1 Introduction

Let \(L_{\mathrm{loc}}\) be the space of all locally integrable functions f on \({\mathbf{R}}^{n}\) and \(M^{+}\) be the cone of all locally integrable functions \(g\geq0\) on \((0,1)\) with the Lebesgue measure.

Let \(f^{\ast}\) be the decreasing rearrangement of f given by

$$f^{\ast}(t)=\inf \bigl\{ \lambda>0:\mu_{f}(\lambda)\leq t \bigr\} ,\quad t>0, $$

and \(\mu_{f}\) be the distribution function of f defined by

$$\mu_{f}(\lambda)= \bigl\vert \bigl\{ x\in{\mathbf{R}}^{n}: \bigl\vert f(x) \bigr\vert >\lambda \bigr\} \bigr\vert _{n}, $$

\(\vert \cdot \vert _{n}\) denoting Lebesgue n-measure.

Also,

$$f^{\ast\ast}(t):=\frac{1}{t}\int_{0}^{t} f^{\ast}(s)\,ds. $$

We use the notations \(a_{1}\lesssim a_{2}\) or \(a_{2}\gtrsim a_{1}\) for nonnegative functions or functionals to mean that the quotient \(a_{1}/a_{2}\) is bounded; also, \(a_{1}\approx a_{2}\) means that \(a_{1}\lesssim a_{2}\) and \(a_{1}\gtrsim a_{2}\). We say that \(a_{1}\) is equivalent to \(a_{2}\) if \(a_{1}\approx a_{2}\).

We consider rearrangement invariant quasi-normed spaces \(E \hookrightarrow L^{1}(\Omega)\) such that \(\|f\|_{E}=\rho_{E}(f^{\ast})<\infty \), where \(\rho_{E}\) is a quasi-norm rearrangement invariant defined on \(M^{+}\).

For simplicity, we assume that Ω is a bounded Lebesgue measurable subset of \({\mathbf{R}}^{n}\) with Lebesgue measure equal to 1 and origin lies in Ω.

There is an equivalent quasi-norm \(\rho_{p}\approx\rho_{E}\) that satisfies the triangle inequality \(\rho_{p}^{p}(g_{1}+g_{2})\leq\rho_{p}^{p}(g_{1})+\rho _{p}^{p}(g_{2})\) for some \(p\in(0,1]\) that depends only on the space E (see [1]). We say that the quasi-norm \(\rho_{E}\) satisfies Minkowski’s inequality if for the equivalent quasi-norm \(\rho_{p}\),

$$ \rho_{p}^{p} \Bigl(\sum g_{j} \Bigr) \lesssim\sum\rho_{p}^{p}(g_{j}),\quad g_{j}\in M^{+}. $$

Usually we apply this inequality for functions \(g\in M^{+}\) with some kind of monotonicity.

Recall the definition of the lower and upper Boyd indices \(\alpha_{E}\) and \(\beta_{E}\). Let \(g_{u}(t)=g(t/u)\) if \(t<\min(1,u)\) and \(g_{u}(t)=0\) if \(\min(1,u)< t<1\), where \(g\in M^{+}\), and let

$$h_{E}(u)=\sup \biggl\{ \frac{\rho_{E}(g^{\ast}_{u})}{\rho_{E}(g^{\ast})}: g\in M^{+} \biggr\} , \quad u>0 $$

be the dilation function generated by \(\rho_{E}\). Suppose that it is finite. Then

$$\alpha_{E}:=\sup_{0< t< 1} \frac{\log h_{E}(t)}{\log t} \quad \mbox{and}\quad \beta_{E}:=\inf_{1< t< \infty} \frac{\log h_{E}(t)}{\log t}. $$

The function \(h_{E}\) is sub-multiplicative, increasing, \(h_{E}(1)=1\), \(h_{E}(u) h_{E}(1/u)\geq1\) and hence \(0\leq\alpha _{E}\leq\beta_{E}\). We suppose that \(0<\alpha_{E}=\beta_{E}\leq1\).

