Skip to main content

Advertisement

Log in

Metabolic and nutritional support of critically ill patients: consensus and controversies

  • Review
  • Published:
Critical Care Aims and scope Submit manuscript

Abstract

The results of recent large-scale clinical trials have led us to review our understanding of the metabolic response to stress and the most appropriate means of managing nutrition in critically ill patients. This review presents an update in this field, identifying and discussing a number of areas for which consensus has been reached and others where controversy remains and presenting areas for future research. We discuss optimal calorie and protein intake, the incidence and management of re-feeding syndrome, the role of gastric residual volume monitoring, the place of supplemental parenteral nutrition when enteral feeding is deemed insufficient, the role of indirect calorimetry, and potential indications for several pharmaconutrients.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Similar content being viewed by others

Abbreviations

EE:

Energy expenditure

EEN:

Early enteral nutrition

EPaNIC:

Impact of early parenteral nutrition completing enteral nutrition in adult critically ill patients

GRV:

Gastric residual volume

IIT:

Intensive insulin therapy

NO:

Nitric oxide

RCT:

Randomized controlled trial

REDOXS:

Reducing deaths due to oxidative stress

ROS:

Reactive oxygen species

References

  1. Van den Berghe G, de Zegher F, Baxter RC, Veldhuis JD, Wouters P, Schetz M, et al. Neuroendocrinology of prolonged critical illness: effects of exogenous thyrotropin-releasing hormone and its combination with growth hormone secretagogues. J Clin Endocrinol Metab. 1998;83:309–19.

    PubMed  Google Scholar 

  2. Preiser JC, Ichai C, Orban JC, Groeneveld J. Metabolic response to the stress of critical illness. Br J Anaesth. 2014 Jun 26. pii: aeu187. [Epub ahead of print].

  3. Cuesta JM, Singer M. The stress response and critical illness: a review. Crit Care Med. 2012;40:3283–9.

    PubMed  Google Scholar 

  4. Jones C, Backman C, Griffiths RD. Intensive care diaries and relatives’ symptoms of posttraumatic stress disorder after critical illness: a pilot study. Am J Crit Care. 2012;21:172–6.

    PubMed  Google Scholar 

  5. Knowles RE, Tarrier N. Evaluation of the effect of prospective patient diaries on emotional well-being in intensive care unit survivors: a randomized controlled trial. Crit Care Med. 2009;37:184–91.

    PubMed  Google Scholar 

  6. Van den Berghe G, Wouters P, Weekers F, Verwaest C, Bruyninckx F, Schetz M, et al. Intensive insulin therapy in critically ill patients. N Engl J Med. 2001;345:1359–67.

    PubMed  Google Scholar 

  7. Casaer MP, Mesotten D, Hermans G, Wouters PJ, Schetz M, Meyfroidt G, et al. Early versus late parenteral nutrition in critically ill adults. N Engl J Med. 2011;365:506–17.

    CAS  PubMed  Google Scholar 

  8. Turina M, Fry DE, Polk Jr HC. Acute hyperglycemia and the innate immune system: clinical, cellular, and molecular aspects. Crit Care Med. 2005;33:1624–33.

    PubMed  Google Scholar 

  9. Brownlee M. The pathobiology of diabetic complications: a unifying mechanism. Diabetes. 2005;54:1615–25.

    CAS  PubMed  Google Scholar 

  10. Weekers F, Giulietti AP, Michalaki M, Coopmans W, Van Herck E, Mathieu C, et al. Metabolic, endocrine, and immune effects of stress hyperglycemia in a rabbit model of prolonged critical illness. Endocrinology. 2003;144:5329–38.

    CAS  PubMed  Google Scholar 

  11. Hansen TK, Thiel S, Wouters PJ, Christiansen JS, Van den Berghe G. Intensive insulin therapy exerts antiinflammatory effects in critically ill patients and counteracts the adverse effect of low mannose-binding lectin levels. J Clin Endocrinol Metab. 2003;88:1082–8.

    CAS  PubMed  Google Scholar 

  12. Vlasselaers D, Milants I, Desmet L, Wouters PJ, Vanhorebeek I, van der Heuvel I, et al. Intensive insulin therapy for patients in paediatric intensive care: a prospective, randomised controlled study. Lancet. 2009;373:547–56.

    CAS  PubMed  Google Scholar 

  13. Albacker T, Carvalho G, Schricker T, Lachapelle K. High-dose insulin therapy attenuates systemic inflammatory response in coronary artery bypass grafting patients. Ann Thorac Surg. 2008;86:20–7.

    PubMed  Google Scholar 

  14. Jeschke MG, Kulp GA, Kraft R, Finnerty CC, Mlcak R, Lee JO, et al. Intensive insulin therapy in severely burned pediatric patients: a prospective randomized trial. Am J Respir Crit Care Med. 2010;182:351–9.

