1 Introduction

For any integer n0, the well-known Pell numbers P n are defined by the second-order linear recurrence sequence P n + 2 =2 P n + 1 + P n , where P 0 =0 and P 1 =1. The Pell-Lucas numbers Q n are defined by Q n + 2 =2 Q n + 1 + Q n , where Q 0 =2 and Q 1 =2. Let α=1+ 2 and β=1 2 . Then from the characteristic equations x 2 2x1=0, we also have the computational formulae

P n = 1 2 2 ( α n β n ) and Q n = α n + β n .

For example, the first few values of P n and Q n are P 0 =1, P 1 =2, P 2 =5, P 3 =12, P 4 =29, , Q 0 =2, Q 1 =2, Q 2 =6, Q 3 =14, Q 4 =34, Q 5 =82, .

Various properties of the Pell numbers and related sequences have been studied by many authors, see [16]. For example, Santos and Sills [3] studied the arithmetic properties of the q-Pell sequence and obtained two identities. Kilic [4] studied the generalized order-k Fibonacci-Pell sequences and gave several congruences. Recently, the authors [7] and [8] studied the infinite sums derived from the Pell numbers and proved the following identities:

( k = n 1 P k ) 1 = { P n 1 + P n 2 if  n  is even and  n 2 ; P n 1 + P n 2 1 if  n  is odd and  n 1 , ( k = n 1 P k 2 ) 1 = { 2 P n 1 P n 1 if  n  is an even number; 2 P n 1 P n if  n  is an odd number,

where x is the floor function, that is, it denotes the greatest integer less than or equal to x.

Some related works can also be found in [9] and [10]. Especially in [10], the authors studied a problem, which is little different from (1). That is, they studied the computational problem of the nearest integer function of ( k = n 1 u k ) 1 and proved an interesting conclusion:

( k = n 1 u k ) 1 = u n u n 1 for all n> n 0 ,

where denotes the nearest integer, namely x=x+ 1 2 , { u n } n 0 is an integer sequence satisfying the recurrence formula

u n =a u n 1 + u n 2 ++ u n s (s2)

with the initial conditions u 0 0, u k N, 1ks1.

Using the method in [10] seems to be very difficult to deal with ( k = n 1 u k s ) 1 for all integers s2.

The main purpose of this paper related to the computing problem of

P(s,n) ( k = n 1 P k s ) 1
(1)

for all integers s3. At the end of [7], the authors asked whether there exists a corresponding formula for P(3,n).

In fact, this problem is difficult because it is quite unclear a priori what the shape of the result might be. In order to resolve the question, we carefully applied the method of undetermined coefficients and constructed a number of delicate inequalities in order to complete a proof. The result is as follows.

Theorem For any positive integer n1, we have the identity

P(3,n)= { P n 2 P n 1 + 3 P n P n 1 2 + 61 82 P n 91 82 P n 1 if n is even and n 2 ; P n 2 P n 1 + 3 P n P n 1 2 + 61 82 P n + 91 82 P n 1 if n is odd and n 1 .

It remains a difficult problem even to conjecture what might be an analogous expression to the formula for P(3,n) in the theorem for P(k,n) when k4.

2 Proof of the theorem

In this section, we shall prove our theorem directly. First we consider the case that n=2m is an even number. It is clear that in this case our theorem is equivalent to

P 2 m 2 P 2 m 1 + 3 P 2 m P 2 m 1 2 1 82 ( 61 P 2 m + 91 P 2 m 1 ) < ( k = 2 m 1 P k 3 ) 1 < P 2 m 2 P 2 m 1 + 3 P 2 m P 2 m 1 2 1 82 ( 61 P 2 m + 91 P 2 m 1 ) + 1 82

or

1 P 2 m 2 P 2 m 1 + 3 P 2 m P 2 m 1 2 1 82 ( 61 P 2 m + 91 P 2 m 1 ) + 1 82 < k = 2 m 1 P k 3 < 1 P 2 m 2 P 2 m 1 + 3 P 2 m P 2 m 1 2 1 82 ( 61 P 2 m + 91 P 2 m 1 ) .
(2)