If \(\beta_{E}<1\), we have by using Minkowski’s inequality that \(\rho_{E}(f^{\ast})\approx\rho_{E}(f^{\ast\ast})\). In particular, \(\|f\|_{E}\approx\rho_{E}(f^{\ast\ast})\) if \(\beta_{E}<1\). For example, consider the gamma spaces \(E=\Gamma^{q}(w)\), \(0< q\leq\infty \), w-positive weight, that is, a positive function from \(M^{+}\), with a quasi-norm \(\|f\|_{\Gamma^{q}(w)}:=\rho_{E}(f^{\ast})\), \(\rho_{E}(g):=\rho_{w,q}(\int_{0}^{1} g(tu)\,du)\), where

$$ \rho_{w,q}(g):= \biggl(\int_{0}^{1} \bigl[ g(t)w(t) \bigr]^{q} \,dt/t \biggr)^{1/q},\quad g\in M^{+} $$
(1.1)

and

$$\biggl(\int_{0}^{1} w^{q}(t)\,dt/t \biggr)^{1/q}< \infty. $$

Then \(L^{\infty}(\Omega)\hookrightarrow\Gamma^{q}(w)\hookrightarrow L^{1}(\Omega)\). If \(w(t)=t^{1/p}\), \(1< p<\infty\), we write as usual \(L^{p,q}\) instead of \(\Gamma^{q}(t^{1/p})\). Consider also the classical Lorentz spaces \(\Lambda ^{q} (w)\), \(0< q\leq\infty\); \(f\in\Lambda^{q}(w)\) if \(\|f\|_{\Lambda ^{q}_{w}}:=\rho_{w,q}(f^{\ast})<\infty\), \(w(2t)\approx w(t)\). We suppose that \(L^{\infty}(\Omega)\hookrightarrow\Lambda ^{q}(w)\hookrightarrow L^{1}(\Omega)\).

The Boyd indices are useful in various problems concerning continuity of operators acting in rearrangement invariant spaces [2] or in optimal couples of rearrangement invariant spaces [35], and in the problems of optimal embeddings [68]. The main goal of this paper is to provide formulas for the Boyd indices with some bounds of rearrangement invariant quasi-normed spaces and to apply these results to the case of Lorentz type spaces.

2 Boyd indices for quasi-normed function spaces

Let \(\rho_{E}\) be a monotone quasi-norm on \(M^{+}\) and let E be the corresponding rearrangement invariant quasi-normed space consisting of all \(f\in L^{1}(\Omega)\) such that \(\|f\|_{E}=\rho_{E}(f^{\ast})<\infty\).

Theorem 2.1

Let

$$g_{u}(t)=\left \{ \textstyle\begin{array}{@{}l@{\quad}l} g(t/u) & \textit{if } 0< t< \min(1,u), \\ 0 & \textit{if } \min(1,u)\leq t< 1, \end{array}\displaystyle \displaystyle \displaystyle \displaystyle \right . $$

where \(g\in M^{+}\), and let

$$h_{E}(u)=\sup \biggl\{ \frac{\rho_{E}(g^{\ast}_{u})}{\rho_{E}(g^{\ast})}: g\in M^{+} \biggr\} ,\quad u>0, $$

be the dilation function generated by \(\rho_{E}\). Suppose that it is finite. Then the Boyd indices are well defined

$$\alpha_{E}:=\sup_{0< t< 1} \frac{\log h_{E}(t)}{\log t} \quad \textit{and}\quad \beta_{E}:=\inf_{1< t< \infty} \frac{\log h_{E}(t)}{\log t} $$

and they satisfy

$$\begin{aligned}& \alpha_{E}=\lim_{t\to0} \frac{\log h_{E}(t)}{\log t}, \end{aligned}$$
(2.1)
$$\begin{aligned}& \beta_{E}=\lim_{t\to\infty} \frac{\log h_{E}(t)}{\log t}. \end{aligned}$$
(2.2)

In particular, \(0\leq\alpha_{E}\leq\beta_{E}\leq\frac{\log h_{E}(2)}{\log2}\).