    CAS  PubMed  PubMed Central  Google Scholar 

  15. Langouche L, Vanhorebeek I, Vlasselaers D, Vander Perre S, Wouters PJ, Skogstrand K, et al. Intensive insulin therapy protects the endothelium of critically ill patients. J Clin Invest. 2005;115:2277–86.

    CAS  PubMed  PubMed Central  Google Scholar 

  16. Ellger B, Debaveye Y, Vanhorebeek I, Langouche L, Giulietti A, Van Etten E, et al. Survival benefits of intensive insulin therapy in critical illness: impact of maintaining normoglycemia versus glycemia-independent actions of insulin. Diabetes. 2006;55:1096–105.

    CAS  PubMed  Google Scholar 

  17. Puthucheary ZA, Rawal J, McPhail M, Connolly B, Ratnayake G, Chan P, et al. Acute skeletal muscle wasting in critical illness. JAMA. 2013;310:1591–600.

    CAS  PubMed  Google Scholar 

  18. Biolo G, Tipton KD, Klein S, Wolfe RR. An abundant supply of amino acids enhances the metabolic effect of exercise on muscle protein. Am J Physiol. 1997;273:E122–9.

    CAS  PubMed  Google Scholar 

  19. Berg A, Rooyackers O, Bellander BM, Wernerman J. Whole body protein kinetics during hypocaloric and normocaloric feeding in critically ill patients. Crit Care. 2013;17:R158.

    PubMed  PubMed Central  Google Scholar 

  20. Biolo G, Maggi SP, Williams BD, Tipton KD, Wolfe RR. Increased rates of muscle protein turnover and amino acid transport after resistance exercise in humans. Am J Physiol. 1995;268:E514–20.

    CAS  PubMed  Google Scholar 

  21. Gore DC, Wolf SE, Sanford AP, Herndon DN, Wolfe RR. Extremity hyperinsulinemia stimulates muscle protein synthesis in severely injured patients. Am J Physiol Endocrinol Metab. 2004;286:E529–34.

    CAS  PubMed  Google Scholar 

  22. Ferrando AA, Stuart CA, Sheffield-Moore M, Wolfe RR. Inactivity amplifies the catabolic response of skeletal muscle to cortisol. J Clin Endocrinol Metab. 1999;84:3515–21.

    CAS  PubMed  Google Scholar 

  23. Biolo G, Agostini F, Simunic B, Sturma M, Torelli L, Preiser JC, et al. Positive energy balance is associated with accelerated muscle atrophy and increased erythrocyte glutathione turnover during 5 wk of bed rest. Am J Clin Nutr. 2008;88:950–8.

    CAS  PubMed  Google Scholar 

  24. Singer P, Anbar R, Cohen J, Shapiro H, Shalita-Chesner M, Lev S, et al. The tight calorie control study (TICACOS): a prospective, randomized, controlled pilot study of nutritional support in critically ill patients. Intensive Care Med. 2011;37:601–9.

    PubMed  Google Scholar 

  25. Ziegler TR. Parenteral nutrition in the critically ill patient. N Engl J Med. 2009;361:1088–97.

    CAS  PubMed  PubMed Central  Google Scholar 

  26. Mickiewicz B, Duggan GE, Winston BW, Doig C, Kubes P, Vogel HJ. Metabolic profiling of serum samples by 1H nuclear magnetic resonance spectroscopy as a potential diagnostic approach for septic shock. Crit Care Med. 2014;42:1140–9.

    CAS  PubMed  Google Scholar 

  27. Rogers AJ, McGeachie M, Baron RM, Gazourian L, Haspel JA, Nakahira K, et al. Metabolomic derangements are associated with mortality in critically ill adult patients. PLoS One. 2014;9:e87538.

    PubMed  PubMed Central  Google Scholar 

  28. Fraipont V, Preiser JC. Energy estimation and measurement in critically ill patients. JPEN J Parenter Enteral Nutr. 2013;37:705–13.

    PubMed  Google Scholar 

  29. Alberda C, Gramlich L, Jones N, Jeejeebhoy K, Day AG, Dhaliwal R, et al. The relationship between nutritional intake and clinical outcomes in critically ill patients: results of an international multicenter observational study. Intensive Care Med. 2009;35:1728–37.

    PubMed  Google Scholar 

  30. Villet S, Chiolero RL, Bollmann MD, Revelly JP, Cayeux RNM, Delarue J, et al. Negative impact of hypocaloric feeding and energy balance on clinical outcome in ICU patients. Clin Nutr. 2005;24:502–9.

    PubMed  Google Scholar 

  31. Dvir D, Cohen J, Singer P. Computerized energy balance and complications in critically ill patients: an observational study. Clin Nutr. 2006;25:37–44.

    PubMed  Google Scholar 

  32. Heyland DK, Cahill N, Day AG. Optimal amount of calories for critically ill patients: depends on how you slice the cake! Crit Care Med. 2011;39:2619–26.

    PubMed  Google Scholar 

  33. Weijs PJ, Stapel SN, de Groot SD, Driessen RH, de Jong E, Girbes AR, et al. Optimal protein and energy nutrition decreases mortality in mechanically ventilated, critically ill patients: a prospective observational cohort study. JPEN J Parenter Enteral Nutr. 2012;36:60–8.

