Skip to main content

Advertisement

Log in

Perioperative cardiovascular monitoring of high-risk patients: a consensus of 12

  • Review
  • Published:
Critical Care Aims and scope Submit manuscript

Abstract

A significant number of surgical patients are at risk of intra- or post-operative complications or both, which are associated with increased lengths of stay, costs, and mortality. Reducing these risks is important for the individual patient but also for health-care planners and managers. Insufficient tissue perfusion and cellular oxygenation due to hypovolemia, heart dysfunction or both is one of the leading causes of perioperative complications. Adequate perioperative management guided by effective and timely hemodynamic monitoring can help reduce the risk of complications and thus potentially improve outcomes. In this review, we describe the various available hemodynamic monitoring systems and how they can best be used to guide cardiovascular and fluid management in the perioperative period in high-risk surgical patients.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Figure 1
Figure 2
Figure 3

Similar content being viewed by others

Abbreviations

CO:

Cardiac output

CVC:

Central venous catheter

CVP:

Central venous pressure

DO2 :

Oxygen delivery

EVLW:

Extravascular lung water

GEDV:

Global end-diastolic volume

Hb:

Hemoglobin

ICG:

Indocyanine green

ICU:

Intensive care unit

LV:

Left ventricular

OR:

Operating room

PAC:

Pulmonary artery catheter

PACU:

Post-anesthesia care unit

PetCO2 :

Partial pressure of end-tidal carbon dioxide

PLR:

Passive leg raising

PPV:

Pulse pressure variation

PVI:

Pleth variability index

RV:

Right ventricular

ScvO2 :

Central venous oxygen saturation

SV:

Stroke volume

SvO2 :

Mixed venous oxygen saturation

SVV:

Stroke volume variation

TEE:

Transesophagel echocardiography

TTE:

Transthoracic echocardiography

VO2 :

Oxygen consumption

Zt:

Vascular impedance

References

  1. Weiser TG, Regenbogen SE, Thompson KD, Haynes AB, Lipsitz SR, Berry WR, et al. An estimation of the global volume of surgery: a modelling strategy based on available data. Lancet. 2008;372:139–44.

    PubMed  Google Scholar 

  2. Jhanji S, Thomas B, Ely A, Watson D, Hinds CJ, Pearse RM. Mortality and utilisation of critical care resources amongst high-risk surgical patients in a large NHS trust. Anaesthesia. 2008;63:695–700.

    CAS  PubMed  Google Scholar 

  3. Pearse RM, Harrison DA, James P, Watson D, Hinds C, Rhodes A, et al. Identification and characterisation of the high-risk surgical population in the UK. Crit Care. 2006;10:R81.

    PubMed  PubMed Central  Google Scholar 

  4. Lobo SM, de Oliveira NE. Clinical review: What are the best hemodynamic targets for noncardiac surgical patients? Crit Care. 2013;17:210.

    PubMed  PubMed Central  Google Scholar 

  5. Khuri SF, Henderson WG, DePalma RG, Mosca C, Healey NA, Kumbhani DJ. Determinants of long-term survival after major surgery and the adverse effect of postoperative complications. Ann Surg. 2005;242:326–41.

    PubMed  PubMed Central  Google Scholar 

  6. Hamilton MA, Cecconi M, Rhodes A. A systematic review and meta-analysis on the use of preemptive hemodynamic intervention to improve postoperative outcomes in moderate and high-risk surgical patients. Anesth Analg. 2011;112:1392–402.

    PubMed  Google Scholar 

  7. Gurgel ST. do Nascimento P Jr. Maintaining tissue perfusion in high-risk surgical patients: a systematic review of randomized clinical trials. Anesth Analg. 2011;112:1384–91.

    PubMed  Google Scholar 

  8. Cecconi M, Corredor C, Arulkumaran N, Abuella G, Ball J, Grounds RM, et al. Clinical review: Goal-directed therapy-what is the evidence in surgical patients? The effect on different risk groups. Crit Care. 2013;17:209.

