Background

In recent years, there has been an increase in the development of innovative digital technology. One recent technology is Augmented Reality (AR). AR is the enhancement of reality with virtual content [1].

AR offers a wide range of possible uses [2]. Overviews regarding these cases have been published in various fields including construction [3], educational settings [4, 5], manufacturing and design [6, 7] and marketing [8]. In the field of healthcare, studies show potential for the use of AR in surgical applications and medical education [9,10,11,12,13,14,15,16].

Cases supporting the use of smart glasses exist if an application is needed to be timely, mobile, and hands-free and continuous attention on the task is necessary [2]. Nursing is an interesting field in which to apply AR as these characteristics are applicable to many tasks in the nursing field. Furthermore, demographical change and rising multimorbidity are challenges addressed by nurses [17]. Technical solutions and social innovation may improve healthcare; however, it is important to take the special circumstances of care workers into consideration [18, 19].

Cases supporting the use of AR in nursing were examined in the research project Augmented Reality in flexible service processes (ARinFLEX) that discusses the topic of AR in the fields of maintenance and nursing. Another project (Pflegebrille) follows the goal of making smart glasses usable for ambulatory healthcare.

Furthermore, the use of technology in nursing is increasing [20]. The aim of this scoping review is to give an overview of existing research on the use of AR in nursing to identify research gaps and provide information for future studies with the following research question:

  • To date, what research has been performed regarding the use of AR in nursing?

Methods

We performed a literature review using a scope study methodology because the use of AR in nursing has not been well studied. Scope studies are useful “especially where an area is complex or has not been reviewed comprehensively before” [21]. Scoping studies may be particularly relevant to disciplines with emerging evidence such as the use of AR in nursing [22]. In contrast to systematic reviews, scope studies work with a broad research question and forego a quality assessment [22,23,24]. Even though “no universal agreement exists on terminology, definition or methodological steps” [25], we followed the framework by Arksey & O‘Malley, who developed key phases for scoping studies [24]. In 2010, Levac et al. refined the framework and released a variety of methodical recommendations [22]. The following steps have been particularly useful for us: (1) using a broad research question with a clear definition of the purpose for our study, (2) selecting and abstracting data by an iterative, team-oriented approach, and (3) identifying themes and charting the data (ibid).

Data sources and searches

To answer our research question, we carried out a scoping review using a systematic search of the databases PubMed, CINAHL, PsycINFO, Web of Science Core Collection, Cochrane, ACM and AISEL. We chose databases from the fields of healthcare and technology as well as interdisciplinary databases to provide relevance for our research question.

We used the keywords ‘Nursing’, ‘Care’ OR ‘Caring’ in combination with the phrases ‘Augmented Reality’, ‘AR device’, ‘AR glass’, ‘Smart device’, ‘Smart glass’, ‘Smart watch’ OR ‘Google glass’. Truncations were used where appropriate. We used the terms ‘Smart device’, ‘Smart glass’, ‘Smart watch’ and ‘Google glass’ to include studies that describe AR applications but do not name them as one. The phrase “Google Glass” was chosen because it is one of the most prevalent, commercially available smart glasses. Furthermore, the term ‘Smart Devices’ is not limited to ‘Smart Glasses’ or ‘Smart Watches’. The final search strategy for PubMed was: (nurs* OR care OR caring) AND (“augmented reality” OR “smart glass” OR “smart watch*” OR “smart device” OR “google glass” OR “augmented reality glasses” OR “AR glass” OR “AR device”). The search was conducted on April 9th, 2018 and no Limits were used.

We also checked the bibliographies of each study and used existing networks and organizations to identify additional relevant studies [24]. These networks consisted of experts in the fields of Business Computer Science and Nursing. Due to resource limitations, we did not perform a hand-search of key journals. Hits in English or German were considered. Any date of publication was acceptable. The reference manager tool EndNote was used to compile relevant literature and to identify duplicates.

Study selection

This study used the PRISMA-ScR Checklist which consist a flow diagram. The flow diagram (Fig. 1) allows a transparent reporting of the literature findings based on conceptual and practical advances in the science of systematic reviews [26]. Author one (HW, nursing scientist; M.Sc. Public Health, B.Sc. Business Computer Science) and author two (JB, student of nursing science) reviewed the titles and abstracts using the inclusion criteria (Table 1). Only articles written in English and German were included because of the authors linguistic background. Articles chosen by both reviewers were automatically included. Articles chosen by one reviewer were audited by a third independent reviewer (MG, gerontologist in the field of nursing in technology; M.A. Health Care Management, B.A. Gerontology). The full text of the remaining publications was then reviewed.