Now we prove that for all positive integers k, we have the inequality

1 P 2 k 3 + 1 P 2 k + 1 3 < 1 P 2 k 2 P 2 k 1 + 3 P 2 k P 2 k 1 2 1 82 ( 61 P 2 k + 91 P 2 k 1 ) 1 P 2 k + 2 2 P 2 k + 1 + 3 P 2 k + 2 P 2 k + 1 2 1 82 ( 61 P 2 k + 2 + 91 P 2 k + 1 ) .
(3)

It is clear that (3) holds for k=1,2,3 and 4. So, without loss of generality, we can assume that k5. Note that P 2 k 3 = 1 8 ( P 6 k 3 P 2 k ), P 2 k + 1 3 = 1 8 ( P 6 k + 3 +3 P 2 k + 1 ), P 2 k 3 + P 2 k + 1 3 = 1 8 ( P 6 k + 3 + P 6 k +3 P 2 k + 1 3 P 2 k ), P 2 k 3 P 2 k + 1 3 = 1 512 ( Q 12 k + 3 6 Q 8 k + 2 +9 Q 4 k + 1 +4) and

P 2 k 2 P 2 k 1 +3 P 2 k P 2 k 1 2 = 1 8 ( P 6 k 1 +3 P 6 k 2 +5 P 2 k 1 +5 P 2 k ),

so inequality (3) is equivalent to

8 ( P 6 k + 3 + P 6 k + 3 P 2 k + 1 3 P 2 k ) Q 12 k + 3 6 Q 8 k + 2 + 9 Q 4 k + 1 + 4 < 378 P 6 k 1 + 154 P 6 k 2 78 41 P 2 k + 1 318 41 P 2 k ( P 6 k 1 + 3 P 6 k 2 39 41 P 2 k 159 41 P 2 k 1 ) ( P 6 k + 5 + 3 P 6 k + 4 39 41 P 2 k + 2 159 41 P 2 k + 1 ) .
(4)

From the definition and properties of P n and Q n , we can easily deduce the identities

P n P k = 1 8 Q n + k ( 1 ) k 8 Q n k , n k , Q n Q k = Q n + k + ( 1 ) k Q n k , n k , P n Q k = P n + k + ( 1 ) k P n k , n k .

So, applying these formulae, we have

( P 6 k 1 +3 P 6 k 2 )( P 6 k + 5 +3 P 6 k + 4 )= 1 8 (8 Q 12 k + 3 +10 Q 12 k + 2 2,772)

and

( P 6 k 1 + 3 P 6 k 2 39 41 P 2 k 159 41 P 2 k 1 ) ( P 6 k + 5 + 3 P 6 k + 4 39 41 P 2 k + 2 159 41 P 2 k + 1 ) = 1 8 ( 8 Q 12 k + 3 + 10 Q 12 k + 2 7 , 344 41 Q 8 k + 1 2 , 124 41 Q 8 k 30 , 226 , 500 1 , 681 Q 4 k 3 ) 1 8 ( 12 , 507 , 840 1 , 681 Q 4 k 4 + 4 , 442 , 760 1 , 681 ) .

From these two identities and (4), we deduce that inequality (3) is equivalent to

P 6 k + 3 + P 6 k + 3 P 2 k + 1 3 P 2 k Q 12 k + 3 6 Q 8 k + 2 + 9 Q 4 k + 1 + 4 < 378 P 6 k 1 + 154 P 6 k 2 78 41 P 2 k + 1 318 41 P 2 k 8 Q 12 k + 3 + 10 Q 12 k + 2 7 , 344 41 Q 8 k + 1 2 , 124 41 Q 8 k 30 , 226 , 500 1 , 681 Q 4 k 3 12 , 507 , 840 1 , 681 Q 4 k 4 4 , 442 , 760 1 , 681 .
(5)