    PubMed  PubMed Central  Google Scholar 

  9. Jhanji S, Lee C, Watson D, Hinds C, Pearse RM. Microvascular flow and tissue oxygenation after major abdominal surgery: association with post-operative complications. Intensive Care Med. 2009;35:671–7.

    PubMed  Google Scholar 

  10. Marjanovic G, Villain C, Juettner E, zur Hausen A, Hoeppner J, Hopt UT, et al. Impact of different crystalloid volume regimes on intestinal anastomotic stability. Ann Surg. 2009;249:181–5.

    PubMed  Google Scholar 

  11. Kulemann B, Timme S, Seifert G, Holzner PA, Glatz T, Sick O, et al. Intraoperative crystalloid overload leads to substantial inflammatory infiltration of intestinal anastomoses - a histomorphological analysis. Surgery. 2013;154:596–603.

    PubMed  Google Scholar 

  12. Nessim C, Sideris L, Turcotte S, Vafiadis P, Lapostole AC, Simard S, et al. The effect of fluid overload in the presence of an epidural on the strength of colonic anastomoses. J Surg Res. 2013;183:567–73.

    PubMed  Google Scholar 

  13. Pizov R, Eden A, Bystritski D, Kalina E, Tamir A, Gelman S. Hypotension during gradual blood loss: waveform variables response and absence of tachycardia. Br J Anaesth. 2012;109:911–8.

    CAS  PubMed  Google Scholar 

  14. Vincent JL, Rhodes A, Perel A, Martin GS, Della Rocca G, Vallet B, et al. Clinical review: update on hemodynamic monitoring - a consensus of 16. Crit Care. 2011;15:229.

    PubMed  PubMed Central  Google Scholar 

  15. Legrand M, Dupuis C, Simon C, Gayat E, Mateo J, Lukaszewicz AC, et al. Association between systemic hemodynamics and septic acute kidney injury in critically ill patients: a retrospective observational study. Crit Care. 2013;17:R278.

    PubMed  PubMed Central  Google Scholar 

  16. Marik PE, Baram M, Vahid B. Does central venous pressure predict fluid responsiveness? A systematic review of the literature and the tale of seven mares. Chest. 2008;134:172–8.

    PubMed  Google Scholar 

  17. Vincent JL, Weil MH. Fluid challenge revisited. Crit Care Med. 2006;34:1333–7.

    PubMed  Google Scholar 

  18. Thiele RH, Bartels K, Gan TJ. Cardiac output monitoring: a contemporary assessment and review. Crit Care Med. 2015;43:177–85.

    PubMed  Google Scholar 

  19. Cannesson M, Pestel G, Ricks C, Hoeft A, Perel A. Hemodynamic monitoring and management in patients undergoing high risk surgery: a survey among North American and European anesthesiologists. Crit Care. 2011;15:R197.

    PubMed  PubMed Central  Google Scholar 

  20. Repesse X, Bodson L, Vieillard-Baron A. Doppler echocardiography in shocked patients. Curr Opin Crit Care. 2013;19:221–7.

    PubMed  Google Scholar 

  21. Maltais S, Costello WT, Billings FT, Bick JS, Byrne JG, Ahmad RM, et al. Episodic monoplane transesophageal echocardiography impacts postoperative management of the cardiac surgery patient. J Cardiothorac Vasc Anesth. 2013;27:665–9.

    PubMed  Google Scholar 

  22. Rhodes A, Cusack RJ, Newman PJ, Grounds RM, Bennett ED. A randomised, controlled trial of the pulmonary artery catheter in critically ill patients. Intensive Care Med. 2002;28:256–64.

    PubMed  Google Scholar 

  23. Harvey S, Harrison DA, Singer M, Ashcroft J, Jones CM, Elbourne D, et al. Assessment of the clinical effectiveness of pulmonary artery catheters in management of patients in intensive care (PAC-Man): a randomised controlled trial. Lancet. 2005;366:472–7.