    CAS  PubMed  Google Scholar 

  34. Allingstrup MJ, Esmailzadeh N, Wilkens Knudsen A, Espersen K, Hartvig Jensen T, Wiis J, et al. Provision of protein and energy in relation to measured requirements in intensive care patients. Clin Nutr. 2012;31:462–8.

    PubMed  Google Scholar 

  35. Bellomo R, Cass A, Cole L, Finfer S, Gallagher M, Lee J, et al. Calorie intake and patient outcomes in severe acute kidney injury: findings from The Randomized Evaluation of Normal vs. Augmented Level of Replacement Therapy (RENAL) study trial. Crit Care. 2014;18:R45.

    PubMed  PubMed Central  Google Scholar 

  36. Schetz M, Casaer MP, Van den Berghe G. Does artificial nutrition improve outcome of critical illness? Crit Care. 2013;17:302.

    PubMed  PubMed Central  Google Scholar 

  37. Berger MM, Revelly JP, Wasserfallen JB, Schmid A, Bouvry S, Cayeux MC, et al. Impact of a computerized information system on quality of nutritional support in the ICU. Nutrition. 2006;22:221–9.

    PubMed  Google Scholar 

  38. Vincent JL, Preiser JC. When should we add parenteral to enteral nutrition? Lancet. 2013;381:354–5.

    PubMed  Google Scholar 

  39. Weimann A, Singer P. Avoiding underfeeding in severely ill patients. Lancet. 2013;381:1811.

    PubMed  Google Scholar 

  40. McClave SA, Lowen CC, Kleber MJ, Nicholson JF, Jimmerson SC, McConnell JW, et al. Are patients fed appropriately according to their caloric requirements? JPEN J Parenter Enteral Nutr. 1998;22:375–81.

    CAS  PubMed  Google Scholar 

  41. Singer P, Berger MM, Van den Berghe G, Biolo G, Calder P, Forbes A, et al. ESPEN Guidelines on Parenteral Nutrition: intensive care. Clin Nutr. 2009;28:387–400.

    PubMed  Google Scholar 

  42. Martindale RG, McClave SA, Vanek VW, McCarthy M, Roberts P, Taylor B, et al. Guidelines for the provision and assessment of nutrition support therapy in the adult critically ill patient: Society of Critical Care Medicine and American Society for Parenteral and Enteral Nutrition: Executive Summary. Crit Care Med. 2009;37:1757–61.

    PubMed  Google Scholar 

  43. Sundstrom M, Tjader I, Rooyackers O, Wernerman J. Indirect calorimetry in mechanically ventilated patients. A systematic comparison of three instruments. Clin Nutr. 2013;32:118–21.

    PubMed  Google Scholar 

  44. Graf S, Karsegard VL, Viatte V, Heidegger CP, Fleury Y, Pichard C, et al. Evaluation of three indirect calorimetry devices in mechanically ventilated patients: which device compares best with the Deltatrac II? A prospective observational study. Clin Nutr. in press.

  45. Biolo G, Ciocchi B, Stulle M, Bosutti A, Barazzoni R, Zanetti M, et al. Calorie restriction accelerates the catabolism of lean body mass during 2 wk of bed rest. Am J Clin Nutr. 2007;86:366–72.

    CAS  PubMed  Google Scholar 

  46. Mattison JA, Roth GS, Beasley TM, Tilmont EM, Handy AM, Herbert RL, et al. Impact of caloric restriction on health and survival in rhesus monkeys from the NIA study. Nature. 2012;489:318–21.

    CAS  PubMed  Google Scholar 

  47. Derde S, Vanhorebeek I, Guiza F, Derese I, Gunst J, Fahrenkrog B, et al. Early parenteral nutrition evokes a phenotype of autophagy deficiency in liver and skeletal muscle of critically ill rabbits. Endocrinology. 2012;153:2267–76.

    CAS  PubMed  Google Scholar 

  48. Hermans G, Casaer MP, Clerckx B, Guiza F, Vanhullebusch T, Derde S, et al. Effect of tolerating macronutrient deficit on the development of intensive-care unit acquired weakness: a subanalysis of the EPaNIC trial. Lancet Respir Med. 2013;1:621–9.

    PubMed  Google Scholar 

  49. Heidegger CP, Berger MM, Graf S, Zingg W, Darmon P, Costanza MC, et al. Optimization of energy provision with supplemental parenteral nutrition (SPN) improves the clinical outcome of critically ill patients: a randomized controlled clinical trial. Lancet. 2012;381:385–93.

    PubMed  Google Scholar 

  50. Rice TW, Mogan S, Hays MA, Bernard GR, Jensen GL, Wheeler AP. Randomized trial of initial trophic versus full-energy enteral nutrition in mechanically ventilated patients with acute respiratory failure. Crit Care Med. 2011;39:967–74.

