1 Introduction

In this article, we investigate the nonlinear second-order impulsive q k -difference equation with three-point boundary conditions

{ D q k 2 x ( t ) = f ( t , x ( t ) ) , t J : = [ 0 , T ] , t t k , Δ x ( t k ) = I k ( x ( t k ) ) , k = 1 , 2 , , m , D q k x ( t k + ) D q k 1 x ( t k ) = I k ( x ( t k ) ) , k = 1 , 2 , , m , x ( 0 ) = 0 , x ( T ) = x ( η ) ,
(1.1)

where 0= t 0 < t 1 < t 2 << t k << t m < t m + 1 =T, f:J×RR is a continuous function, I k , I k C(R,R), Δx( t k )=x( t k + )x( t k ) for k=1,2,,m, x( t k + )= lim h 0 x( t k +h), η( t j , t j + 1 ) a constant for some j{0,1,2,,m} and 0< q k <1 for k=0,1,2,,m.

The theory of quantum calculus on finite intervals was developed recently by the authors in [1]. In [1] the concepts of q k -derivative and q k -integral of a function f: J k :=[ t k , t k + 1 ]R, are defined and their basic properties proved. As applications, existence and uniqueness results for initial value problems for first- and second-order impulsive q k -difference equations are proved.

The book by Kac and Cheung [2] covers many of the fundamental aspects of the quantum calculus. In recent years, the topic of q-calculus has attracted the attention of several researchers and a variety of new results can be found in the papers [315] and the references cited therein.

Impulsive differential equations, that is, differential equations involving an impulse effect, appear as a natural description of observed evolution phenomena of several real-world problems. For some monographs on impulsive differential equations we refer to [1618].

In the present paper we prove existence and uniqueness results for the impulsive boundary value problem (1.1) by using Banach’s contraction mapping principle and Krasnoselskii’s fixed-point theorem. The rest of this paper is organized as follows: In Section 2 we present the notions of q k -derivative and q k -integral on finite intervals and collect their properties. The main results are proved in Section 3, while examples illustrating the results are presented in Section 4.

2 Preliminaries

In this section we present the notions of q k -derivative and q k -integral on finite intervals. For a fixed kN{0} let J k :=[ t k , t k + 1 ]R be an interval and 0< q k <1 be a constant. We define q k -derivative of a function f: J k R at a point t J k as follows.

Definition 2.1 Assume f: J k R is a continuous function and let t J k . Then the expression

D q k f(t)= f ( t ) f ( q k t + ( 1 q k ) t k ) ( 1 q k ) ( t t k ) ,t t k , D q k f( t k )= lim t t k D q k f(t),
(2.1)

is called the q k -derivative of function f at t.

We say that f is q k -differentiable on J k provided D q k f(t) exists for all t J k . Note that if t k =0 and q k =q in (2.1), then D q k f= D q f, where D q is the well-known q-derivative of the function f(t) defined by

D q f(t)= f ( t ) f ( q t ) ( 1 q ) t .
(2.2)

In addition, we should define the higher q k -derivative of functions.

Definition 2.2 Let f: J k R is a continuous function, we call the second-order q k -derivative D q k 2 f provided D q k f is q k -differentiable on J k with D q k 2 f= D q k ( D q k f): J k R. Similarly, we define the higher-order q k -derivative D q k n : J k R.

The properties of the q k -derivative are summarized in the following theorem.

Theorem 2.3 Assume f,g: J k R are q k -differentiable on J k . Then:

  1. (i)

    The sum f+g: J k R is q k -differentiable on J k with

    D q k ( f ( t ) + g ( t ) ) = D q k f(t)+ D q k g(t).
  2. (ii)

    For any constant α, αf: J k R is q k -differentiable on J k with

    D q k (αf)(t)=α D q k f(t).
  3. (iii)

    The product fg: J k R is q k -differentiable on J k with

    D q k ( f g ) ( t ) = f ( t ) D q k g ( t ) + g ( q k t + ( 1 q k ) t k ) D q k f ( t ) = g ( t ) D q k f ( t ) + f ( q k t + ( 1 q k ) t k ) D q k g ( t ) .
  4. (iv)

    If g(t)g( q k t+(1 q k ) t k )0, then f g is q k -differentiable on J k with

    D q k ( f g ) (t)= g ( t ) D q k f ( t ) f ( t ) D q k g ( t ) g ( t ) g ( q k t + ( 1 q k ) t k ) .