    PubMed  Google Scholar 

  24. Harvey S, Young D, Brampton W, Cooper AB, Doig G, Sibbald W, et al. Pulmonary artery catheters for adult patients in intensive care. Cochrane Database Syst Rev. 2006;3:CD003408.

    Google Scholar 

  25. Shah MR, Hasselblad V, Stevenson LW, Binanay C, O’Connor CM, Sopko G, et al. Impact of the pulmonary artery catheter in critically ill patients: meta-analysis of randomized clinical trials. JAMA. 2005;294:1664–70.

    CAS  PubMed  Google Scholar 

  26. Vincent JL, Pinsky MR, Sprung CL, Levy M, Marini JJ, Payen D, et al. The pulmonary artery catheter: in medio virtus. Crit Care Med. 2008;36:3093–6.

    PubMed  Google Scholar 

  27. Vincent JL. The pulmonary artery catheter. J Clin Monit Comput. 2012;26:341–5.

    PubMed  Google Scholar 

  28. Gardner RM. Direct blood pressure measurement - dynamic response requirements. Anesthesiology. 1981;54:227–36.

    CAS  PubMed  Google Scholar 

  29. Hamzaoui O, Monnet X, Richard C, Osman D, Chemla D, Teboul JL. Effects of changes in vascular tone on the agreement between pulse contour and transpulmonary thermodilution cardiac output measurements within an up to 6-hour calibration-free period. Crit Care Med. 2008;36:434–40.

    PubMed  Google Scholar 

  30. Oren-Grinberg A. The PiCCO Monitor. Int Anesthesiol Clin. 2010;48:57–85.

    PubMed  Google Scholar 

  31. Bendjelid K, Marx G, Kiefer N, Simon TP, Geisen M, Hoeft A, et al. Performance of a new pulse contour method for continuous cardiac output monitoring: validation in critically ill patients. Br J Anaesth. 2013;111:573–9.

    CAS  PubMed  Google Scholar 

  32. Cecconi M, Fawcett J, Grounds RM, Rhodes A. A prospective study to evaluate the accuracy of pulse power analysis to monitor cardiac output in critically ill patients. BMC Anesthesiol. 2008;8:3.

    PubMed  PubMed Central  Google Scholar 

  33. Cecconi M, Dawson D, Grounds RM, Rhodes A. Lithium dilution cardiac output measurement in the critically ill patient: determination of precision of the technique. Intensive Care Med. 2009;35:498–504.

    CAS  PubMed  Google Scholar 

  34. Senn A, Button D, Zollinger A, Hofer CK. Assessment of cardiac output changes using a modified FloTrac/Vigileo algorithm in cardiac surgery patients. Crit Care. 2009;13:R32.

    PubMed  PubMed Central  Google Scholar 

  35. Cecconi M, Fasano N, Langiano N, Divella M, Costa MG, Rhodes A, et al. Goal-directed haemodynamic therapy during elective total hip arthroplasty under regional anaesthesia. Crit Care. 2011;15:R132.

    PubMed  PubMed Central  Google Scholar 

  36. Romano SM, Pistolesi M. Assessment of cardiac output from systemic arterial pressure in humans. Crit Care Med. 2002;30:1834–41.

    PubMed  Google Scholar 

  37. Scolletta S, Bodson L, Donadello K, Taccone FS, Devigili A, Vincent JL, et al. Assessment of left ventricular function by pulse wave analysis in critically ill patients. Intensive Care Med. 2013;39:1025–33.

    PubMed  Google Scholar 

  38. Romagnoli S, Romano SM, Bevilacqua S, Ciappi F, Lazzeri C, Peris A, et al. Cardiac output by arterial pulse contour: reliability under hemodynamic derangements. Interact Cardiovasc Thorac Surg. 2009;8:642–6.

