Skip to main content
Log in

Starling curves and central venous pressure

  • Review
  • Published:
Critical Care Aims and scope Submit manuscript

Abstract

Recent studies challenge the utility of central venous pressure monitoring as a surrogate for cardiac preload. Starting with Starling’s original studies on the regulation of cardiac output, this review traces the history of the experiments that elucidated the role of central venous pressure in circulatory physiology. Central venous pressure is an important physiologic parameter, but it is not an independent variable that determines cardiac output.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Figure 1
Figure 2
Figure 3
Figure 4
Figure 5
Figure 6

Similar content being viewed by others

Abbreviations

CVP:

Central venous pressure

References

  1. Patterson SW, Starling EH. On the mechanical factors which determine the output of the ventricles. J Physiol. 1914;48:357–79.

    Article  CAS  Google Scholar 

  2. Dellinger RP, Levy MM, Rhodes A, Annane D, Gerlach H, Opal SM. Surviving Sepsis Campaign: international guidelines for management of severe sepsis and septic shock, 2012. Intensive Care Med. 2013;39:165–228.

    Article  CAS  Google Scholar 

  3. Funk DJ, Kumar A. If the central venous pressure is [x], call me … maybe. Crit Care Med. 2013;41:1823–4.

    Article  Google Scholar 

  4. Shippy CR, Appel PL, Shoemaker WC. Reliability of clinical monitoring to assess blood volume in critically ill patients. Crit Care Med. 1984;12:107–12.

    Article  CAS  Google Scholar 

  5. Marik PE, Baram M, Vahid B. Does central venous pressure predict fluid responsiveness? A systematic review of the literature and the tale of seven mares. CHEST J. 2008;134:172–8.

    Article  Google Scholar 

  6. Marik PE, Cavallazzi R. Does the central venous pressure predict fluid responsiveness? An updated meta-analysis and a plea for some common sense. Crit Care Med. 2013;41:1774–81.

    Article  Google Scholar 

  7. Durairaj L, Schmidt GA. Fluid therapy in resuscitated sepsis: less is more. Chest. 2008;133:252–63.

    Article  Google Scholar 

  8. Henderson J. A Life of Ernest Starling. New York: published for the American Physiological Society by Oxford University Press; 2005.

    Book  Google Scholar 

  9. Guyton AC, Jones CE, Coleman TG. Circulatory Physiology: Cardiac Output and its Regulation. 2nd ed. Philadelphia, PA: Saunders; 1973.

    Google Scholar 

  10. Starling EH. The Linacre Lecture on the Law of the Heart. London: Longmans, Green, & Company; 1918.

    Google Scholar 

  11. Daly IDB. The Second Bayliss–Starling Memorial Lecture. Some aspects of their separate and combined research interests. J Physiol. 1967;191:1.

    Article  Google Scholar 

  12. Sarnoff SJ, Berglund E. Ventricular function: I. Starling's Law of the Heart studied by means of simultaneous right and left ventricular function curves in the dog. Circulation. 1954;9:706–18.

    Article  CAS  Google Scholar 

  13. Isaacs JP, Berglund E, Sarnoff SJ. Ventricular function: III. The pathologic physiology of acute cardiac tamponade studied by means of ventricular function curves. Am Heart J. 1954;48:66–76.

    Article  CAS  Google Scholar 

  14. Sarnoff SJ. Myocardial contractility as described by ventricular function curves; observations on Starling's Law of the Heart. Physiol Rev. 1955;35:107–22.

    Article  CAS  Google Scholar 

  15. Braunwald E. The control of ventricular function in man. Br Heart J. 1965;27:1.

    Article  CAS  Google Scholar 

  16. Rushmer RF. Applicability of Starling's Law of the Heart to intact, unanesthetized animals. Physiol Rev. 1955;35:138–42.

    Article  CAS  Google Scholar 

  17. Berlin DA, Bakker J. Understanding venous return. Intensive Care Med. 2014;40:1564–6.

    Article  Google Scholar 

  18. Berlin D. Hemodynamic consequences of auto-PEEP. J Intensive Care Med. 2014;29:81–6.

    Article  Google Scholar 

  19. Forrester JS, Diamond G, McHugh TJ, Swan HJC. Filling pressures in the right and left sides of the heart in acute myocardial infarction. N Engl J Med. 1971;285:190–3.

    Article  CAS  Google Scholar 

  20. Damman K, van Deursen VM, Navis G, Voors AA, van Veldhuisen DJ, Hillege HL. Increased central venous pressure is associated with impaired renal function and mortality in a broad spectrum of patients with cardiovascular disease. J Am Coll Cardiol. 2009;53:582–8.

    Article  Google Scholar 

  21. van Deursen VM, Damman K, Hillege HL, van Beek AP, van Veldhuisen DJ, Voors AA. Abnormal liver function in relation to hemodynamic profile in heart failure patients. J Card Fail. 2010;16:84–90.

    Article  Google Scholar 

  22. Mullens W, Abrahams Z, Francis GS, Sokos G, Taylor DO, Starling RC, et al. Importance of venous congestion for worsening of renal function in advanced decompensated heart failure. J Am Coll Cardiol. 2009;53:589–96.

    Article  Google Scholar 

  23. Bock JS, Gottlieb SS. Cardiorenal syndrome: new perspectives. Circulation. 2010;121:2592–600.

    Article  Google Scholar 

  24. Boyd JH, Forbes J, Nakada TA, Walley KR, Russell JA. Fluid resuscitation in septic shock: a positive fluid balance and elevated central venous pressure are associated with increased mortality. Crit Care Med. 2011;39:259–65.

    Article  Google Scholar 

  25. Legrand M, Dupuis C, Simon C, Gayat E, Mateo J, Lukaszewicz AC, et al. Association between systemic hemodynamics and septic acute kidney injury in critically ill patients: a retrospective observational study. Crit Care. 2013;17:R278.

    Article  Google Scholar 

  26. Vieillard-Baron A, Prin S, Chergui K, Dubourg O, Jardin F. Echo-Doppler demonstration of acute cor pulmonale at the bedside in the medical intensive care unit. Am J Respir Crit Care Med. 2002;166:1310–9.

    Article  Google Scholar 

  27. Mebazaa A, Karpati P, Renaud E, Algotsson L. Acute right ventricular failure – from pathophysiology to new treatments. Intensive Care Med. 2004;30:185–96.

    Article  Google Scholar 

  28. Guyton AC, Lindsey AW, Gilluly JJ. The limits of right ventricular compensation following acute increase in pulmonary circulatory resistance. Circulat Res. 1954;2:326–32.

    Article  CAS  Google Scholar 

  29. Jardin F, Vieillard-Baron A. Ultrasonographic examination of the venae cavae. Intensive Care Med. 2006;32:203–6.

    Article  Google Scholar 

  30. Guyton AC, Hall JE. Textbook of Medical Physiology. 11th ed. Philadelphia, PA: Elsevier Saunders; 2006.

    Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to David A Berlin.

Additional information

Competing interests

The authors declare that they have no competing interests.

Rights and permissions

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Berlin, D.A., Bakker, J. Starling curves and central venous pressure. Crit Care 19, 55 (2015). https://doi.org/10.1186/s13054-015-0776-1

Download citation

  • Published:

  • DOI: https://doi.org/10.1186/s13054-015-0776-1

Keywords

Navigation