Skip to main content
Log in

Renal angina: concept and development of pretest probability assessment in acute kidney injury

  • Viewpoint
  • Published:
Critical Care Aims and scope Submit manuscript

Abstract

The context of a diagnostic test is a critical component for the interpretation of its result. This context defines the pretest probability of the diagnosis and forms the basis for the interpretation and value of adding the diagnostic test. In the field of acute kidney injury, a multitude of early diagnostic biomarkers have been developed, but utilization in the appropriate context is less well understood and has not been codified until recently. In order to better operationalize the context and pretest probability assessment for acute kidney injury diagnosis, the renal angina concept was proposed in 2010 for use in both children and adults. Renal angina has been assessed in approximately 1,000 subjects. However, renal angina as a concept is still unfamiliar to most clinicians and the rationale for introducing the term is not obvious. We therefore review the concept and development of renal angina, and the currently available data validating it. We discuss the various arguments for and against this construct. Future research testing the performance of renal angina with acute kidney injury biomarkers is warranted.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Figure 1
Figure 2

Similar content being viewed by others

Abbreviations

ACS:

Acute coronary syndrome

AKI:

Acute kidney injury

AUC:

Area under the curve

HT:

Hazard tranche

NPV:

Negative predictive value

RA:

Renal angina

RAI:

Renal angina index

ROC:

Receiver operating characteristic

References

  1. Ebell MH, White LL, Weismantel D. A systematic review of troponin T and I values as a prognostic tool for patients with chest pain. J Fam Pract. 2000;49:746–53.

    CAS  PubMed  Google Scholar 

  2. Stein R, Gupta B, Agarwal S, Golub J, Bhutani D, Rosman A, et al. Prognostic implications of normal (<0.10 ng/ml) and borderline (0.10 to 1.49 ng/ml) troponin elevation levels in critically ill patients without acute coronary syndrome. Am J Cardiol. 2008;102:509–12.

    Article  CAS  PubMed  Google Scholar 

  3. Lim W, Whitlock R, Khera V, Devereaux PJ, Tkaczyk A, Heels-Ansdell D, et al. Etiology of troponin elevation in critically ill patients. J Crit Care. 2010;25:322–8.

    Article  PubMed  Google Scholar 

  4. Hammerer-Lercher A, Ploner T, Neururer S, Schratzberger P, Griesmacher A, Pachinger O, et al. High-sensitivity cardiac troponin T compared with standard troponin T testing on emergency department admission: how much does it add in everyday clinical practice? J Am Heart Assoc. 2013;2:e000204.

    Article  PubMed Central  PubMed  Google Scholar 

  5. KDIGO clinical practice guideline for acute kidney injury. Kidney Int. 2012, 2:1–141.

  6. Bellomo R, Kellum JA, Ronco C. Acute kidney injury. Lancet. 2012;380:756–66.

    Article  PubMed  Google Scholar 

  7. Siew ED, Ware LB, Ikizler TA. Biological markers of acute kidney injury. J Am Soc Nephrol. 2011;22:810–20.

    Article  PubMed  Google Scholar 

  8. Bonventre JV. Diagnosis of acute kidney injury: from classic parameters to new biomarkers. Contrib Nephrol. 2007;156:213–9.

    Article  PubMed  Google Scholar 

  9. Devarajan P. Emerging biomarkers of acute kidney injury. Contrib Nephrol. 2007;156:203–12.

    Article  PubMed  Google Scholar 

  10. Parikh NI, Vasan RS. Assessing the clinical utility of biomarkers in medicine. Biomark Med. 2007;1:419–36.

    Article  CAS  PubMed  Google Scholar 

  11. Kashani K, Al-Khafaji A, Ardiles T, Artigas A, Bagshaw SM, Bell M, et al. Discovery and validation of cell cycle arrest biomarkers in human acute kidney injury. Crit Care. 2013;17:R25.

    Article  PubMed Central  PubMed  Google Scholar 

  12. Goldstein SL, Chawla LS. Renal angina. Clin J Am Soc Nephrol. 2010;5:943–9.

    Article  PubMed  Google Scholar 

  13. Basu RK, Zappitelli M, Brunner L, Wang Y, Wong HR, Chawla LS, et al. Derivation and validation of the renal angina index to improve the prediction of acute kidney injury in critically ill children. Kidney Int. 2014;85:659–67.

    Article  PubMed  Google Scholar 

  14. Cruz DN, Ferrer-Nadal A, Piccinni P, Goldstein SL, Chawla LS, Alessandri E, et al. Utilization of small changes in serum creatinine with clinical risk factors to assess the risk of AKI in critically ill adults. Clin J Am Soc Nephrol. 2014;9:663–72.

    Article  CAS  PubMed Central  PubMed  Google Scholar 

  15. Faubel S, Chawla LS, Chertow GM, Goldstein SL, Jaber BL, Liu KD, et al. Ongoing clinical trials in AKI. Clin J Am Soc Nephrol. 2012;7:861–73.