    PubMed  Google Scholar 

  39. Penaz J. Criteria for set point estimation in the volume clamp method of blood pressure measurement. Physiol Res. 1992;41:5–10.

    CAS  PubMed  Google Scholar 

  40. Westerhof N, Lankhaar JW, Westerhof BE. The arterial Windkessel. Med Biol Eng Comput. 2009;47:131–41.

    PubMed  Google Scholar 

  41. Stover JF, Stocker R, Lenherr R, Neff TA, Cottini SR, Zoller B, et al. Noninvasive cardiac output and blood pressure monitoring cannot replace an invasive monitoring system in critically ill patients. BMC Anesthesiol. 2009;9:6.

    PubMed  PubMed Central  Google Scholar 

  42. Bogert LW, Wesseling KH, Schraa O, Van Lieshout EJ, de Mol BA, van Goudoever J, et al. Pulse contour cardiac output derived from non-invasive arterial pressure in cardiovascular disease. Anaesthesia. 2010;65:1119–25.

    CAS  PubMed  Google Scholar 

  43. Broch O, Renner J, Gruenewald M, Meybohm P, Schottler J, Caliebe A, et al. A comparison of the Nexfin(R) and transcardiopulmonary thermodilution to estimate cardiac output during coronary artery surgery. Anaesthesia. 2012;67:377–83.

    CAS  PubMed  Google Scholar 

  44. Bubenek-Turconi SI, Craciun M, Miclea I, Perel A. Noninvasive continuous cardiac output by the Nexfin before and after preload-modifying maneuvers: a comparison with intermittent thermodilution cardiac output. Anesth Analg. 2013;117:366–72.

    PubMed  Google Scholar 

  45. Thom O, Taylor DM, Wolfe RE, Cade J, Myles P, Krum H, et al. Comparison of a supra-sternal cardiac output monitor (USCOM) with the pulmonary artery catheter. Br J Anaesth. 2009;103:800–4.

    CAS  PubMed  Google Scholar 

  46. Gueret G, Kiss G, Rossignol B, Bezon E, Wargnier JP, Miossec A, et al. Cardiac output measurements in off-pump coronary surgery: comparison between NICO and the Swan-Ganz catheter. Eur J Anaesthesiol. 2006;23:848–54.

    CAS  PubMed  Google Scholar 

  47. Tachibana K, Imanaka H, Takeuchi M, Takauchi Y, Miyano H, Nishimura M. Noninvasive cardiac output measurement using partial carbon dioxide rebreathing is less accurate at settings of reduced minute ventilation and when spontaneous breathing is present. Anesthesiology. 2003;98:830–7.

    PubMed  Google Scholar 

  48. Hofer CK, Buhlmann S, Klaghofer R, Genoni M, Zollinger A. Pulsed dye densitometry with two different sensor types for cardiac output measurement after cardiac surgery: a comparison with the thermodilution technique. Acta Anaesthesiol Scand. 2004;48:653–7.

    CAS  PubMed  Google Scholar 

  49. Ball TR, Culp BC, Patel V, Gloyna DF, Ciceri DP, Culp Jr WC. Comparison of the endotracheal cardiac output monitor to thermodilution in cardiac surgery patients. J Cardiothorac Vasc Anesth. 2010;24:762–6.

    PubMed  Google Scholar 

  50. Gujjar AR, Muralidhar K, Banakal S, Gupta R, Sathyaprabha TN, Jairaj PS. Non-invasive cardiac output by transthoracic electrical bioimpedence in post-cardiac surgery patients: comparison with thermodilution method. J Clin Monit Comput. 2008;22:175–80.

    PubMed  Google Scholar 

  51. Squara P, Denjean D, Estagnasie P, Brusset A, Dib JC, Dubois C. Noninvasive cardiac output monitoring (NICOM): a clinical validation. Intensive Care Med. 2007;33:1191–4.

