{2}}{2(\log a-\log b)} \biggr)^{1/2}=\sqrt{ab}\sqrt{\frac {\sinh(2t)}{2t}}. $$
(3.5)

It follows from (3.1) and (3.5) that

$$\begin{aligned}& L^{1/2} \bigl(a^{2}, b^{2} \bigr)-V(a,b) \\& \quad=\frac{\sqrt{ab}\sqrt{\sinh(2t)}}{\sqrt{2t}\sinh^{-1} (\sqrt{2}\sinh(t) )} \bigl[\sinh^{-1} \bigl(\sqrt{2}\sinh(t) \bigr)- \sqrt{2t}\tanh(t) \bigr]. \end{aligned}$$
(3.6)

Let

$$ g(t)=\sinh^{-1} \bigl(\sqrt{2}\sinh(t) \bigr)-\sqrt{2t}\tanh(t). $$
(3.7)

Then simple computation leads to

$$\begin{aligned}& g(0)=0, \end{aligned}$$
(3.8)
$$\begin{aligned}& g^{\prime}(t)=\sqrt{2} \biggl(\frac{\cosh(t)}{\sqrt{\cosh(2t)}}-\frac {t+\sinh(t)\cosh(t)}{2\cosh^{2}(t)\sqrt{t\tanh(t)}} \biggr), \end{aligned}$$
(3.9)
$$\begin{aligned}& \biggl(\frac{\cosh(t)}{\sqrt{\cosh(2t)}} \biggr)^{2}- \biggl( \frac{t+\sinh(t)\cosh(t)}{2\cosh^{2}(t)\sqrt{t\tanh(t)}} \biggr)^{2} \\& \quad=\frac{\cosh^{2}(t)}{\cosh(2t)}-\frac{(t+\sinh(t)\cosh(t))^{2}}{4t\sinh (t)\cosh^{3}(t)} \\& \quad=\frac{(2t\cosh(2t)-\sinh(2t))(\sinh(2t)\cosh(2t)-2t)}{16t\sinh(t)\cosh (2t)\cosh^{3}(t)} \\& \quad =\frac{\sinh(4t)-4t}{16t\sinh(t)\cosh(2t)\cosh^{3}(t)} \biggl(\cosh(2t)- \frac{\sinh(2t)}{2t} \biggr)>0 \end{aligned}$$
(3.10)

for \(t>0\).

Therefore, Theorem 3.5 follows easily from (3.6)-(3.10). □

Remark 3.6

From (1.4), (3.4), Theorems 3.1, and 3.5 we get the inequalities

$$ M_{0}(a,b)< V(a,b)< L^{1/2} \bigl(a^{2}, b^{2} \bigr)< P(a,b)< M_{2/3}(a,b) $$

for all \(a, b>0\) with \(a\neq b\).