Definition 2.4 Assume f: J k R is a continuous function. Then the q k -integral is defined by

t k t f(s) d q k s=(1 q k )(t t k ) n = 0 q k n f ( q k n t + ( 1 q k n ) t k ) ,
(2.3)

for t J k . Moreover, if a( t k ,t) then the definite q k -integral is defined by

a t f ( s ) d q k s = t k t f ( s ) d q k s t k a f ( s ) d q k s = ( 1 q k ) ( t t k ) n = 0 q k n f ( q k n t + ( 1 q k n ) t k ) ( 1 q k ) ( a t k ) n = 0 q k n f ( q k n a + ( 1 q k n ) t k ) .

Note that if t k =0 and q k =q, then (2.3) reduces to the q-integral of a function f(t), defined by 0 t f(s) d q s=(1q)t n = 0 q n f( q n t) for t[0,).

Theorem 2.5 For t J k , the following formulas hold:

  1. (i)

    D q k t k t f(s) d q k s=f(t);

  2. (ii)

    t k t D q k f(s) d q k s=f(t);

  3. (iii)

    a t D q k f(s) d q k s=f(t)f(a) for a( t k ,t).

3 Main results

Let J=[0,T], J 0 =[ t 0 , t 1 ], J k =( t k , t k + 1 ] for k=1,2,,m. Let PC(J,R) = {x:JR:x(t) is continuous everywhere except for some t k at which x( t k + ) and x( t k ) exist and x( t k )=x( t k ), k=1,2,,m}. PC(J,R) is a Banach space with the norm x P C =sup{|x(t)|;tJ}.

Lemma 3.1 The unique solution of problem (1.1) is given by

x ( t ) = t k = 1 j ( t k 1 t k f ( s , x ( s ) ) d q k 1 s + I k ( x ( t k ) ) ) t T η k = j + 1 m ( t k 1 t k t k 1 s f ( σ , x ( σ ) ) d q k 1 σ d q k 1 s + I k ( x ( t k ) ) ) t T η k = j + 1 m ( t k 1 t k f ( s , x ( s ) ) d q k 1 s + I k ( x ( t k ) ) ) ( T t k ) + t T η t j η t j s f ( σ , x ( σ ) ) d q j σ d q j s t T η t m T t m s f ( σ , x ( σ ) ) d q m σ d q m s + 0 < t k < t ( t k 1 t k t k 1 s f ( σ , x ( σ ) ) d q k 1 σ d q k 1 s + I k ( x ( t k ) ) ) + 0 < t k < t ( t k 1 t k f ( s , x ( s ) ) d q k 1 s + I k ( x ( t k ) ) ) ( t t k ) + t k t t k s f ( σ , x ( σ ) ) d q k σ d q k s ,
(3.1)

with 0 < 0 ()=0.

Proof For t J 0 , taking the q 0 -integral for the first equation of (1.1), we get

D q 0 x(t)= D q 0 x(0)+ 0 t f ( s , x ( s ) ) d q 0 s,
(3.2)

which yields

D q 0 x( t 1 )= D q 0 x(0)+ 0 t 1 f ( s , x ( s ) ) d q 0 s.
(3.3)

For t J 0 we obtain by q 0 -integrating (3.2),

x ( t ) = x ( 0 ) + D q 0 x ( 0 ) t + 0 t 0 s f ( σ , x ( σ ) ) d q 0 σ d q 0 s : = A + B t + 0 t 0 s f ( σ , x ( σ ) ) d q 0 σ d q 0 s ( x ( 0 ) = A , D q 0 x ( 0 ) = B ) .

In particular, for t= t 1

x( t 1 )=A+B t 1 + 0 t 1 0 s f ( σ , x ( σ ) ) d q 0 σ d q 0 s.
(3.4)

For t J 1 =( t 1 , t 2 ], q 1 -integrating (1.1), we have

D q 1 x(t)= D q 1 x ( t 1 + ) + t 1 t f ( s , x ( s ) ) d q 1 s.