    PubMed  Google Scholar 

  52. Raval NY, Squara P, Cleman M, Yalamanchili K, Winklmaier M, Burkhoff D. Multicenter evaluation of noninvasive cardiac output measurement by bioreactance technique. J Clin Monit Comput. 2008;22:113–9.

    PubMed  Google Scholar 

  53. Garisto C, Favia I, Ricci Z, Romagnoli S, Haiberger R, Polito A, et al. Pressure recording analytical method and bioreactance for stroke volume index monitoring during pediatric cardiac surgery. Paediatr Anaesth. 2015;25:143–9.

    PubMed  Google Scholar 

  54. Critchley LA, Critchley JA. A meta-analysis of studies using bias and precision statistics to compare cardiac output measurement techniques. J Clin Monit Comput. 1999;15:85–91.

    CAS  PubMed  Google Scholar 

  55. Cecconi M, Rhodes A, Poloniecki J, Della Rocca G, Grounds RM. Bench-to-bedside review: the importance of the precision of the reference technique in method comparison studies - with specific reference to the measurement of cardiac output. Crit Care. 2009;13:201.

    PubMed  PubMed Central  Google Scholar 

  56. Squara P, Cecconi M, Rhodes A, Singer M, Chiche JD. Tracking changes in cardiac output: methodological considerations for the validation of monitoring devices. Intensive Care Med. 2009;35:1801–8.

    PubMed  Google Scholar 

  57. Critchley LA, Lee A, Ho AM. A critical review of the ability of continuous cardiac output monitors to measure trends in cardiac output. Anesth Analg. 2010;111:1180–92.

    PubMed  Google Scholar 

  58. Perel A, Habicher M, Sander M. Bench-to-bedside review: Functional hemodynamics during surgery - should it be used for all high-risk cases? Crit Care. 2013;17:203.

    PubMed  PubMed Central  Google Scholar 

  59. Desebbe O, Cannesson M. Using ventilation-induced plethysmographic variations to optimize patient fluid status. Curr Opin Anaesthesiol. 2008;21:772–8.

    PubMed  Google Scholar 

  60. Sandroni C, Cavallaro F, Marano C, Falcone C, De Santis P, Antonelli M. Accuracy of plethysmographic indices as predictors of fluid responsiveness in mechanically ventilated adults: a systematic review and meta-analysis. Intensive Care Med. 2012;38:1429–37.

    PubMed  Google Scholar 

  61. Forget P, Lois F, de Kock M. Goal-directed fluid management based on the pulse oximeter-derived pleth variability index reduces lactate levels and improves fluid management. Anesth Analg. 2010;111:910–4.

    PubMed  Google Scholar 

  62. Forget P, Lois F, Kartheuser A, Leonard D, Remue C, de Kock M. The concept of titration can be transposed to fluid management but does is change the volumes? Randomised trial on pleth variability index during fast-track colonic surgery. Curr Clin Pharmacol. 2013;8:110–4.

    CAS  PubMed  Google Scholar 

  63. Mahjoub Y, Lejeune V, Muller L, Perbet S, Zieleskiewicz L, Bart F, et al. Evaluation of pulse pressure variation validity criteria in critically ill patients: a prospective observational multicentre point-prevalence study. Br J Anaesth. 2014;112:681–5.

    CAS  PubMed  Google Scholar 

  64. Marik PE, Cavallazzi R, Vasu T, Hirani A. Dynamic changes in arterial waveform derived variables and fluid responsiveness in mechanically ventilated patients: a systematic review of the literature. Crit Care Med. 2009;37:2642–7.

    PubMed  Google Scholar 

  65. Futier E, Constantin JM, Paugam-Burtz C, Pascal J, Eurin M, Neuschwander A, et al. A trial of intraoperative low-tidal-volume ventilation in abdominal surgery. N Engl J Med. 2013;369:428–37.