    PubMed  PubMed Central  Google Scholar 

  51. Rice TW, Wheeler AP, Thompson BT, Steingrub J, Hite RD, Moss M, et al. Initial trophic vs full enteral feeding in patients with acute lung injury: the EDEN randomized trial. JAMA. 2012;307:795–803.

    PubMed  Google Scholar 

  52. Arabi YM, Tamim HM, Dhar GS, Al-Dawood A, Al-Sultan M, Sakkijha MH, et al. Permissive underfeeding and intensive insulin therapy in critically ill patients: a randomized controlled trial. Am J Clin Nutr. 2011;93:569–77.

    CAS  PubMed  Google Scholar 

  53. Heyland DK, Murch L, Cahill N, McCall M, Muscedere J, Stelfox HT, et al. Enhanced protein-energy provision via the enteral route feeding protocol in critically ill patients: results of a cluster randomized trial. Crit Care Med. 2013;41:2743–53.

    CAS  PubMed  Google Scholar 

  54. Griffiths RD. Nutrition for critically ill patients: how much is enough? JAMA. 2012;307:845–6.

    CAS  PubMed  Google Scholar 

  55. Casaer MP, Wilmer A, Hermans G, Wouters PJ, Mesotten D, Van den Berghe G. Role of disease and macronutrient dose in the randomized controlled EPaNIC trial: a post hoc analysis. Am J Respir Crit Care Med. 2013;187:247–55.

    PubMed  Google Scholar 

  56. Heyland DK, Dhaliwal R, Lemieux M, Wang M, Day AG. Implementing the PEP uP protocol in critical care units in Canada: results of a multicenter, quality improvement study. JPEN J Parenter Enteral Nutr. 2014 Apr 18. [Epub ahead of print].

  57. Kondrup J. Nutritional-risk scoring systems in the intensive care unit. Curr Opin Clin Nutr Metab Care. 2014;17:177–82.

    CAS  PubMed  Google Scholar 

  58. Guadagni M, Biolo G. Effects of inflammation and/or inactivity on the need for dietary protein. Curr Opin Clin Nutr Metab Care. 2009;12:617–22.

    CAS  PubMed  Google Scholar 

  59. Rooyackers O, Kouchek-Zadeh R, Tjader I, Norberg A, Klaude M, Wernerman J. Whole body protein turnover in critically ill patients with multiple organ failure. Clin Nutr. 2014, pii:S0261-5614(14)00045-4.

  60. Cheatham ML, Safcsak K, Brzezinski SJ, Lube MW. Nitrogen balance, protein loss, and the open abdomen. Crit Care Med. 2007;35:127–31.

    CAS  PubMed  Google Scholar 

  61. Badaloo A, Reid M, Forrester T, Heird WC, Jahoor F. Cysteine supplementation improves the erythrocyte glutathione synthesis rate in children with severe edematous malnutrition. Am J Clin Nutr. 2002;76:646–52.

    CAS  PubMed  Google Scholar 

  62. Oudemans-van Straaten HM, Bosman RJ, Treskes M, van der Spoel HJ, Zandstra DF. Plasma glutamine depletion and patient outcome in acute ICU admissions. Intensive Care Med. 2001;27:84–90.

    CAS  PubMed  Google Scholar 

  63. Rodas PC, Rooyackers O, Hebert C, Norberg A, Wernerman J. Glutamine and glutathione at ICU admission in relation to outcome. Clin Sci (Lond). 2012;122:591–7.

    CAS  Google Scholar 

  64. Jackson NC, Carroll PV, Russell-Jones DL, Sonksen PH, Treacher DF, Umpleby AM. The metabolic consequences of critical illness: acute effects on glutamine and protein metabolism. Am J Physiol. 1999;276:E163–70.

    CAS  PubMed  Google Scholar 

  65. Ishibashi N, Plank LD, Sando K, Hill GL. Optimal protein requirements during the first 2 weeks after the onset of critical illness. Crit Care Med. 1998;26:1529–35.

    CAS  PubMed  Google Scholar 

  66. Hoffer LJ, Bistrian BR. Appropriate protein provision in critical illness: a systematic and narrative review. Am J Clin Nutr. 2012;96:591–600.

    CAS  PubMed  Google Scholar 

  67. Tillquist M, Kutsogiannis DJ, Wischmeyer PE, Kummerlen C, Leung R, Stollery D, et al. Bedside ultrasound is a practical and reliable measurement tool for assessing quadriceps muscle layer thickness. JPEN J Parenter Enteral Nutr. 2014;38:886–90.

    PubMed  Google Scholar 

  68. Casaer MP, Langouche L, Coudyzer W, Vanbeckevoort D, De Dobbelaer B, Guiza FG, et al. Impact of early parenteral nutrition on muscle and adipose tissue compartments during critical illness. Crit Care Med. 2013;41:2298–309.