For convenience, we let

A = ( P 6 k + 3 + P 6 k + 3 P 2 k + 1 3 P 2 k ) × ( 8 Q 12 k + 3 + 10 Q 12 k + 2 7 , 344 41 Q 8 k + 1 2 , 124 41 Q 8 k 30 , 226 , 500 1 , 681 Q 4 k 3 12 , 507 , 840 1 , 681 Q 4 k 4 4 , 442 , 760 1 , 681 )

and

B=( Q 12 k + 3 6 Q 8 k + 2 +9 Q 4 k + 1 +4) ( 378 P 6 k 1 + 154 P 6 k 2 78 41 P 2 k + 1 318 41 P 2 k ) .

Then by calculation it follows that

A = 8 ( P 18 k + 6 + P 6 k ) + 10 ( P 18 k + 5 + P 6 k 1 ) 7 , 344 41 ( P 14 k + 4 + P 2 k 2 ) A = 2 , 124 41 ( P 14 k + 3 + P 2 k 3 ) 30 , 226 , 500 1 , 681 ( P 10 k P 2 k + 6 ) 12 , 507 , 840 1 , 681 ( P 10 k 1 A = + P 2 k + 7 ) 4 , 442 , 760 1 , 681 P 6 k + 3 + 8 ( P 18 k + 3 P 6 k + 3 ) + 10 ( P 18 k + 2 P 6 k + 2 ) A = 7 , 344 41 ( P 14 k + 1 P 2 k + 1 ) 2 , 124 41 ( P 14 k P 2 k ) 30 , 226 , 500 1 , 681 ( P 10 k 3 P 2 k + 3 ) A = 12 , 507 , 840 1 , 681 ( P 10 k 4 + P 2 k + 4 ) 4 , 442 , 760 1 , 681 P 6 k + 3 × 8 ( P 14 k + 4 + P 10 k + 2 ) A = + 3 × 10 ( P 14 k + 3 + P 10 k + 1 ) 7 , 344 × 3 41 ( P 10 k + 2 + P 6 k ) 2 , 124 × 3 41 ( P 10 k + 1 A = + P 6 k 1 ) 30 , 226 , 500 × 3 1 , 681 ( P 6 k 2 + P 2 k 4 ) 12 , 507 , 840 × 3 1 , 681 ( P 6 k 3 + P 2 k 5 ) A = 4 , 442 , 760 1 , 681 P 2 k + 1 3 × 8 ( P 14 k + 3 P 10 k + 3 ) 3 × 10 ( P 14 k + 2 P 10 k + 2 ) A = + 7 , 344 × 3 41 ( P 10 k + 1 P 6 k + 1 ) + 2 , 124 × 3 41 ( P 10 k P 6 k ) + 30 , 226 , 500 × 3 1 , 681 ( P 6 k 3 A = P 2 k 3 ) + 12 , 507 , 840 × 3 1 , 681 ( P 6 k 4 P 2 k 4 ) + 4 , 442 , 760 1 , 681 P 2 k A = 154 P 18 k + 3 + 70 P 18 k + 2 95 , 514 41 P 14 k + 1 38 , 910 41 P 14 k 486 , 612 , 540 1 , 681 P 10 k 3 A = 201 , 554 , 538 1 , 681 P 10 k 4 977 , 366 , 722 1 , 681 P 6 k 3 344 , 423 , 038 1 , 681 P 6 k 4 A = 285 , 928 , 452 1 , 681 P 2 k 4 118 , 454 , 868 1 , 681 P 2 k 5 , B = 378 ( P 18 k + 2 + P 6 k + 4 ) + 154 ( P 18 k + 1 P 6 k + 5 ) 78 41 ( P 14 k + 4 + P 10 k + 2 ) B = 318 41 ( P 14 k + 3 P 10 k + 3 ) 6 × 378 ( P 14 k + 1 + P 2 k + 3 ) 6 × 154 ( P 14 k P 2 k + 4 ) B = + 78 × 6 41 ( P 10 k + 3 + P 6 k + 1 ) + 318 × 6 41 ( P 10 k + 2 P 6 k + 2 ) + 9 × 378 ( P 10 k P 2 k 2 ) B = + 9 × 154 ( P 10 k 1 P 2 k 3 ) 78 × 9 41 ( P 6 k + 2 + P 2 k ) 318 × 9 41 ( P 6 k + 1 P 2 k + 1 ) B = + 4 × 378 P 6 k 1 + 4 × 154 P 6 k 2 78 × 4 41 P 2 k + 1 318 × 4 41 P 2 k B = 154 P 18 k + 3 + 70 P 18 k + 2 95 , 514 41 P 14 k + 1 38 , 910 41 P 14 k + 158 , 064 41 P 10 k B = + 64 , 416 41 P 10 k 1 + 36 , 496 41 P 6 k 1 + 14 , 880 41 P 6 k 2 225 , 516 41 P 2 k 2 92 , 796 41 P 2 k 3 .