    CAS  PubMed  Google Scholar 

  66. Serpa Neto A, Cardoso SO, Manetta JA, Pereira VG, Esposito DC, Pasqualucci Mde O, et al. Association between use of lung-protective ventilation with lower tidal volumes and clinical outcomes among patients without acute respiratory distress syndrome: a meta-analysis. JAMA. 2012;308:1651–9.

    CAS  PubMed  Google Scholar 

  67. Cannesson M, Le Manach Y, Hofer CK, Goarin JP, Lehot JJ, Vallet B, et al. Assessing the diagnostic accuracy of pulse pressure variations for the prediction of fluid responsiveness: a ‘gray zone’ approach. Anesthesiology. 2011;115:231–41.

    PubMed  Google Scholar 

  68. Monnet X, Teboul JL. Passive leg raising. Intensive Care Med. 2008;34:659–63.

    PubMed  Google Scholar 

  69. Michard F. Long live dynamic parameters! Crit Care. 2014;18:413.

    PubMed  PubMed Central  Google Scholar 

  70. Chawla LS, Zia H, Gutierrez G, Katz NM, Seneff MG, Shah M. Lack of equivalence between central and mixed venous oxygen saturation. Chest. 2004;126:1891–6.

    PubMed  Google Scholar 

  71. Dueck MH, Klimek M, Appenrodt S, Weigand C, Boerner U. Trends but not individual values of central venous oxygen saturation agree with mixed venous oxygen saturation during varying hemodynamic conditions. Anesthesiology. 2005;103:249–57.

    PubMed  Google Scholar 

  72. Reinhart K, Rudolph T, Bredle DL, Hannemann L, Cain SM. Comparison of central-venous to mixed-venous oxygen saturation during changes in oxygen supply/demand. Chest. 1989;95:1216–21.

    CAS  PubMed  Google Scholar 

  73. Lorentzen AG, Lindskov C, Sloth E, Jakobsen CJ. Central venous oxygen saturation cannot replace mixed venous saturation in patients undergoing cardiac surgery. J Cardiothorac Vasc Anesth. 2008;22:853–7.

    PubMed  Google Scholar 

  74. Glamann DB, Lange RA, Hillis LD. Incidence and significance of a ‘step-down’ in oxygen saturation from superior vena cava to pulmonary artery. Am J Cardiol. 1991;68:695–7.

    CAS  PubMed  Google Scholar 

  75. Barratt-Boyes BG, Wood EH. The oxygen saturation of blood in the venae cavae, right-heart chambers, and pulmonary vessels of healthy subjects. J Lab Clin Med. 1957;50:93–106.

    CAS  PubMed  Google Scholar 

  76. Dahn MS, Lange MP, Jacobs LA. Central mixed and splanchnic venous oxygen saturation monitoring. Intensive Care Med. 1988;14:373–8.

    CAS  PubMed  Google Scholar 

  77. Lee J, Wright F, Barber R, Stanley L. Central venous oxygen saturation in shock: a study in man. Anesthesiology. 1972;36:472–8.

    CAS  PubMed  Google Scholar 

  78. Ho KM, Harding R, Chamberlain J, Bulsara M. A comparison of central and mixed venous oxygen saturation in circulatory failure. J Cardiothorac Vasc Anesth. 2010;24:434–9.

    PubMed  Google Scholar 

  79. Turnaoglu S, Tugrul M, Camci E, Cakar N, Akinci O, Ergin P. Clinical applicability of the substitution of mixed venous oxygen saturation with central venous oxygen saturation. J Cardiothorac Vasc Anesth. 2001;15:574–9.

    CAS  PubMed  Google Scholar 

  80. Reinhart K, Kersting T, Fohring U, Schafer M. Can central-venous replace mixed-venous oxygen saturation measurements during anesthesia? Adv Exp Med Biol. 1986;200:67–72.

    CAS  PubMed  Google Scholar 

  81. Collaborative Study Group on Perioperative ScvO2 Monitoring. Multicentre study on peri- and postoperative central venous oxygen saturation in high-risk surgical patients. Crit Care. 2006;10:R158.