Using the third condition of (1.1) with (3.3), it follows that

D q 1 x(t)=B+ 0 t 1 f ( s , x ( s ) ) d q 0 s+ I 1 ( x ( t 1 ) ) + t 1 t f ( s , x ( s ) ) d q 1 s.
(3.5)

Taking the q 1 -integral to (3.5) for t J 1 , we obtain

x ( t ) = x ( t 1 + ) + [ B + 0 t 1 f ( s , x ( s ) ) d q 0 s + I 1 ( x ( t 1 ) ) ] ( t t 1 ) + t 1 t t 1 s f ( σ , x ( σ ) ) d q 1 σ d q 1 s .
(3.6)

Applying the second equation of (1.1) with (3.4) and (3.6), we get

x ( t ) = A + B t 1 + 0 t 1 0 s f ( σ , x ( σ ) ) d q 0 σ d q 0 s + I 1 ( x ( t 1 ) ) + [ B + 0 t 1 f ( s , x ( s ) ) d q 0 s + I 1 ( x ( t 1 ) ) ] ( t t 1 ) + t 1 t t 1 s f ( σ , x ( σ ) ) d q 1 σ d q 1 s = A + B t + 0 t 1 0 s f ( σ , x ( σ ) ) d q 0 σ d q 0 s + I 1 ( x ( t 1 ) ) + [ 0 t 1 f ( s , x ( s ) ) d q 0 s + I 1 ( x ( t 1 ) ) ] ( t t 1 ) + t 1 t t 1 s f ( σ , x ( σ ) ) d q 1 σ d q 1 s .

Repeating the above process, for tJ, we get

x ( t ) = A + B t + 0 < t k < t ( t k 1 t k t k 1 s f ( σ , x ( σ ) ) d q k 1 σ d q k 1 s + I k ( x ( t k ) ) ) + 0 < t k < t ( t k 1 t k f ( s , x ( s ) ) d q k 1 s + I k ( x ( t k ) ) ) ( t t k ) + t k t t k s f ( σ , x ( σ ) ) d q k σ d q k s .
(3.7)

The first boundary condition of (1.1) implies A=0. The second boundary condition of (1.1) yields

k = 1 m ( t k 1 t k t k 1 s f ( σ , x ( σ ) ) d q k 1 σ d q k 1 s + I k ( x ( t k ) ) ) + k = 1 m ( t k 1 t k f ( s , x ( s ) ) d q k 1 s + I k ( x ( t k ) ) ) ( T t k ) + t m T t m s f ( σ , x ( σ ) ) d q m σ d q m s + B T = k = 1 j ( t k 1 t k t k 1 s f ( σ , x ( σ ) ) d q k 1 σ d q k 1 s + I k ( x ( t k ) ) ) + k = 1 j ( t k 1 t k f ( s , x ( s ) ) d q k 1 s + I k ( x ( t k ) ) ) ( η t k ) + t j η t j s f ( σ , x ( σ ) ) d q j σ d q j s + B η ,

which implies

B = k = 1 j ( t k 1 t k f ( s , x ( s ) ) d q k 1 s + I k ( x ( t k ) ) ) 1 T η k = j + 1 m ( t k 1 t k t k 1 s f ( σ , x ( σ ) ) d q k 1 σ d q k 1 s + I k ( x ( t k ) ) ) 1 T η k = j + 1 m ( t k 1 t k f ( s , x ( s ) ) d q k 1 s + I k ( x ( t k ) ) ) ( T t k ) + 1 T η t j η t j s f ( σ , x ( σ ) ) d q j σ d q j s 1 T η t m T t m s f ( σ , x ( σ ) ) d q m σ d q m s .