Observe that the major terms of A and B (above those of order P 10 k ) are in total agreement. Note that P n + 2 =2 P n + 1 + P n , we have

B A = 41 , 028 , 234 1 , 681 P 10 k + 17 , 049 , 300 1 , 681 P 10 k 1 + 348 , 025 , 790 1 , 681 P 6 k 2 + 290 , 016 , 982 1 , 681 P 6 k 3 + 39 , 772 , 560 1 , 681 P 2 k 2 + 16 , 612 , 800 1 , 681 P 2 k 3 > 0

for all integers k1. So, inequalities (3), (4) and (5) hold for all integers k1.

Now, applying (3) repeatedly, we have

k = 2 m 1 P k 3 = k = m ( 1 P 2 k 3 + 1 P 2 k + 1 3 ) < k = m 1 P 2 k 2 P 2 k 1 + 3 P 2 k P 2 k 1 2 1 82 ( 61 P 2 k + 91 P 2 k 1 ) k = m 1 P 2 k + 2 2 P 2 k + 1 + 3 P 2 k + 2 P 2 k + 1 2 1 82 ( 61 P 2 k + 2 + 91 P 2 k + 1 ) = 1 P 2 m 2 P 2 m 1 + 3 P 2 m P 2 m 1 2 1 82 ( 61 P 2 m + 91 P 2 m 1 ) .
(6)

On the other hand, we prove the inequality

1 P 2 k 3 + 1 P 2 k + 1 3 > 1 P 2 k 2 P 2 k 1 + 3 P 2 k P 2 k 1 2 1 82 ( 61 P 2 k + 91 P 2 k 1 ) + 1 82 1 P 2 k + 2 2 P 2 k + 1 + 3 P 2 k + 2 P 2 k + 1 2 1 82 ( 61 P 2 k + 2 + 91 P 2 k + 1 ) + 1 82 .
(7)

This inequality is equivalent to

P 6 k + 3 + P 6 k + 3 P 2 k + 1 3 P 2 k Q 12 k + 3 6 Q 8 k + 2 + 9 Q 4 k + 1 + 4 > 378 P 6 k 1 + 154 P 6 k 2 78 41 P 2 k + 1 318 41 P 2 k ( P 6 k 1 + 3 P 6 k 2 39 41 P 2 k 159 41 P 2 k 1 + 4 41 ) ( P 6 k + 5 + 3 P 6 k + 4 39 41 P 2 k + 2 159 41 P 2 k + 1 + 4 41 )

or

4 41 ( P 6 k + 3 + P 6 k + 3 P 2 k + 1 3 P 2 k ) ( 60 P 6 k + 1 + 40 P 6 k 552 41 P 2 k 396 41 P 2 k 1 + 4 41 ) > B A

or

140 Q 12 k + 3 + 140 Q 12 k + 2 + 1 , 200 41 Q 8 k + 2 + 5 , 952 41 Q 8 k + 1 + 19 , 116 41 Q 4 k + 9 , 444 41 Q 4 k 1 + 4 41 P 6 k + 3 + 4 41 P 6 k + 12 41 P 2 k + 1 12 41 P 2 k + 47 , 728 41 > 41 4 ( B A ) .
(8)