Proof

We have

$$ g_{uv}=(g_{u})_{v} \quad\mbox{if } u< v. $$
(2.3)

Indeed, since \(\min(1,uv)\leq\min(1,v)\) for \(u< v\), we find \((g_{u})_{v}(t)=g_{u}(t/(uv))\) if \(0< t<\min(1,uv)\) and \((g_{u})_{v}(t)=0\) if \(\min (1,uv)\leq t<1\). Thus (2.3) is proved. This implies that the function \(h_{E}\) is sub-multiplicative.

Further, the function \(\omega(x)=\log h_{E}(e^{x})\) is sub-additive increasing on \((-\infty,\infty)\) and \(\omega(0)=0\). Hence, by [2], Lemma 5.8, (2.2) is satisfied and evidently \(\beta _{E}\leq \frac{\log h_{E}(2)}{\log2}\).

Since \(h_{E}(1)=1\) and \(h_{E}\) is sub-multiplicative, therefore

$$h_{E}(u_{1} u_{2})\leq h_{E}(u_{1})h_{E}(u_{2}). $$

Replacing \(u_{2}\) by \(\frac{1}{u_{1}}\), we get

$$h_{E}(1)\leq h_{E}(u_{1})h_{E} \biggl(\frac{1}{u_{1}} \biggr), $$

which implies that

$$1\leq h_{E}(u_{1})h_{E} \biggl(\frac{1}{u_{1}} \biggr); \quad\mbox{because } h_{E}(1)=1, $$

it follows that \(1\leq h_{E}(u) h_{E}(1/u)\).

We have

$$\alpha_{E}\leq\beta_{E}. $$

Indeed

$$\log \bigl(h_{E}(u) \bigr)\geq\log \biggl(\frac{1}{h_{E}(\frac{1}{u})} \biggr), $$

if \(u>1\), then

$$\frac{\log(h_{E}(u))}{\log u}\geq\frac{\log (\frac{1}{h_{E}(\frac {1}{u})} )}{\log u}=\frac{\log (h_{E}(\frac{1}{u}) )}{\log\frac{1}{u}}, $$

which implies that

$$\lim_{u\rightarrow\infty}\frac{\log(h_{E}(u))}{\log u}\geq\lim_{u\rightarrow\infty} \frac{\log (h_{E}(\frac{1}{u}) )}{\log \frac{1}{u}}. $$

Since \(\beta_{E}\) is finite, therefore \(\alpha_{E}\) is also finite. Since \(h_{E}(1)=1\) and we know that \(h_{E}\) is increasing function, so

$$h_{E}(u)\leq1 \quad\mbox{for } 0< u< 1, $$

which implies that

$$\log \bigl(h_{E}(u) \bigr)\leq0, $$

which implies that

$$\frac{\log(h_{E}(u))}{\log u}\geq0, $$

which implies that

$$\alpha_{E}=\sup_{0< u< 1}\frac{\log(h_{E}(u))}{\log u}\geq0, $$

and hence

$$0\leq\alpha_{E}\leq\beta_{E}. $$

 □

Let \(\rho_{H}\) be a monotone quasi-norm on \(M^{+}\) and let H be the corresponding quasi-normed space, consisting of all locally integrable functions on \((0,1)\) with a finite quasi-norm \(\|g\|_{H}=\rho_{H}(|g|)\).