    CAS  PubMed  Google Scholar 

  69. Hercberg S, Galan P, Preziosi P, Bertrais S, Mennen L, Malvy D, et al. The SU.VI.MAX Study: a randomized, placebo-controlled trial of the health effects of antioxidant vitamins and minerals. Arch Intern Med. 2004;164:2335–42.

    CAS  PubMed  Google Scholar 

  70. Rayman MP. Selenium and human health. Lancet. 2012;379:1256–68.

    CAS  PubMed  Google Scholar 

  71. Forceville X, Vitoux D, Gauzit R, Combes A, Lahilaire P, Chappuis P. Selenium, systemic immune response syndrome, sepsis, and outcome in critically ill patients. Crit Care Med. 1998;26:1536–44.

    CAS  PubMed  Google Scholar 

  72. Singer P, Pichard C. Reconciling divergent results of the latest parenteral nutrition studies in the ICU. Curr Opin Clin Nutr Metab Care. 2013;16:187–93.

    CAS  PubMed  Google Scholar 

  73. Doig GS, Simpson F, Sweetman EA, Finfer SR, Cooper DJ, Heighes PT, et al. Early parenteral nutrition in critically ill patients with short-term relative contraindications to early enteral nutrition: a randomized controlled trial. JAMA. 2013;309:2130–8.

    CAS  PubMed  Google Scholar 

  74. Marik PE, Bedigian MK. Refeeding hypophosphatemia in critically ill patients in an intensive care unit. A prospective study. Arch Surg. 1996;131:1043–7.

    CAS  PubMed  Google Scholar 

  75. Doig GS, Heighes PT, Simpson F, Sweetman EA, Davies AR. Early enteral nutrition, provided within 24 h of injury or intensive care unit admission, significantly reduces mortality in critically ill patients: a meta-analysis of randomised controlled trials. Intensive Care Med. 2009;35:2018–27.

    CAS  PubMed  Google Scholar 

  76. The Veterans Affairs Total Parenteral Nutrition Cooperative Study Group. Perioperative total parenteral nutrition in surgical patients. N Engl J Med. 1991;325:525–32.

    Google Scholar 

  77. Klein CJ, Stanek GS, Wiles III CE. Overfeeding macronutrients to critically ill adults: metabolic complications. J Am Diet Assoc. 1998;98:795–806.

    CAS  PubMed  Google Scholar 

  78. Liposky JM, Nelson LD. Ventilatory response to high caloric loads in critically ill patients. Crit Care Med. 1994;22:796–802.

    CAS  PubMed  Google Scholar 

  79. Reid C. Frequency of under- and overfeeding in mechanically ventilated ICU patients: causes and possible consequences. J Hum Nutr Diet. 2006;19:13–22.

    CAS  PubMed  Google Scholar 

  80. Barret JP, Jeschke MG, Herndon DN. Fatty infiltration of the liver in severely burned pediatric patients: autopsy findings and clinical implications. J Trauma. 2001;51:736–9.

    CAS  PubMed  Google Scholar 

  81. Mesotten D, Wauters J, Van den Berghe G, Wouters PJ, Milants I, Wilmer A. The effect of strict blood glucose control on biliary sludge and cholestasis in critically ill patients. J Clin Endocrinol Metab. 2009;94:2345–52.

    CAS  PubMed  Google Scholar 

  82. Dervan N, Dowsett J, Gleeson E, Carr S, Corish C. Evaluation of over- and underfeeding following the introduction of a protocol for weaning from parenteral to enteral nutrition in the intensive care unit. Nutr Clin Pract. 2012;27:781–7.

    PubMed  Google Scholar 

  83. Vanhorebeek I, Gunst J, Derde S, Derese I, Boussemaere M, Guiza F, et al. Insufficient activation of autophagy allows cellular damage to accumulate in critically ill patients. J Clin Endocrinol Metab. 2011;96:E633–45.

    CAS  PubMed  Google Scholar 

  84. Banduseela VC, Chen YW, Kultima HG, Norman HS, Aare S, Radell P, et al. Impaired autophagy, chaperone expression, and protein synthesis in response to critical illness interventions in porcine skeletal muscle. Physiol Genomics. 2013;45:477–86.

    CAS  PubMed  Google Scholar 

  85. Gunst J, Derese I, Aertgeerts A, Ververs EJ, Wauters A, Van den Berghe G, et al. Insufficient autophagy contributes to mitochondrial dysfunction, organ failure, and adverse outcome in an animal model of critical illness. Crit Care Med. 2013;41:182–94.

    PubMed  Google Scholar 

  86. Kieft H, Roos AN, van Drunen JD, Bindels AJ, Bindels JG, Hofman Z. Clinical outcome of immunonutrition in a heterogeneous intensive care population. Intensive Care Med. 2005;31:524–32.

    PubMed  Google Scholar 

  87. Bertolini G, Iapichino G, Radrizzani D, Facchini R, Simini B, Bruzzone P, et al. Early enteral immunonutrition in patients with severe sepsis: results of an interim analysis of a randomized multicentre clinical trial. Intensive Care Med. 2003;29:834–40.