Fig. 1
figure 1

Flow diagram depicting the study selection process

Table 1 Inclusion and exclusion criteria

Data extraction

The articles selected for a full-text review were charted by JB, HW, and MG [22, 24]. A mind map was drawn by HW to collect emerging topics. The mind map was audited by HW, JB, and MG to identify the most prominent and relevant categories and to support the challenging process of charting the data [22].

We then iteratively developed the charting form and included relevant, emerging topics in the form with the details of each article. Charting was performed in parallel by two reviewers for a sample of articles. Once the charting process was completed, we synthesized the results to develop summary findings pertinent to the variables in the charting form. We then considered these summary findings in the context of AR in nursing in order to develop recommendations for future research, which was consistent with the stated purpose of our review [22].

Results

No manuscripts published earlier than 2007 were detected. Five of the studies used qualitative methods, six used quantitative methods, and nine used mixed methods. Eleven studies were published by authors from Europe, nine studies were published by authors from America, two studies were published by authors from Asia and one study was published by authors from Australia. For three studies, the method is not clearly described. The studies that were identified are displayed in detail in Table 2. The results of the relevant topics are described in the following subsections.

Table 2 Details of included studies

Use cases

A majority of the studies did not describe the methods used for case identification, but three studies described them in detail. One publication used qualitative methods to identify relevant use cases [27], and one publication used quantitative methods [28]. One study mentions the combination of a literature review and interviews for use case identification [29]; however, the remaining twenty publications do not describe any methods used for use case identification.

The use case studies included here can be separated into the fields of nursing education [28, 30,31,32,33,34,35,36,37,38,39] and clinical settings [27, 29, 31, 40,41,42,43,44,45,46,47].

After use case identification, the process of requirements elicitation followed. Among the identified studies, the requirements elicitation was described with varying levels of detail. These varying levels are as follows: methods used for software development, the use of less standardized methods and no explicit methods used for requirements elicitation. In regards to software development, user-centred design [29, 44] and design science research methods [39, 47] are mentioned. In regards to less standardized methods, interviews and shadowing [27], the inclusion of an experienced nurse [42], iterative design and working ground [45], and analysing training sessions [32] were used.

Many of the studies without a method of requirements elicitation did not require one as no new applications were developed. The innovative aspect was the usage of an existing application in a new field [30, 31, 33, 40, 43]. Furthermore, eight studies did not describe their performed requirements elicitation [28, 34,35,36,37,38, 41, 46, 48, 49].

Evaluation

Sixteen of the publications reviewed here performed evaluations with different aims. Most of them were broadly defined, e.g., Schneidereith states that the aim of her evaluation was describing errors in medication and administration, whereas Grünerbl et al. listed a range of questions to evaluate. Some studies focus on evaluating one specific application, task or device [30, 31, 36, 37, 40, 43, 46, 47], while others aim to get evidence of the type of task or device suitable for applications [29, 32, 34, 35, 41, 42]. In addition, two publications focus on providing general insights by evaluating specific applications [27, 33].

Conversely, seven studies did not conduct any evaluations. Two of them describe only the design process of an application [39, 44], whereas the other focuses on the development of a guideline instead of an application [45]. Additionally, some articles focus on a broad overview regarding the use of AR [48, 49]. One study refers to another publication describing the evaluation [28], while one article describes its prototype without an evaluation [38].

A variety of evaluation methods are described in these publications. Both qualitative [29, 30, 47] and quantitative methods [28, 32, 35, 40, 43, 46] were used separately, but the majority of studies relied on a mixed methods approach [27, 31, 33, 34, 36, 37, 41, 42].

Each of the included publications describes the potential use of AR in nursing. Different advantages of using AR are mentioned including hands-free usage of a device [27], reduction in the anxiety of patients [40, 48], time savings [33, 46], individual visualization [28], easy information retrieval [29, 32, 33, 41, 42], observation from different perspectives [30, 37, 43], increased accuracy of documentation [47], and support of simulations [31, 34, 36, 39].