Theorem 2.2

Let

$$(\Psi_{u}g) (t)= \left \{ \textstyle\begin{array}{@{}l@{\quad}l} g(ut), & \textit{if } 0< t< \min(1,\frac{1}{u}), \\ g(1), & \textit{if } \min(1,\frac{1}{u})\leq t< 1, \end{array}\displaystyle \displaystyle \displaystyle \displaystyle \right . $$

where \(g\in M^{+}\), and let

$$h_{H}(u)=\sup \biggl\{ \frac{\rho_{H}(\Psi_{u} g)}{\rho_{H}(g)}: g \in G_{a} \biggr\} ,\quad u>0, $$

be the dilation function generated by \(\rho_{H}\). Suppose that it is finite, where

$$G_{a}:= \bigl\{ g\in M^{+}: t^{-a/n}g(t) \textit{ is decreasing} \bigr\} ,\quad a>0. $$

Then the Boyd indices are well defined

$$\alpha_{H}:=\sup_{0< t< 1} \frac{\log h_{H}(t)}{\log t} \quad \textit{and}\quad \beta_{H}:=\inf_{1< t< \infty} \frac{\log h_{H}(t)}{\log t} $$

and they satisfy

$$\begin{aligned}& \alpha_{H}=\lim_{t\to0} \frac{\log h_{H}(t)}{\log t}, \end{aligned}$$
(2.4)
$$\begin{aligned}& \beta_{H}=\lim_{t\to\infty} \frac{\log h_{H}(t)}{\log t}. \end{aligned}$$
(2.5)

In particular, \(\frac{\log h_{H}(1/2)}{\log1/2}\leq\alpha_{H}\leq\beta _{H}\leq a/n\).

Proof

We have

$$ \Psi_{uv}g=\Psi_{u}(\Psi_{v} g) \quad\mbox{if } u< v. $$
(2.6)

Indeed, since \(\min(1,1/(uv))\leq\min(1,1/u)\) for \(u< v\), we find \(\Psi_{u}(\Psi_{v} g)(t)= g(t/(uv))\) if \(0< t<\min(1,1/(uv))\) and \(\Psi_{u}(\Psi _{v} g)(t)=g(1)\) if \(\min(1,1/(uv))\leq t<1\). Thus (2.6) is proved. This implies that the function \(h_{H}\) is sub-multiplicative. Since the function \(u^{-a/n}h_{H}(u)\) is decreasing, it follows that the function \(u^{a/n} h_{H}(1/u)\) is increasing and sub-multiplicative. Hence we can apply the results from Theorem 2.1. This establishes Theorem 2.2. □

Example 2.3

If \(E=\Lambda^{q} (t^{a} w)\), \(0\leq a\leq1\), \(0< q\leq\infty\), where w is slowly varying, then \(\alpha_{E}=\beta_{E}=a\).

Proof

We give a proof for \(0< q<\infty\), the case \(q=\infty\) is analogous. We have, for \(g\in M^{+}\),

$$\rho_{E} \bigl(g^{\ast}_{u} \bigr)= \biggl(\int _{0}^{1} \bigl[g^{\ast}_{u}(t)t^{a} w(t) \bigr]^{q} \,dt/t \biggr)^{1/q}= \biggl(\int _{0}^{\min(1,u)} \bigl[g^{\ast}(t/u)t^{a} w(t) \bigr]^{q} \,dt/t \biggr)^{1/q} $$

and by a change of variables,

$$ \rho_{E} \bigl(g^{\ast}_{u} \bigr) \leq \biggl(\int_{0}^{1} \bigl[g^{\ast}(t) (tu)^{a} w(tu) \bigr]^{q} \,dt/t \biggr)^{1/q}. $$
(2.7)

From the definition of a slowly varying function it follows that for every \(\varepsilon>0\), \(t^{-\varepsilon}w(t)\approx d(t)\), where d is a decreasing function. Then, for \(u>1\), we have \(d(tu)\leq d(t)\), thus

$$(tu)^{-\varepsilon}w(tu)\lesssim d(t u) \lesssim t^{-\varepsilon}w(t), $$

which implies that

$$ w(tu)\lesssim u^{\varepsilon}w(t),\quad u>1. $$
(2.8)