    PubMed  Google Scholar 

  88. Gianotti L, Braga M, Nespoli L, Radaelli G, Beneduce A, Di Carlo V. A randomized controlled trial of preoperative oral supplementation with a specialized diet in patients with gastrointestinal cancer. Gastroenterology. 2002;122:1763–70.

    CAS  PubMed  Google Scholar 

  89. Drover JW, Dhaliwal R, Weitzel L, Wischmeyer PE, Ochoa JB, Heyland DK. Perioperative use of arginine-supplemented diets: a systematic review of the evidence. J Am Coll Surg. 2011;212:385–99.

    PubMed  Google Scholar 

  90. Houdijk AP, Rijnsburger ER, Jansen J, Wesdorp RI, Weiss JK, McCamish MA, et al. Randomised trial of glutamine-enriched enteral nutrition on infectious morbidity in patients with multiple trauma. Lancet. 1998;352:772–6.

    CAS  PubMed  Google Scholar 

  91. Garrel D, Patenaude J, Nedelec B, Samson L, Dorais J, Champoux J, et al. Decreased mortality and infectious morbidity in adult burn patients given enteral glutamine supplements: a prospective, controlled, randomized clinical trial. Crit Care Med. 2003;31:2444–9.

    CAS  PubMed  Google Scholar 

  92. Andrews PJ, Avenell A, Noble DW, Campbell MK, Croal BL, Simpson WG, et al. Randomised trial of glutamine, selenium, or both, to supplement parenteral nutrition for critically ill patients. BMJ. 2011;342:d1542.

    PubMed  Google Scholar 

  93. Wernerman J, Kirketeig T, Andersson B, Berthelson H, Ersson A, Friberg H, et al. Scandinavian glutamine trial: a pragmatic multi-centre randomised clinical trial of intensive care unit patients. Acta Anaesthesiol Scand. 2011;55:812–8.

    CAS  PubMed  Google Scholar 

  94. Fadda V, Maratea D, Trippoli S, Messori A. Temporal trend of short-term mortality in severely ill patients receiving parenteral glutamine supplementation. Clin Nutr. 2013;32:492–3.

    PubMed  Google Scholar 

  95. Bollhalder L, Pfeil AM, Tomonaga Y, Schwenkglenks M. A systematic literature review and meta-analysis of randomized clinical trials of parenteral glutamine supplementation. Clin Nutr. 2013;32:213–23.

    CAS  PubMed  Google Scholar 

  96. Heyland D, Muscedere J, Wischmeyer PE, Cook D, Jones G, Albert M, et al. A randomized trial of glutamine and antioxidants in critically ill patients. N Engl J Med. 2013;368:1489–97.

    CAS  PubMed  Google Scholar 

  97. Buijs N, Vermeulen MA, van Leeuwen PA. Glutamine and antioxidants in critically ill patients. N Engl J Med. 2013;369:484.

    PubMed  Google Scholar 

  98. Heyland D, Wischmeyer PE, Day AG. Glutamine and antioxidants in critically ill patients. N Engl J Med. 2013;369:484–5.

    CAS  PubMed  Google Scholar 

  99. Heyland D, Elke G, Cook D, Berger MM, Wischmeyer PE, Albert M, et al. Glutamine and antioxidants in the critically ill patient: a post hoc analysis of a large scale randomized trial. JPEN J Parenter Enteral Nutr. 2014 May 5 [Epub ahead of print].

  100. van Zanten ARH, Sztark F, Kaisers UX, Zeilmann S, Felbinger TW, Sablotzki AR, et al. High-protein enteral nutrition enriched with immune-modulating nutrients vs standard high-protein enteral nutrition and nosocomial infections in the ICU: a randomized clinical trial. JAMA. 2014;312:514–24.

    PubMed  Google Scholar 

  101. Wischmeyer PE, Dhaliwal R, McCall M, Ziegler TR, Heyland DK. Parenteral glutamine supplementation in critical illness: a systematic review. Crit Care. 2014;18:R76.

    PubMed  PubMed Central  Google Scholar 

  102. Chen QH, Yang Y, He HL, Xie JF, Cai SX, Liu AR, et al. The effect of glutamine therapy on outcomes in critically ill patients: a meta-analysis of randomized controlled trials. Crit Care. 2014;18:R8.

    PubMed  PubMed Central  Google Scholar 

  103. Preiser JC, Wernerman J. REDOXs: important answers, many more questions raised! JPEN J Parenter Enteral Nutr. 2013;37:566–7.

    PubMed  Google Scholar 

  104. Pontes-Arruda A, Demichele S, Seth A, Singer P. The use of an inflammation-modulating diet in patients with acute lung injury or acute respiratory distress syndrome: a meta-analysis of outcome data. JPEN J Parenter Enteral Nutr. 2008;32:596–605.