Substituting the constant B into (3.7), we obtain (3.1) as required. □

In view of Lemma 3.1, we define an operator A:PC(J,R)PC(J,R) by

( A x ) ( t ) = t k = 1 j ( t k 1 t k f ( s , x ( s ) ) d q k 1 s + I k ( x ( t k ) ) ) t T η k = j + 1 m ( t k 1 t k t k 1 s f ( σ , x ( σ ) ) d q k 1 σ d q k 1 s + I k ( x ( t k ) ) ) t T η k = j + 1 m ( t k 1 t k f ( s , x ( s ) ) d q k 1 s + I k ( x ( t k ) ) ) ( T t k ) + t T η t j η t j s f ( σ , x ( σ ) ) d q j σ d q j s t T η t m T t m s f ( σ , x ( σ ) ) d q m σ d q m s + 0 < t k < t ( t k 1 t k t k 1 s f ( σ , x ( σ ) ) d q k 1 σ d q k 1 s + I k ( x ( t k ) ) ) + 0 < t k < t ( t k 1 t k f ( s , x ( s ) ) d q k 1 s + I k ( x ( t k ) ) ) ( t t k ) + t k t t k s f ( σ , x ( σ ) ) d q k σ d q k s .
(3.8)

It should be noticed that problem (1.1) has solutions if and only if the operator A has fixed points.

For convenience, we set

Φ k = [ ( t k t k 1 ) ( T t k ) + ( t k t k 1 ) 2 1 + q k 1 ] M 1 + M 2 +(T t k ) M 3 ,
(3.9)
Ψ k = [ ( t k t k 1 ) ( T t k ) + ( t k t k 1 ) 2 1 + q k 1 ] L 1 + L 2 +(T t k ) L 3 ,
(3.10)

for k=1,,m.

Theorem 3.2 Assume that:

(H1) The function f:[0,T]×RR is a continuous and there exists a constant L 1 >0 such that |f(t,x)f(t,y)| L 1 |xy|, for each tJ and x,yR.

(H2) The functions I k , I k :RR are continuous and there exist constants L 2 , L 3 >0 such that | I k (x) I k (y)| L 2 |xy| and | I k (x) I k (y)| L 3 |xy| for each x,yR, k=1,2,,m.

If

Λ : = T k = 1 j [ ( t k t k 1 ) L 1 + L 3 ] + T T η k = j + 1 m Ψ k + T L 1 T η ( ( η t j ) 2 1 + q j + ( T t m ) 2 1 + q m ) + k = 1 m Ψ k + ( T t m ) 2 1 + q m L 1 δ < 1 ,
(3.11)

then the impulsive q k -difference boundary value problem (1.1) has a unique solution on J.

Proof First, we transform the problem (1.1) into a fixed-point problem, x=Ax, where the operator A is defined by (3.8). By using Banach’s contraction principle, we shall show that A has a fixed point which is the unique solution of problem (1.1).

Set sup t J |f(t,0)|= M 1 <, sup{| I k (0)|:k=1,2,,m}= M 2 <, sup{| I k (0)|:k=1,2,,m}= M 3 < and a constant

ρ = T k = 1 j [ ( t k t k 1 ) M 1 + M 3 ] + T T η k = j + 1 m Φ k + T M 1 T η ( ( η t j ) 2 1 + q j + ( T t m ) 2 1 + q m ) + k = 1 m Φ k + ( T t m ) 2 1 + q m M 1 .
(3.12)

Choosing r ρ 1 ε , where δε<1, we show that A B r B r , where B r ={xPC(J,R):xr}. For x B r , we have

