Background

Vector-borne pathogens are a global health concern in which mosquitoes play a central role as vectors of pathogens [1]. In Europe both native and invasive species of Aedes mosquitoes are involved in the transmission of pathogens including viruses (e.g. dengue and chikungunya [2]) and parasites (e.g. Dirofilaria [3]). Of these mosquitoes, the invasive Aedes albopictus has received much attention in recent decades due to its role in the transmission of dengue [4] and chikungunya [5] in Europe. Certain Aedes species, including Ae. albopictus, are able to breed in artificial containers and it is important to develop accurate identification protocols for differentiating native and invasive Aedes species that breed in the same area [6,7,8]. The identification of mosquito species through the characterization of a fragment of the cytochrome c oxidase subunit 1 (cox1) gene is a useful tool for monitoring the presence of species [9, 10], above all given the difficulties in identifying mosquitoes in larval stages and the current scarcity of trained taxonomists [11]. However, this method requires a previous genetic characterization of the species [12]. This is an important limitation in the case of Aedes mosquitoes as this information is not available for most of the species of this genus that breed in Europe [13], despite their importance in pathogen transmission [14].

The aim of this study was to update the current distribution of Ae. vittatus and provide the first genetic characterization of the barcoding region of specimens of this species from Europe. Hitherto, sequences from this species were only available from China [15], India [16] and Kenya [17]. In addition, we review here available information on the potential role of this species in the transmission of virus of public health concern.

Methods

As a part of an extensive mosquito-monitoring program, a female Ae. vittatus was captured in a CDC trap in Ayamonte, Huelva Province (Fig. 1; 37°13'30"N, 7°24'29"W), in June 2015. This sampling site is located in the Guadiana marshes, in the garden of a house close to the built-up area of Ayamonte. At the same time, we also trapped 19 Ochlerotatus caspius. In further trapping sessions during 2015 in this area we captured 1145 Oc. caspius, 47 Oc. detritus, 9 Cx. pipiens, 4 Cx. theileri, 3 Cx. perexiguus, 3 Culiseta longiareolata and 2 Cs. annulata. Additionally, mosquito larvae were collected from a container in July 2015 in a rural property near Castilblanco de los Arroyos, Seville Province (Fig. 1; 37°41'56"N, 5°58'44"W), in an area characterized by the presence of isolated houses surrounded by scrubland. Larvae were maintained in plastic trays with natural water and fed ad libitum with Mikrozell (Hobby Mikrozell 20 ml/22 g) in a climatic chamber at constant conditions (28 °C, 65–70% relative humidity (RH) and 12:12 light:dark photocycle). Adult mosquitoes were fed ad libitum with 1% sugar solution. Five to seven days after emergence, adult mosquitoes were anaesthetised with diethyl ether and identified to species level using available taxonomic keys [18, 19] under a stereo-microscope (Nikon SMZ645). The ability of laboratory-reared females to bite humans was checked by exposing the arm of one of the authors (RGL) to mosquito bites. The time elapsed between arm exposure and the beginning of blood-feeding was recorded.

Fig. 1
figure 1

Distribution by provinces of Ae. vittatus in Spain. Light grey and dark grey indicates the provinces where the species is absent or present, respectively. The two new records of Ae. vitattus reported in this study are marked with stars: 1. Ayamonte (Huelva Province), 2. Castilblanco de los Arroyos (Seville Province)

Three mosquitoes (one male and two females) from Seville Province were selected for molecular characterization of the barcoding region and to confirm the morphological identification of the species. A fragment of the right hind-leg of each mosquito was cut-off using a sterile blade and placed on a Petri dish. Genomic DNA was extracted using the Maxwell 16 LEV Blood DNA Kit (Promega, Madison, WI, USA) following the manufacture’s instructions. PCR reactions were performed using the primer pair LCO1490 (5'-GGT CAA CAA ATC ATA AAG ATA TTG G-3') and HCO2198 (5'-TAA ACTT CAG GGT GAC CAA AAA ATC A-3') [20] following Whiteman et al. [21] to amplify a 658 bp fragment of the cox1 gene (excluding primers) (see [22]). The presence of amplicons was verified on 1.8% agarose gels. Sequences were resolved in both directions by Macrogen sequencing service (Macrogen Inc., the Netherlands). Sequences were edited using the SequencherTM v4.9 software (Gene Codes Corp., Ann Arbor, MI, USA) and compared with sequences deposited in the GenBank DNA sequence database (National Center for Biotechnology Information) and the Barcode of Life Data Systems (BOLD).