    CAS  PubMed  Google Scholar 

  105. Zhu D, Zhang Y, Li S, Gan L, Feng H, Nie W. Enteral omega-3 fatty acid supplementation in adult patients with acute respiratory distress syndrome: a systematic review of randomized controlled trials with meta-analysis and trial sequential analysis. Intensive Care Med. 2014;40:504–12.

    CAS  PubMed  Google Scholar 

  106. Santacruz CA, Orbegozo D, Vincent JL, Preiser JC. Modulation of dietary lipid composition during acute respiratory distress syndrome (ARDS): systematic review and meta-analysis. JPEN J Parenter Enteral Nutr. in press.

  107. Heller AR, Rossler S, Litz RJ, Stehr SN, Heller SC, Koch R, et al. Omega-3 fatty acids improve the diagnosis-related clinical outcome. Crit Care Med. 2006;34:972–9.

    CAS  PubMed  Google Scholar 

  108. Palmer AJ, Ho CK, Ajibola O, Avenell A. The role of omega-3 fatty acid supplemented parenteral nutrition in critical illness in adults: a systematic review and meta-analysis. Crit Care Med. 2013;41:307–16.

    PubMed  Google Scholar 

  109. Manzanares W, Dhaliwal R, Jurewitsch B, Stapleton RD, Jeejeebhoy KN, Heyland DK. Parenteral fish oil lipid emulsions in the critically ill: a systematic review and meta-analysis. JPEN J Parenter Enteral Nutr. 2014;38:20–8.

    PubMed  Google Scholar 

  110. Umpierrez GE, Spiegelman R, Zhao V, Smiley DD, Pinzon I, Griffith DP, et al. A double-blind, randomized clinical trial comparing soybean oil-based versus olive oil-based lipid emulsions in adult medical-surgical intensive care unit patients requiring parenteral nutrition. Crit Care Med. 2012;40:1792–8.

    CAS  PubMed  PubMed Central  Google Scholar 

  111. Lovat R, Preiser JC. Antioxidant therapy in intensive care. Curr Opin Crit Care. 2003;9:266–70.

    PubMed  Google Scholar 

  112. Berger MM, Eggimann P, Heyland DK, Chiolero RL, Revelly JP, Day A, et al. Reduction of nosocomial pneumonia after major burns by trace element supplementation: aggregation of two randomised trials. Crit Care. 2006;10:R153.

    PubMed  PubMed Central  Google Scholar 

  113. Berger MM, Baines M, Raffoul W, Benathan M, Chiolero RL, Reeves C, et al. Trace element supplementation after major burns modulates antioxidant status and clinical course by way of increased tissue trace element concentrations. Am J Clin Nutr. 2007;85:1293–300.

    CAS  PubMed  Google Scholar 

  114. Berger MM, Soguel L, Shenkin A, Revelly JP, Pinget C, Baines M, et al. Influence of early antioxidant supplements on clinical evolution and organ function in critically ill cardiac surgery, major trauma, and subarachnoid hemorrhage patients. Crit Care. 2008;12:R101.

    PubMed  PubMed Central  Google Scholar 

  115. Angstwurm MW, Engelmann L, Zimmermann T, Lehmann C, Spes CH, Abel P, et al. Selenium in Intensive Care (SIC): results of a prospective randomized, placebo-controlled, multiple-center study in patients with severe systemic inflammatory response syndrome, sepsis, and septic shock. Crit Care Med. 2007;35:118–26.

    CAS  PubMed  Google Scholar 

  116. Heyland DK, Dhaliwal R, Suchner U, Berger MM. Antioxidant nutrients: a systematic review of trace elements and vitamins in the critically ill patient. Intensive Care Med. 2005;31:327–37.

    PubMed  Google Scholar 

  117. Visser J, Labadarios D, Blaauw R. Micronutrient supplementation for critically ill adults: a systematic review and meta-analysis. Nutrition. 2011;27:745–58.

    CAS  PubMed  Google Scholar 

  118. Manzanares W, Dhaliwal R, Jiang X, Murch L, Heyland DK. Antioxidant micronutrients in the critically ill: a systematic review and meta-analysis. Crit Care. 2012;16:R66.

    PubMed  PubMed Central  Google Scholar 

  119. Manzanares W, Langlois PL, Hardy G. Update on antioxidant micronutrients in the critically ill. Curr Opin Clin Nutr Metab Care. 2013;16:719–25.

    CAS  PubMed  Google Scholar 

  120. Health and nutritional properties of probiotics in food including powder milk with live lactic acid bacteria. Report of a Joint FAO/WHO Expert Consultation. [ftp://ftp.fao.org/docrep/fao/009/a0512e/a0512e00.pdf]

  121. Besselink MG, van Santvoort HC, Buskens E, Boermeester MA, van Goor H, Timmerman HM, et al. Probiotic prophylaxis in predicted severe acute pancreatitis: a randomised, double-blind, placebo-controlled trial. Lancet. 2008;371:651–9.

    PubMed  Google Scholar 

  122. Barraud D, Bollaert PE, Gibot S. Impact of the administration of probiotics on mortality in critically ill adult patients: a meta-analysis of randomized controlled trials. Chest. 2013;143:646–55.