A x sup t J { t k = 1 j ( t k 1 t k | f ( s , x ( s ) ) | d q k 1 s + | I k ( x ( t k ) ) | ) + t T η k = j + 1 m ( t k 1 t k t k 1 s | f ( σ , x ( σ ) ) | d q k 1 σ d q k 1 s + | I k ( x ( t k ) ) | ) + t T η k = j + 1 m ( t k 1 t k | f ( s , x ( s ) ) | d q k 1 s + | I k ( x ( t k ) ) | ) ( T t k ) + t T η t j η t j s | f ( σ , x ( σ ) ) | d q j σ d q j s + t T η t m T t m s | f ( σ , x ( σ ) ) | d q m σ d q m s + 0 < t k < t ( t k 1 t k t k 1 s | f ( σ , x ( σ ) ) | d q k 1 σ d q k 1 s + | I k ( x ( t k ) ) | ) + 0 < t k < t ( t k 1 t k | f ( s , x ( s ) ) | d q k 1 s + | I k ( x ( t k ) ) | ) ( t t k ) + t k t t k s | f ( σ , x ( σ ) ) | d q k σ d q k s } T k = 1 j ( t k 1 t k ( | f ( s , x ( s ) ) f ( s , 0 ) | + | f ( s , 0 ) | ) d q k 1 s + | I k ( x ( t k ) ) I k ( 0 ) | + | I k ( 0 ) | ) + T T η k = j + 1 m ( t k 1 t k t k 1 s ( | f ( σ , x ( σ ) ) f ( σ , 0 ) | + | f ( σ , 0 ) | ) d q k 1 σ d q k 1 s + | I k ( x ( t k ) ) I k ( 0 ) | + | I k ( 0 ) | ) + T T η k = j + 1 m ( t k 1 t k ( | f ( s , x ( s ) ) f ( s , 0 ) | + | f ( s , 0 ) | ) d q k 1 s + | I k ( x ( t k ) ) I k ( 0 ) | + | I k ( 0 ) | ) ( T t k ) + T T η t j η t j s ( | f ( σ , x ( σ ) ) f ( σ , 0 ) | + | f ( σ , 0 ) | ) d q j σ d q j s + T T η t m T t m s ( | f ( σ , x ( σ ) ) f ( σ , 0 ) | + | f ( σ , 0 ) | ) d q m σ d q m s + k = 1 m ( t k 1 t k t k 1 s ( | f ( σ , x ( σ ) ) f ( σ , 0 ) | + | f ( σ , 0 ) | ) d q k 1 σ d q k 1 s + | I k ( x ( t k ) ) I k ( 0 ) | + | I k ( 0 ) | ) + k = 1 m ( t k 1 t k ( | f ( s , x ( s ) ) f ( s , 0 ) | + | f ( s , 0 ) | ) d q k 1 s + | I k ( x ( t k ) ) I k ( 0 ) | + | I k ( 0 ) | ) ( T t k ) + t m T t m s ( | f ( σ , x ( σ ) ) f ( σ , 0 ) | + | f ( σ , 0 ) | ) d q m σ d q m s T k = 1 j ( ( t k t k 1 ) ( L 1 r + M 1 ) + L 3 r + M 3 ) + T T η k = j + 1 m ( ( t k t k 1 ) 2 1 + q k 1 ( L 1 r + M 1 ) + L 2 r + M 2 ) + T T η k = j + 1 m ( ( t k t k 1 ) ( L 1 r + M 1 ) + L 3 r + M 3 ) ( T t k ) + T T η ( ( η t j ) 2 1 + q j + ( T t m ) 2 1 + q m ) ( L 1 r + M 1 ) + k = 1 m ( ( t k t k 1 ) 2 1 + q k 1 ( L 1 r + M 1 ) + L 2 r + M 2 ) + k = 1 m ( ( t k t k 1 ) ( L 1 r + M 1 ) + L 3 r + M 3 ) ( T t k ) + ( T t m ) 2 1 + q m ( L 1 r + M 1 ) = r Λ + ρ ( δ + 1 ε ) r r .

It follows that A B r B r .