Results

Mosquitoes were morphologically identified as Ae. vittatus (Fig. 2). Genetic characterization of the barcoding region of the three mosquitoes provided a unique haplotype. Using the BOLD system, the sequences obtained in our study were identified as Ae. vittatus (99.4%) or Aedes (Phagomyia) cogilli (99.0%). Likewise, a 99% overlap between Ae. vittatus and Ae. cogilli was found using a BLAST comparison with sequences in GenBank, while similarities with other Aedes species were ≤ 94%.

Fig. 2
figure 2

Aedes vitattus female (a) and male (b) captured in the Seville Province

The anthropophilic feeding preference of Ae. vittatus females was confirmed by the fact that four mosquitoes (57.1%) fed on a human arm after < 5 min of exposure.

Discussion

We characterized for the first time in Europe the barcoding region of Ae. vittatus. A BLAST comparison of this sequence with those deposited in public databases provided a ≥ 99% similarity with sequences of two Aedes mosquitoes, Ae. vittatus and Ae. cogilli. However, Ae. cogilli, is only present in India and is not found in Europe [23]. The other Aedes sequences on GenBank differed by about 6% from the Ae. vittatus sequence isolated here. Although varying between taxa, interspecific differences in the barcoding region are established at 0–2% [24]. Based on the low interspecific differences found between Ae. vittatus and Ae. cogilli, our results do not support the use of the cox1 region as a method for separating these species where they coincide; rather, this method should be combined with morphological identification using available keys or the characterization of other molecular markers. Based on the morphological characteristics of the specimens captured here, we conclude that the mosquitoes we captured belong to the species Ae. vittatus [25].

The current distribution of Ae. vittatus includes rural and natural areas in Africa, Asia and European countries in the Mediterranean Basin such as France, Italy, Portugal and Spain (Fig. 3). Specifically, Ae. vitattus has been recorded with a clear discontinuous distribution from eleven Spanish provinces [26]. Larvae of Ae. vittatus have been recorded in a variety of habitats including rock pools, tree holes, domestic containers and hoofprints [27, 28]. In eastern Spain, this species is present in coastal mountainous areas of thermomediterranean and lower mesomediterranean thermotypes [29]. Here, we update the distribution of this species in the Iberian Peninsula and provide the first reports of its presence in the provinces of Huelva and Seville (Fig. 1). In Huelva, an adult female was trapped close to a built-up area, while mosquito larvae belonging to this species were sampled in a rural property in Seville. The mosquito from Huelva was captured in an area close to the town of Ayamonte, which suggests the possibility of contact between this mosquito species and human populations.

Fig. 3
figure 3

Worldwide distribution of Ae. vittatus (dark grey colour). Stars indicate the geographical origin of the previously (black) and new (white) described genetic sequences of the barcoding region

The fact that Ae. vittatus uses artificial containers for breeding in rural ecosystems may be particularly relevant given its ability to transmit pathogens causing human diseases. In addition to humans, Ae. vittatus feed on bovids, sheep/goats and porcupines [30, 31], suggesting its potential role in the transmission cycle of a variety of arboviruses (Table 1). Although Ae. vittatus has also been reported to be involved in the transmission of viruses potentially affecting humans, including species of Alphavirus, Flavivirus and Bunyavirus (Table 1), this species probably only has a low risk in Spain. Diagnosis of these diseases and vector surveillance will help elucidate the potential role of Ae. vittatus in the transmission of viruses in Europe.

Table 1 Main viruses causing diseases transmitted by Ae. vittatus with information of the potential hosts and known distribution of the diseases

Conclusions

When identifying Ae. vittatus in areas where its distribution overlaps with that of the related Asian species Ae. cogilli, the identification of the barcoding region should be combined with morphological identification and/or the characterization of other molecular markers. However, in Europe, molecular tools may allow for the accurate identification of this species due to the great genetic difference (6%) found between Spanish Ae. vittatus and other Aedes species. Further entomological studies should be conducted in order to identify the fine-scale distribution of Ae. vittatus in European countries, where it could play a role in the transmission of viruses with public health relevance.