    PubMed Central  Google Scholar 

  82. Polonen P, Ruokonen E, Hippelainen M, Poyhonen M, Takala J. A prospective, randomized study of goal-oriented hemodynamic therapy in cardiac surgical patients. Anesth Analg. 2000;90:1052–9.

    CAS  PubMed  Google Scholar 

  83. Donati A, Loggi S, Preiser JC, Orsetti G, Munch C, Gabbanelli V, et al. Goal-directed intraoperative therapy reduces morbidity and length of hospital stay in high-risk surgical patients. Chest. 2007;132:1817–24.

    PubMed  Google Scholar 

  84. Van der Linden P, Schmartz D, Gilbart E, Engelman E, Vincent JL. Effects of propofol, etomidate, and pentobarbital on critical oxygen delivery. Crit Care Med. 2000;28:2492–9.

    PubMed  Google Scholar 

  85. Perz S, Uhlig T, Kohl M, Bredle DL, Reinhart K, Bauer M, et al. Low and ‘supranormal’ central venous oxygen saturation and markers of tissue hypoxia in cardiac surgery patients: a prospective observational study. Intensive Care Med. 2011;37:52–9.

    CAS  PubMed  Google Scholar 

  86. Fuller BM, Dellinger RP. Lactate as a hemodynamic marker in the critically ill. Curr Opin Crit Care. 2012;18:267–72.

    PubMed  PubMed Central  Google Scholar 

  87. Meregalli A, Oliveira RP, Friedman G. Occult hypoperfusion is associated with increased mortality in hemodynamically stable, high-risk, surgical patients. Crit Care. 2004;8:R60–5.

    PubMed  PubMed Central  Google Scholar 

  88. Bakker J, Coffernils M, Leon M, Gris P, Vincent JL. Blood lactate levels are superior to oxygen-derived variables in predicting outcome in human septic shock. Chest. 1991;99:956–62.

    CAS  PubMed  Google Scholar 

  89. Jansen TC, van Bommel J, Schoonderbeek FJ, Sleeswijk Visser SJ, van der Klooster JM, Lima AP, et al. Early lactate-guided therapy in intensive care unit patients: a multicenter, open-label, randomized controlled trial. Am J Respir Crit Care Med. 2010;182:752–61.

    PubMed  Google Scholar 

  90. Jansen TC, van Bommel J, Woodward R, Mulder PG, Bakker J. Association between blood lactate levels, Sequential Organ Failure Assessment subscores, and 28-day mortality during early and late intensive care unit stay: a retrospective observational study. Crit Care Med. 2009;37:2369–74.

    CAS  PubMed  Google Scholar 

  91. McKendry M, McGloin H, Saberi D, Caudwell L, Brady AR, Singer M. Randomised controlled trial assessing the impact of a nurse delivered, flow monitored protocol for optimisation of circulatory status after cardiac surgery. BMJ. 2004;329:258.

    PubMed  PubMed Central  Google Scholar 

  92. Pearse R, Dawson D, Fawcett J, Rhodes A, Grounds RM, Bennett ED. Early goal-directed therapy after major surgery reduces complications and duration of hospital stay. A randomised, controlled trial [ISRCTN38797445]. Crit Care. 2005;9:R687–93.

    PubMed  PubMed Central  Google Scholar 

  93. Bundgaard-Nielsen M, Holte K, Secher NH, Kehlet H. Monitoring of peri-operative fluid administration by individualized goal-directed therapy. Acta Anaesthesiol Scand. 2007;51:331–40.

    CAS  PubMed  Google Scholar 

  94. Wilson J, Woods I, Fawcett J, Whall R, Dibb W, Morris C, et al. Reducing the risk of major elective surgery: randomised controlled trial of preoperative optimisation of oxygen delivery. BMJ. 1999;318:1099–103.