For x,yPC(J,R) and for each tJ, we have

A x A y sup t J { t k = 1 j ( t k 1 t k | f ( s , x ( s ) ) f ( s , y ( s ) ) | d q k 1 s + | I k ( x ( t k ) ) I k ( y ( t k ) ) | ) + t T η k = j + 1 m ( t k 1 t k t k 1 s | f ( σ , x ( σ ) ) f ( σ , y ( σ ) ) | d q k 1 σ d q k 1 s + | I k ( x ( t k ) ) I k ( y ( t k ) ) | ) + t T η k = j + 1 m ( t k 1 t k | f ( s , x ( s ) ) f ( s , y ( s ) ) | d q k 1 s + | I k ( x ( t k ) ) I k ( y ( t k ) ) | ) ( T t k ) + t T η t j η t j s | f ( σ , x ( σ ) ) f ( σ , y ( σ ) ) | d q j σ d q j s + t T η t m T t m s | f ( σ , x ( σ ) ) f ( σ , y ( σ ) ) | d q m σ d q m s + 0 < t k < t ( t k 1 t k t k 1 s | f ( σ , x ( σ ) ) f ( σ , y ( σ ) ) | d q k 1 σ d q k 1 s + | I k ( x ( t k ) ) I k ( y ( t k ) ) | ) + 0 < t k < t ( t k 1 t k | f ( s , x ( s ) ) f ( s , y ( s ) ) | d q k 1 s + | I k ( x ( t k ) ) I k ( y ( t k ) ) | ) ( t t k ) + t k t t k s | f ( σ , x ( σ ) ) f ( σ , y ( σ ) ) | d q k σ d q k s } T x y k = 1 j [ ( t k t k 1 ) L 1 + L 3 ] + T x y T η k = j + 1 m ( ( t k t k 1 ) 2 1 + q k 1 L 1 + L 2 ) + T x y T η k = j + 1 m ( ( t k t k 1 ) L 1 + L 3 ) ( T t k ) + T x y T η ( ( η t j ) 2 1 + q j + ( T t m ) 2 1 + q m ) L 1 + k = 1 m ( ( t k t k 1 ) 2 1 + q k 1 L 1 + L 2 ) x y + k = 1 m ( ( t k t k 1 ) L 1 + L 3 ) ( T t k ) x y + ( T t m ) 2 1 + q m L 1 x y = Λ x y .

As Λ<1, A is a contraction. Hence, by Banach’s contraction mapping principle, we find that A has a fixed point which is the unique solution of problem (1.1). □

Our next result is based on Krasnoselskii’s fixed-point theorem.

Lemma 3.3 (Krasnoselskii’s fixed-point theorem) [19]

Let M be a closed, bounded, convex and nonempty subset of a Banach space X. Let A, B be the operators such that (a) Ax+ByM whenever x,yM; (b) A is compact and continuous; (c) B is a contraction mapping. Then there exists zM such that z=Az+Bz.

Further, we use the notation

θ 1 = T k = 1 j ( t k t k 1 ) + T T η k = j + 1 m ( t k t k 1 ) 2 1 + q k 1 + T T η k = j + 1 m ( T t k ) ( t k t k 1 ) + T ( η t j ) 2 ( T η ) ( 1 + q j ) + T ( T t m ) 2 ( T η ) ( 1 + q m ) + k = 1 m + 1 ( t k t k 1 ) 2 1 + q k 1 + k = 1 m ( T t k ) ( t k t k 1 ) ,
(3.13)

and

θ 2 =jT N 2 + ( m j ) T N 1 T η +m N 1 + N 2 k = 1 m (T t k )+ T N 2 T η j + 1 m (T t k ).
(3.14)

Theorem 3.4 Let f:J×RR be a continuous function. Assume that (H2) holds and in addition suppose that:

(H3) |f(t,x)|μ(t), (t,x)J×R, and μC(J, R + ).

(H4) There exist constants N 1 , N 2 >0 such that | I k (x)| N 1 and | I k (x)| N 2 for all xR, for k=1,2,,m.

Then the impulsive q k -difference boundary value problem (1.1) has at least one solution on J provided that

jT L 3 +m L 2 + T ( m j ) L 2 T η + L 3 k = 1 m (T t k )<1.
(3.15)

Proof Firstly, we define sup t J |μ(t)|=μ. Choosing a suitable ball B R ={xPC(J,R):xR}, where

Rμ θ 1 + θ 2 ,
(3.16)

and θ 1 , θ 2 are defined by (3.13), (3.14), respectively, we define the operators S 1 and S 2 on B R by