Inserting this estimate in (2.7), we arrive at

$$\rho_{E} \bigl(g^{\ast}_{u} \bigr)\lesssim u^{a+\varepsilon}\rho_{E} \bigl(g^{\ast}\bigr),\quad u>1, $$

which yields \(h_{E}(u)\lesssim u^{a+\varepsilon}\), \(u>1\). Then it follows that \(\beta_{E}\leq a+\varepsilon\). Analogously, \(\alpha_{E}\geq a-\varepsilon \). Since \(\varepsilon>0\) is arbitrary and \(\alpha_{E}\leq\beta_{E}\), we obtain \(\alpha_{E}=\beta_{E}=a\). □

Example 2.4

If \(H=L^{q}_{\ast}(w(t)t^{-\alpha})\), \(0\leq\alpha< a/n\), \(0< q\leq\infty \), where w is slowly varying, then \(\alpha_{H}=\beta_{H}=\alpha\).

Proof

We give a proof for \(0< q<\infty\), the case \(q=\infty\) is analogous. We have, for \(g\in G_{a}\),

$$\begin{aligned} \rho_{H}(\Psi_{u} g)&= \biggl(\int_{0}^{1} \bigl[\Psi_{u} g(t)t^{-\alpha} w(t) \bigr]^{q} \,dt/t \biggr)^{1/q} \\ &= \biggl(\int_{0}^{\min(1,1/u)} \bigl[g(tu)t^{-\alpha} w(t) \bigr]^{q} \,dt/t \biggr)^{1/q}+I(u), \end{aligned}$$

where \(I(u)= (\int_{\min(1,1/u)}^{1} [t^{-\alpha} w(t)]^{q} \,dt/t)^{1/q}g(1)\). Note that \(I(u)=0\) for \(0< u<1\). Since for every \(\varepsilon>0\) we have \(w(t)\lesssim t^{\varepsilon}\), it follows that \(I(u)\lesssim u^{\alpha+\varepsilon} g(1)\), \(u>1\). Also, \(g(1)\rho _{H}(t^{a/n})\leq\rho_{H}(g)\) and \(\rho_{H}(t^{a/n})<\infty\) due to \(\alpha< a/n\).

On the other hand, by a change of variables,

$$ \rho_{H}(\Psi_{u} g)\lesssim \biggl(\int _{0}^{1} \bigl[g(t) (t/u)^{-\alpha} w(t/u) \bigr]^{q} \,dt/t \biggr)^{1/q}+u^{\alpha+\varepsilon} \rho_{H}(g). $$

As in the proof of the previous example, we have

$$w(t/u)\lesssim u^{\varepsilon}w(t),\quad u>1, $$

therefore

$$\rho_{H}(\Psi_{u} g)\lesssim u^{\alpha+\varepsilon} \rho_{H}(g),\quad u>1, g\in G_{a}. $$

Hence \(h_{H}(u)\lesssim u^{\alpha+\varepsilon}\), \(u>1\). Then it follows that \(\beta_{H}\leq\alpha+\varepsilon\). Analogously, \(\alpha_{H}\geq\alpha -\varepsilon \). Since \(\varepsilon>0\) is arbitrary and \(\alpha_{H}\leq\beta_{H}\), we obtain \(\alpha_{H}=\beta_{H}=\alpha\). □

3 Basic inequalities

Here we prove a few inequalities, which are of independent interest.

Theorem 3.1

If \(\alpha<\alpha_{H}\), then

$$\rho_{H} \biggl(t^{\alpha}\int_{0}^{t} s^{-\alpha}g(s)\frac{ds}{s} \biggr)\lesssim\rho_{H}(g), \quad g \in G_{a} $$

and if \(\beta_{H}<\beta\), then

$$\rho_{H} \biggl(t^{\beta}\int_{t}^{1} s^{-\beta}g(s)\frac{ds}{s} \biggr)\lesssim \rho_{H}(g), \quad g \in G_{a}. $$

Proof

We are going to use Minkowski’s inequality for the equivalent p-norm of \(\rho_{H}\). To this end, first we replace the integrals by sums using monotonicity properties of \(g\in G_{a}\).