    Article  PubMed  Google Scholar 

  16. Barkin RM, Bonis SL, Elghammer RM, Todd JK. Ludwig angina in children. J Pediatr. 1975;87:563–5.

    Article  CAS  PubMed  Google Scholar 

  17. Quinn Jr FB. Ludwig angina. Arch Otolaryngol Head Neck Surg. 1999;125:599.

    Article  PubMed  Google Scholar 

  18. Hsu CL, Chen CW. A prolonged buried fish bone mimicking Ludwig angina. Am J Otolaryngol. 2011;32:75–6.

    Article  PubMed  Google Scholar 

  19. Carlson DS, Pfadt E. Vincent and Ludwig angina: two damaging oral infections. Nursing. 2011;41:55–8.

    Article  PubMed  Google Scholar 

  20. Marcus BJ, Kaplan J, Collins KA. A case of Ludwig angina: a case report and review of the literature. Am J Forensic Med Pathol. 2008;29:255–9.

    Article  PubMed  Google Scholar 

  21. Arikan AA, Zappitelli M, Goldstein SL, Naipaul A, Jefferson LS, Loftis LL. Fluid overload is associated with impaired oxygenation and morbidity in critically ill children. Pediatr Crit Care Med. 2012;13:253–8.

    Article  PubMed  Google Scholar 

  22. Brophy PD. Changing the paradigm in pediatric acute kidney injury. J Pediatr. 2013;162:1094–6.

    Article  PubMed  Google Scholar 

  23. Goldstein SL. Continuous renal replacement therapy: mechanism of clearance, fluid removal, indications and outcomes. Curr Opin Pediatr. 2011;23:181–5.

    Article  PubMed  Google Scholar 

  24. Goldstein SL. Advances in pediatric renal replacement therapy for acute kidney injury. Semin Dialysis. 2011;24:187–91.

    Article  Google Scholar 

  25. Goldstein SL, Devarajan P. Acute kidney injury in childhood: should we be worried about progression to CKD? Pediatr Nephrol. 2011;26:509–22.

    Article  PubMed  Google Scholar 

  26. Haase M, Bellomo R, Haase-Fielitz A. Neutrophil gelatinase-associated lipocalin. Curr Opin Crit Care. 2010;16:526–32.

    Article  PubMed  Google Scholar 

  27. Haase M, Haase-Fielitz A, Bellomo R, Mertens PR. Neutrophil gelatinase-associated lipocalin as a marker of acute renal disease. Curr Opin Hematol. 2011;18:11–8.

    Article  CAS  PubMed  Google Scholar 

  28. McCullough PA, Shaw AD, Haase M, Bouchard J, Waikar SS, Siew ED, et al. Diagnosis of acute kidney injury using functional and injury biomarkers: workgroup statements from the tenth Acute Dialysis Quality Initiative Consensus Conference. Contrib Nephrol. 2013;182:13–29.

    Article  PubMed  Google Scholar 

  29. Moon SJ, Park HB, Yoon SY, Lee SC. Urinary biomarkers for early detection of recovery in patients with acute kidney injury. J Korean Med Sci. 2013;28:1181–6.

    Article  PubMed Central  PubMed  Google Scholar 

  30. Prowle JR. Acute kidney injury: an intensivist’s perspective. Pediatr Nephrol. 2014;29:13–21.

    Article  PubMed  Google Scholar 

  31. Ronco C. Kidney attack: overdiagnosis of acute kidney injury or comprehensive definition of acute kidney syndromes? Blood Purif. 2013;36:65–8.

    Article  PubMed  Google Scholar 

  32. Ronco C, Chawla LS. Acute kidney injury: kidney attack must be prevented. Nat Rev Nephrol. 2013;9:198–9.

    Article  PubMed  Google Scholar 

  33. Ronco C, McCullough PA, Chawla LS. Kidney attack versus heart attack: evolution of classification and diagnostic criteria. Lancet. 2013;382:939–40.

    Article  PubMed  Google Scholar 

  34. Symons JM. Moving beyond supportive care-current status of specific therapies in pediatric acute kidney injury. Pediatr Nephrol. 2014;29:173–81.

    Article  PubMed  Google Scholar 

  35. Siew ED, Ware LB, Bian A, Shintani A, Eden SK, Wickersham N, et al. Distinct injury markers for the early detection and prognosis of incident acute kidney injury in critically ill adults with preserved kidney function. Kidney Int. 2013;84:786–94.

    Article  CAS  PubMed Central  PubMed  Google Scholar 

  36. Prowle JR, Kirwan CJ, Bellomo R. Fluid management for the prevention and attenuation of acute kidney injury. Nat Rev Nephrol. 2014;10:37–47.

    Article  CAS  PubMed  Google Scholar 

  37. Basu RK, Wang Y, Wong HR, Chawla LS, Wheeler DS, Goldstein SL. Incorporation of biomarkers with the renal angina index for prediction of severe AKI in critically ill children. Clin J Am Soc Nephrol. 2014;9:654–62.

    Article  PubMed Central  PubMed  Google Scholar 

  38. Joannidis M, Metnitz PG. Epidemiology and natural history of acute renal failure in the ICU. Crit Care Clin. 2005;21:239–49.

    Article  PubMed  Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Lakhmir S Chawla.

Additional information

Competing interests

LSC has links with Alere Medical and Astute Medical. SLG has links with Baxter Medical. JAK has links with Alere Medical and Astute Medical. CR declares that he has no competing interests.

Rights and permissions

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Chawla, L.S., Goldstein, S.L., Kellum, J.A. et al. Renal angina: concept and development of pretest probability assessment in acute kidney injury. Crit Care 19, 93 (2015). https://doi.org/10.1186/s13054-015-0779-y

Download citation

  • Published:

  • DOI: https://doi.org/10.1186/s13054-015-0779-y

Keywords

Navigation