( S 1 x ) ( t ) = t k = 1 j t k 1 t k f ( s , x ( s ) ) d q k 1 s t T η k = j + 1 m t k 1 t k t k 1 s f ( σ , x ( σ ) ) d q k 1 σ d q k 1 s t T η k = j + 1 m ( T t k ) t k 1 t k f ( s , x ( s ) ) d q k 1 s + t T η t j η t j s f ( σ , x ( σ ) ) d q j σ d q j s t T η t m T t m s f ( σ , x ( σ ) ) d q m σ d q m s + 0 < t k < t t k 1 t k t k 1 s f ( σ , x ( σ ) ) d q k 1 σ d q k 1 s + 0 < t k < t ( t t k ) t k 1 t k f ( s , x ( s ) ) d q k 1 s + t k t t k s f ( σ , x ( σ ) ) d q k σ d q k s , t [ 0 , T ] ,

and

( S 2 x ) ( t ) = t k = 1 j I k ( x ( t k ) ) t T η k = j + 1 m I k ( x ( t k ) ) t T η k = j + 1 m ( T t k ) I k ( x ( t k ) ) + 0 < t k < t I k ( x ( t k ) ) + 0 < t k < t ( t t k ) I k ( x ( t k ) ) , t [ 0 , T ] .

For any x,y B R , we have

S 1 x + S 2 y μ [ T k = 1 j ( t k t k 1 ) + T T η k = j + 1 m ( t k t k 1 ) 2 1 + q k 1 + T T η k = j + 1 m ( T t k ) ( t k t k 1 ) + T ( η t j ) 2 ( T η ) ( 1 + q j ) + T ( T t m ) 2 ( T η ) ( 1 + q m ) + k = 1 m + 1 ( t k t k 1 ) 2 1 + q k 1 + k = 1 m ( T t k ) ( t k t k 1 ) ] + j T N 2 + ( m j ) T N 1 T η + m N 1 + N 2 k = 1 m ( T t k ) + T N 2 T η j + 1 m ( T t k ) = μ θ 1 + θ 2 R .

Hence, S 1 x+ S 2 y B R .

To show that S 2 is a contraction, for x,yPC(J,R), we have

S 2 x S 2 y T k = 1 j | I k ( x ( t k ) ) I k ( y ( t k ) ) | + T T η k = j + 1 m | I k ( x ( t k ) ) I k ( y ( t k ) ) | + k = 1 m | I ( x ( t k ) ) I k ( y ( t k ) ) | + k = 1 m ( t t k ) | I k ( x ( t k ) ) I k ( y ( t k ) ) | [ j T L 3 + m L 2 + T ( m j ) L 2 T η + L 3 k = 1 m ( T t k ) ] x y .

From (3.15), it follows that S 2 is a contraction.

Next, the continuity of f implies that the operator S 1 is continuous. Further, S 1 is uniformly bounded on B R by

S 1 xμ θ 1 .

Now we shall prove the compactness of S 1 . Setting sup ( t , x ) J × B R |f(t,x)|= f <, then for each τ 1 , τ 2 ( t l , t l + 1 ) for some l{0,1,,m} with τ 2 > τ 1 , we have

| ( S 1 x ) ( τ 2 ) ( S 1 x ) ( τ 1 ) | | τ 2 τ 1 | k = 1 j t k 1 t k | f ( s , x ( s ) ) | d q k 1 s + | τ 2 τ 1 | T η k = j + 1 m t k 1 t k t k 1 s | f ( σ , x ( σ ) ) | d q k 1 σ d q k 1 s + | τ 2 τ 1 | T η k = j + 1 m ( T t k ) t k 1 t k | f ( s , x ( s ) ) | d q k 1 s + | τ 2 τ 1 | T η t j η t j s | f ( σ , x ( σ ) ) | d q j σ d q j s + | τ 2 τ 1 | T η t m T t m s | f ( σ , x ( σ ) ) | d q m σ d q m s + | τ 2 τ 1 | k = 1 l t k 1 t k | f ( s , x ( s ) ) | d q k 1 s + | t l τ 2 t l s | f ( σ , x ( σ ) ) | d q l σ d q l s t l τ 1 t l s | f ( σ , x ( σ ) ) | d q l σ d q l s | | τ 2 τ 1 | f [ k = 1 j ( t k t k 1 ) + 1 T η k = j + 1 m ( t k t k 1 ) 2 1 + q k 1 + ( η t j ) 2 ( T η ) ( 1 + q j ) + ( T t m ) 2 ( T η ) ( 1 + q m ) + 1 T η k = j + 1 m ( T t k ) ( t k t k 1 ) + k = 1 l ( t k t k 1 ) + ( τ 1 + τ 2 + 2 t l ) 1 + q l ] .