Thus

$$\begin{aligned} t^{\alpha}\int_{0}^{t} s^{-\alpha}g(s) \frac{ds}{s}&=\int_{0}^{1} v^{-\alpha }g(tv)\frac{dv}{v} \\ &=\sum_{l=-\infty}^{0}\int_{2^{l-1}}^{2^{l}} v^{-\alpha}g(tv)\frac{dv}{v} \\ &\lesssim\sum_{l=-\infty}^{0} 2^{-l\alpha}g \bigl(t2^{l} \bigr). \end{aligned}$$

Applying Minkowski’s inequality, we get

$$\begin{aligned} \rho^{p}_{H} \biggl(t^{\alpha}\int _{0}^{t} s^{-\alpha}g(s)\frac{ds}{s} \biggr) &\lesssim\sum_{l=-\infty}^{0} 2^{-lp\alpha}\rho^{p}_{H} \bigl(g \bigl(t2^{l} \bigr) \bigr) \\ &\lesssim\rho^{p}_{H}(g)\sum_{l=-\infty}^{0} 2^{-p\alpha l} h^{p}_{H} \bigl(2^{l} \bigr) \\ &\lesssim\rho^{p}_{H}(g)\sum_{l=-\infty}^{0} 2^{-p\alpha l} 2^{{lp(\alpha_{H}-\varepsilon)}} \\ &\lesssim\rho^{p}_{H}(g)\sum_{l=-\infty}^{0} 2^{{lp(\alpha _{H}-\varepsilon-\alpha)}}. \end{aligned}$$

The above series is convergent if we choose \(\varepsilon>0\) such that \(\varepsilon< \alpha_{H}-\alpha\), so we have

$$\rho_{H} \biggl(t^{\alpha}\int_{0}^{t} s^{-\alpha}g(s)\frac{ds}{s} \biggr)\lesssim\rho_{H}(g). $$

On the other hand, for \(g\in G_{a}\),

$$\begin{aligned} t^{\beta}\int_{t}^{1} s^{-\beta}g(s) \frac{ds}{s}&=\int_{1}^{\infty}\chi _{(0,1)}(tv) v^{-\beta}g(tv)\frac{dv}{v} \\ &=\sum_{l=0}^{\infty}\int_{2^{l}}^{2^{l+1}} \chi_{(0,1)}(tv) v^{-\beta }g(tv)\frac{dv}{v} \\ &\lesssim\sum_{l=0}^{\infty}2^{-l\beta}g \bigl(t2^{l} \bigr)\chi _{(0,1)} \bigl(t2^{l} \bigr). \end{aligned}$$

Again applying Minkowski’s inequality, we get

$$\begin{aligned} \rho^{p}_{H} \biggl( t^{\beta}\int _{t}^{1} s^{-\beta}g(s)\frac{ds}{s} \biggr) &\lesssim\sum_{l=0}^{\infty}2^{-l\beta p} \rho^{p}_{H} \bigl(g \bigl(t2^{l} \bigr)\chi _{(0,1)} \bigl(t2^{l} \bigr) \bigr) \\ &\lesssim\rho^{p}_{H}(g)\sum_{l=0}^{\infty}2^{-l\beta p} h^{p}_{H} \bigl(2^{l} \bigr) \\ &\lesssim\rho^{p}_{H}(g)\sum_{l=0}^{\infty}2^{-l\beta p} 2^{pl(\beta _{H}+\varepsilon)} \\ &\lesssim\rho^{p}_{H}(g)\sum_{l=0}^{\infty}2^{{lp(\beta _{H}+\varepsilon-\beta)}}. \end{aligned}$$

The above series is finite if we choose a suitable \(\varepsilon>0\) such that \(\varepsilon< \beta-\beta_{H}\). The proof is finished. □

Theorem 3.2

If \(\beta_{E}< a\), then

$$\rho_{E} \biggl(t^{-a}\int_{0}^{t} s^{a}g(s)\frac{ds}{s} \biggr)\lesssim\rho _{E}(g), \quad g \in D_{0}, $$

where \(D_{0}:=\{g \in M ^{+} : g(t) \textit{ is decreasing and } g(t)=0 \textit{ for } t \geq1\}\).