There are possible negative effects including the need for attention on the device [29]. This may be critical as it takes away focus from the patient [33]. Furthermore, communication with the patient may become challenging [47]. In addition, due to concentration on the system, other hints may be missed [31].

Devices used

Table 3 the devices used to identify technical challenges. Most of the studies used a Smart Glass, but some used a Smart Watch, a Head Mounted Display, a Helmet Mounted Display, a Smartphone or a Tablet. Some combined different devices, and one did not specify the device used. Technical challenges were identified during the use of each device.

Table 3 Devices used and technical challenges

Discussion

The number of empirical studies focusing on AR in nursing is relatively modest. Existing studies focus on evaluating prototypes with a variety of methodological approaches instead of long-term field trials. Thus, identifying an evidence-based practice for implementing AR in nursing remains a goal for future research. Nevertheless, our review has revealed some important insights.

The increasing number of publications on AR in nursing in the past few years (only five before 2015) shows the growth of the field.

Principal results

Identified use cases focus on specific fields of use, and use case identification and requirements elicitation are often not described in detail. In addition, we determined that the results of studies evaluating AR in nursing were predominantly positive; however, several technical challenges are described for most of these devices. Moreover, most applications could be identified as prototypes in an early stage of implementation. The settings in which the studies operated are noteworthy. While twelve studies can be grouped into a broad clinical setting with the variation in use cases, eleven studies are set in the field of nursing education.

We found that many studies focused on obtaining knowledge on the applications developed instead of the effects of technology inclusion on nursing. No studies questioned the clinical relevance of their results. Considering context while evaluating applications would be another goal for future research. This could be achieved through performing field trials for longer periods of time.

For future development trends we infer that further technological advances will lead to new use cases for AR in nursing. Which may be developed rapidly and need to be investigated in question of added value and impact, afterwards.

Comparison with prior work

Although the inclusion of values into technology development [50] and the design of technologies in nursing are needed and the “unreflective handling” of technology in nursing is occasionally criticized [51, 52], our review shows that values are only barely recognized for designing and evaluating AR in nursing. Methods such as Value sensitive design may integrate values to shape the design of technology [50]. According to the literature, these methods are not currently being used in the development of AR in nursing.

Implementing technology into a new field when there is not a demand for it is called the technology-push approach. This approach is criticized as it introduces technology without any real need and may not solve problems [53]. Therefore, we argue that careful evaluation is especially reasonable in these cases.

Furthermore, our results show that the evaluation methods used in the literature did not include the whole context of technical implementation. Some authors claim that the context of technological implementation is important [54], but most publications did not agree or take the effects of these evaluated technologies into account.

For these reasons, we conclude that future publications should focus on performing long-term evaluations to take framing conditions and the long-term consequences of AR use into account. It is to mention that AR is still in a process of various technical improvements which can only be predicted to some extent. We argue though, that long-term evaluations of newly implemented or soon to be implemented applications and devices will be beneficial to further works. As some of the emerging findings will be transferable onto technical improvements yet to come, it might also prove useful to explore a broader range of evaluations of AR applications in different contexts. On the one hand this could be additional studies from the field of healthcare with and without mentioning nursing. On the other hand it could be useful to take different fields without any direct link to the healthcare sector such as design and manufacturing [6] or maintenance and logistics [2] into account. This could allow to learn from possibly made mistakes in other areas as well as to get a more differentiated view on problems specific to the field of nursing.

Limitations

This review provides information for future research regarding AR in nursing; however, our findings are limited and must be interpreted with caution. First, we identified a relatively small number of studies that focused on AR in nursing. Second, we did not assess the quality of the studies included because this is a scoping review [24]; thus, studies with varying quality are included, and the results may have limited reliability. Third, negative results regarding AR in nursing may have been missed due to publication bias. Forth, studies did not focus on specific elements of nursing and did not focus on long-term implementations.

Conclusions

Our results show that the methods for identifying use cases and evaluating applications differ between studies. Furthermore, the devices used vary from smart glasses to tablets and smart watches. Many of the reviewed studies evaluated the use of Google glass. These results show that the current design and evaluation of AR for nursing are conducted without taking values into account. Furthermore, the evaluations did not consider framing conditions.

Our results are important and informative for the nurses and technicians who are associated with the development of new technologies. They can use this review to reflect on their own design of use case identification, requirements elicitation and evaluation.