As τ 1 τ 2 , the right hand side above (which is independent of x) tends to zero. Therefore, the operator S 1 is equicontinuous. Since S 1 maps bounded subsets into relatively compact subsets, it follows that S 1 is relative compact on B R . Hence, by the Arzelá-Ascoli theorem, S 1 is compact on B R . Thus all the assumptions of Lemma 3.3 are satisfied. Hence, by the conclusion of Lemma 3.3, the impulsive q k -difference boundary value problem (1.1) has at least one solution on J. □

4 Examples

Example 4.1 Consider the following nonlinear second-order impulsive q k -difference equation with three-point boundary condition:

{ D 4 5 + k 2 x ( t ) = e cos 2 t | x ( t ) | ( 6 + t ) 2 ( 1 + | x ( t ) | ) , t J = [ 0 , 1 ] , t t k = k 10 , Δ x ( t k ) = | x ( t k ) | 8 ( 7 + | x ( t k ) | ) , k = 1 , 2 , , 9 , D 4 5 + k x ( t k + ) D 4 4 + k x ( t k ) = 1 6 tan 1 ( 1 8 x ( t k ) ) , k = 1 , 2 , , 9 , x ( 0 ) = 0 , x ( 1 ) = x ( 1 4 ) .
(4.1)

Here q k =4/(5+k) for k=0,1,2,,9, m=9, T=1, η=1/4, j=2, f(t,x)=( e cos 2 t |x|)/( ( 6 + t ) 2 (1+|x|)), I k (x)=|x|/(8(7+|x|)) and I k (x)=(1/6) tan 1 (x/8). Since

| f ( t , x ) f ( t , y ) | ( 1 / 36 ) | x y | , | I k ( x ) I k ( y ) | ( 1 / 56 ) | x y | and | I k ( x ) I k ( y ) | ( 1 / 48 ) | x y | ,

then (H1) and (H2) are satisfied with L 1 =(1/36), L 2 =(1/56), L 3 =(1/48). We can show that

Λ0.5730986482<1.

Hence, by Theorem 3.2, the three-point impulsive q k -difference boundary value problem (4.1) has a unique solution on [0,1].

Example 4.2 Consider the following nonlinear second-order impulsive q k -difference equation with three-point boundary condition:

{ D 3 6 + k 2 x ( t ) = sin 2 ( π t ) ( t + 4 ) 2 | x ( t ) | ( 1 + | x ( t ) | ) , t J = [ 0 , 1 ] , t t k = k 10 , Δ x ( t k ) = | x ( t k ) | 9 ( 7 + | x ( t k ) | ) , k = 1 , 2 , , 9 , D 3 6 + k x ( t k + ) D 3 5 + k x ( t k ) = | x ( t k ) | 4 ( 5 + | x ( t k ) | ) , k = 1 , 2 , , 9 , x ( 0 ) = 0 , x ( 1 ) = x ( 9 20 ) .
(4.2)

Set q k =3/(6+k) for k=0,1,2,,9, m=9, T=1, η=9/20, j=4, f(t,x)=( sin 2 (πt)|x|)/( ( t + 4 ) 2 (1+|x|)), I k (x)=|x|/(9(7+|x|)) and I k (x)=|x|/(4(5+|x|)). Since

| I k (x) I k (y)|(1/63)|xy|and| I k (x) I k (y)|(1/20)|xy|,

then (H2) is satisfied with L 2 =(1/63), L 3 =(1/20). It is easy to verify that |f(t,x)|μ(t)1, I k (x) N 1 =1/9 and I k (x) N 2 =1/4 for all t[0,1], xR, k=1,,m. Thus (H3) and (H4) are satisfied. We can show that

jT L 3 +m L 2 + T ( m j ) L 2 T η + L 3 k = 1 m (T t k )= 19741 27720 <1.

Hence, by Theorem 3.3, the three-point impulsive q k -difference boundary value problem (4.2) has at least one solution on [0,1].

Authors’ information

Sotiris K Ntouyas is a member of Nonlinear Analysis and Applied Mathematics (NAAM)-Research Group at King Abdulaziz University, Jeddah, Saudi Arabia.