Proof

We are going to use Minkowski’s inequality for the equivalent p-norm of \(\rho_{E}\). To this end, first we replace the integral by sums using monotonicity properties of \(g\in D_{0}\).

Thus

$$\begin{aligned} t^{-a}\int_{0}^{t} s^{a}g(s) \frac{ds}{s}&=\int_{0}^{1} v^{a}g(tv)\frac{dv}{v} \\ &=\sum_{l=-\infty}^{0}\int_{2^{l}}^{2^{l+1}} v^{a}g(tv)\frac{dv}{v} \\ &\lesssim\sum_{l=-\infty}^{0} 2^{{al}}g \bigl(t2^{l} \bigr). \end{aligned}$$

Applying Minkowski’s inequality, we get

$$\begin{aligned} \rho^{p}_{E} \biggl(t^{-a}\int _{0}^{t} s^{a}g(s)\frac{ds}{s} \biggr) &\lesssim\sum_{l=-\infty}^{0} 2^{{pal}}\rho^{p}_{E} \bigl(g \bigl(t2^{l} \bigr) \bigr) \\ &\lesssim\rho^{p}_{E}(g)\sum_{l=-\infty}^{0} 2^{{pal}}\ h^{p}_{E} \bigl(2^{1} \bigr) \\ &\lesssim\rho^{p}_{E}(g)\sum_{l=-\infty}^{0} 2^{{pal}} \ 2^{{-1p(\beta_{E}+\varepsilon)}} \\ &\lesssim\rho^{p}_{E}(g)\sum_{l=-\infty}^{0} 2^{{lp(a-\beta _{E}-\varepsilon)}}. \end{aligned}$$

The above series is finite if we choose \(\varepsilon>0\) such that \(\varepsilon< a-\beta_{E}\), and this concludes the proof. □

Theorem 3.3

If \(\alpha_{E}>0\), then

$$\rho_{E} \biggl(\int_{t}^{1} g(u) \frac{du}{u} \biggr)\lesssim\rho _{E}(g),\quad g\in D_{0}. $$

Proof

We are going to use Minkowski’s inequality for the equivalent p-norm of \(\rho_{E}\). To this end, first we replace the integral by sums using monotonicity properties of \(g\in D_{0}\).

Thus

$$\begin{aligned} \int_{t}^{1} g(u)\frac{du}{u} & \lesssim\int _{1}^{\infty}\chi_{(0,1)}(tv)g(tv) \frac{dv}{v} \\ &= \sum_{l=0}^{\infty}\int_{2^{l}}^{2^{l+1}} \chi_{(0,1)}(tv)g(tv)\frac {dv}{v} \\ &\lesssim\sum_{l=0}^{\infty}\chi_{(0,1)} \bigl(t2^{l} \bigr)g \bigl(t2^{l} \bigr). \end{aligned}$$

Applying Minkowski’s inequality, we get

$$\begin{aligned} \rho^{p}_{E} \biggl(\int_{t}^{1} g(u)\frac{du}{u} \biggr) &\lesssim\sum_{l=0}^{\infty}\rho^{p}_{E} \bigl(\chi_{(0,1)} \bigl(t2^{l} \bigr)g \bigl(t2^{l} \bigr) \bigr) \\ &\lesssim\rho^{p}_{E}(g)\sum_{l=0}^{\infty}h^{p}_{E} \bigl(2^{-l} \bigr) \\ &\lesssim\rho^{p}_{E}(g)\sum_{l=0}^{\infty}2^{-l(\alpha _{E}-\varepsilon)}. \end{aligned}$$

Choosing \(\varepsilon>0\) such that \(\alpha_{E}>\varepsilon\), we conclude the proof. □