    PubMed  Google Scholar 

  123. Hempel S, Newberry SJ, Maher AR, Wang Z, Miles JN, Shanman R, et al. Probiotics for the prevention and treatment of antibiotic-associated diarrhea: a systematic review and meta-analysis. JAMA. 2012;307:1959–69.

    CAS  PubMed  Google Scholar 

  124. Alverdy JC, Laughlin RS, Wu L. Influence of the critically ill state on host-pathogen interactions within the intestine: gut-derived sepsis redefined. Crit Care Med. 2003;31:598–607.

    PubMed  Google Scholar 

  125. Khalid I, Doshi P, DiGiovine B. Early enteral nutrition and outcomes of critically ill patients treated with vasopressors and mechanical ventilation. Am J Crit Care. 2010;19:261–8.

    PubMed  Google Scholar 

  126. Heighes PT, Doig GS, Sweetman EA, Simpson F. An overview of evidence from systematic reviews evaluating early enteral nutrition in critically ill patients: more convincing evidence is needed. Anaesth Intensive Care. 2010;38:167–74.

    CAS  PubMed  Google Scholar 

  127. Kuppinger DD, Rittler P, Hartl WH, Ruttinger D. Use of gastric residual volume to guide enteral nutrition in critically ill patients: a brief systematic review of clinical studies. Nutrition. 2013;29:1075–9.

    PubMed  Google Scholar 

  128. Metheny NA, Schallom L, Oliver DA, Clouse RE. Gastric residual volume and aspiration in critically ill patients receiving gastric feedings. Am J Crit Care. 2008;17:512–9.

    PubMed  PubMed Central  Google Scholar 

  129. Reignier J, Mercier E, Le Gouge A, Boulain T, Desachy A, Bellec F, et al. Effect of not monitoring residual gastric volume on risk of ventilator-associated pneumonia in adults receiving mechanical ventilation and early enteral feeding: a randomized controlled trial. JAMA. 2013;309:249–56.

    CAS  PubMed  Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Jean-Charles Preiser.

Additional information

Competing interests

J-CP has received honoraria for speeches and consultancy fees from Fresenius (Bad Homburg, Germany), Nestlé (Vevey, Switzerland), Aguettant (Lyon, France), Baxter (Deerfield, IL, USA), B. Braun (Melsungen, Germany), and Nutricia (Amsterdam, The Netherlands). ARHvZ has received honoraria for speeches and consultancy fees from Abbott (North Chicago, IL, USA), Baxter, Danone (Paris, France), Fresenius, Nestlé, and Nutricia. MMB has received honoraria for lecturing from Baxter, B. Braun, Fresenius Kabi (Bad Homburg, Germany), and Nestlé. GSD has received academic research grants and consultant and speaker’s honoraria from Fresenius Kabi, Baxter Healthcare, and Nestlé Healthcare. RDG has no direct conflict of interest but has received lecture honoraria from Fresenius. DKH has received honoraria and research grants from Baxter, Fresenius Kabi, Abbott, and Nestlé Healthcare. MH has received lecture honoraria from Baxter and Fresenius and consultancy fees from Nestlé and Nutricia. Fresenius and Novo Nordisk (Bagsværd, Denmark) supported academic research partially with unrestricted grants. GI has received honoraria for speeches and consultancy fees from Abbott and Nutricia. AL has received honoraria for speeches and consultancy fees from Abbott, Baxter, B. Braun, Fresenius Kabi, Nestlé Health Science, and Nutricia and has received unrestricted educational grants from Fresenius Kabi. CP has received financial support in the form of research grants and unrestricted academic research grants, as well as non-restrictive research grants and consulting fees from Abbott, Baxter, B Braun, Cosmed (Rome, Italy), Fresenius Kabi, Nestlé Medical Nutrition, Novartis, Nutricia-Numico, Pfizer (New York, NY, USA), and Solvay (Brussels, Belgium), outside the submitted work. PS has received honoraria for lecturing and consulting fees from Baxter, B. Braun, and Fresenius Kabi AG and unrestricted research grants from B. Braun and Baxter, outside the submitted work. JW has received honoraria for speeches and consultancy fees from Baxter, Danone, Fresenius, Grifols (Barcelona, Spain), and Nestlé. PW has received research grant funding from Fresenius Kabi and GlaxoSmithKline (Brentford, UK) and honoraria for consulting and lecturing from Baxter, Abbott, Nutricia, Theravance (South San Francisco, CA, USA), and Nestlé Inc. GB, MPC, GVdB, and J-LV declare that they have no competing interests.

Rights and permissions

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Preiser, JC., van Zanten, A.R., Berger, M.M. et al. Metabolic and nutritional support of critically ill patients: consensus and controversies. Crit Care 19, 35 (2015). https://doi.org/10.1186/s13054-015-0737-8

Download citation

  • Published:

  • DOI: https://doi.org/10.1186/s13054-015-0737-8

Keywords

Navigation