    CAS  PubMed  PubMed Central  Google Scholar 

  95. Lobo SM, Salgado PF, Castillo VG, Borim AA, Polachini CA, Palchetti JC, et al. Effects of maximizing oxygen delivery on morbidity and mortality in high-risk surgical patients. Crit Care Med. 2000;28:3396–404.

    CAS  PubMed  Google Scholar 

  96. Lopes MR, Oliveira MA, Pereira VO, Lemos IP, Auler Jr JO, Michard F. Goal-directed fluid management based on pulse pressure variation monitoring during high-risk surgery: a pilot randomized controlled trial. Crit Care. 2007;11:R100.

    PubMed  PubMed Central  Google Scholar 

  97. Pearse RM, Harrison DA, MacDonald N, Gillies MA, Blunt M, Ackland G, et al. Effect of a perioperative, cardiac output-guided hemodynamic therapy algorithm on outcomes following major gastrointestinal surgery: a randomized clinical trial and systematic review. JAMA. 2014;311:2181–90.

    CAS  PubMed  Google Scholar 

  98. Morris C. Oesophageal Doppler monitoring, doubt and equipoise: evidence based medicine means change. Anaesthesia. 2013;68:684–8.

    CAS  PubMed  Google Scholar 

  99. Scheeren TW, Wiesenack C, Gerlach H, Marx G. Goal-directed intraoperative fluid therapy guided by stroke volume and its variation in high-risk surgical patients: a prospective randomized multicentre study. J Clin Monit Comput. 2013;27:225–33.

    PubMed  Google Scholar 

  100. Goepfert MS, Richter HP, Zu EC, Gruetzmacher J, Rafflenbeul E, Roeher K, et al. Individually optimized hemodynamic therapy reduces complications and length of stay in the intensive care unit: a prospective, randomized controlled trial. Anesthesiology. 2013;119:824–36.

    CAS  PubMed  Google Scholar 

  101. Fellahi JL, Parienti JJ, Hanouz JL, Plaud B, Riou B, Ouattara A. Perioperative use of dobutamine in cardiac surgery and adverse cardiac outcome: propensity-adjusted analyses. Anesthesiology. 2008;108:979–87.

    CAS  PubMed  Google Scholar 

  102. Pearse RM, Belsey JD, Cole JN, Bennett ED. Effect of dopexamine infusion on mortality following major surgery: individual patient data meta-regression analysis of published clinical trials. Crit Care Med. 2008;36:1323–9.

    CAS  PubMed  Google Scholar 

  103. Takala J, Meier-Hellmann A, Eddleston J, Hulstaert P, Sramek V. Effect of dopexamine on outcome after major abdominal surgery: a prospective, randomized, controlled multicenter study. European Multicenter Study Group on Dopexamine in Major Abdominal Surgery. Crit Care Med. 2000;28:3417–23.

    CAS  PubMed  Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Jean-Louis Vincent.

Additional information

Competing interests

RP has received equipment loans from LiDCO Ltd and has performed consultancy work for Edwards Lifesciences, Covidien (Dublin, Ireland), and Masimo. AP has received advisory board fees from Pulsion Medical Systems. AH has received lecture honoraria from Edwards Lifesciences and is an advisory board member without fees for UPmed (Munich, Germany). PF has received honoraria from Masimo for presentations in congresses. AR has received lecture and advisory board fees from LiDCO, Edwards Lifesciences, and Masimo. J-LV, PP, DP, SR, VMR, CI, and GDR declare that they have no competing interests.

Rights and permissions

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Vincent, JL., Pelosi, P., Pearse, R. et al. Perioperative cardiovascular monitoring of high-risk patients: a consensus of 12. Crit Care 19, 224 (2015). https://doi.org/10.1186/s13054-015-0932-7

Download citation

  • Published:

  • DOI: https://doi.org/10.1186/s13054-015-0932-7

Keywords

Navigation