It is clear that inequality (8) holds for all integers k5, so inequality (7) is true. Now, applying (7) repeatedly, we have

k = 2 m 1 P k 3 = k = m ( 1 P 2 k 3 + 1 P 2 k + 1 3 ) > 1 P 2 m 2 P 2 m 1 + 3 P 2 m P 2 m 1 2 1 82 ( 61 P 2 m + 91 P 2 m 1 ) + 1 82 .
(9)

Combining (6) and (9), we may immediately deduce inequality (2).

Now we consider that n=2m+1 is an odd number. It is clear that in this case our theorem is equivalent to

P 2 m + 1 2 P 2 m + 3 P 2 m + 1 P 2 m 2 + 1 82 ( 61 P 2 m + 1 + 91 P 2 m ) < ( k = 2 m + 1 1 P k 3 ) 1 < P 2 m + 1 2 P 2 m + 3 P 2 m + 1 P 2 m 2 + 1 82 ( 61 P 2 m + 1 + 91 P 2 m ) + 1 82

or

1 P 2 m + 1 2 P 2 m + 3 P 2 m + 1 P 2 m 2 + 1 82 ( 61 P 2 m + 1 + 91 P 2 m ) + 1 82 < k = 2 m + 1 1 P k 3 < 1 P 2 m + 1 2 P 2 m + 3 P 2 m + 1 P 2 m 2 + 1 82 ( 61 P 2 m + 1 + 91 P 2 m ) .
(10)

First we prove the inequality

1 P 2 k + 1 3 + 1 P 2 k + 2 3 < 1 P 2 k + 1 2 P 2 k + 3 P 2 k + 1 P 2 k 2 + 1 82 ( 61 P 2 k + 1 + 91 P 2 k ) 1 P 2 k + 1 2 P 2 k + 3 P 2 k + 1 P 2 k 2 + 1 82 ( 61 P 2 k + 1 + 91 P 2 k ) .
(11)

It is easy to check that inequality (11) is correct for k=1,2 and 3. So, we can assume that k4. Note that P 2 k + 1 3 = 1 8 ( P 6 k + 3 +3 P 2 k + 1 ), P 2 k + 2 3 = 1 8 ( P 6 k + 6 3 P 2 k + 2 ), P 2 k + 1 3 + P 2 k + 2 3 = 1 8 ( P 6 k + 6 + P 6 k + 3 +3 P 2 k + 1 3 P 2 k + 2 ), P 2 k + 1 3 P 2 k + 2 3 = 1 512 ( Q 12 k + 9 +6 Q 8 k + 6 +9 Q 4 k + 3 4), P 2 k + 1 2 P 2 k +3 P 2 k + 1 P 2 k 2 = 1 8 ( P 6 k + 2 +3 P 6 k + 1 5 P 2 k + 1 5 P 2 k ), so inequality (11) is equivalent to the inequality

P 6 k + 6 + P 6 k + 3 + 3 P 2 k + 1 3 P 2 k + 2 Q 12 k + 9 + 6 Q 8 k + 6 + 9 Q 4 k + 3 4 < 378 P 6 k + 2 + 154 P 6 k + 1 + 78 41 P 2 k + 2 + 318 41 P 2 k + 1 ( P 6 k + 2 + 3 P 6 k + 1 + 39 41 P 2 k + 1 + 159 41 P 2 k ) ( P 6 k + 8 + 3 P 6 k + 7 + 39 41 P 2 k + 3 + 159 41 P 2 k + 2 ) .
(12)

From the definition and properties of the Pell-Lucas numbers, we have

( P 6 k + 2 +3 P 6 k + 1 )( P 6 k + 8 +3 P 6 k + 7 )=(8 Q 12 k + 9 +10 Q 12 k + 8 +2,772)/8

and

( P 6 k + 2 + 3 P 6 k + 1 + 39 41 P 2 k + 1 + 159 41 P 2 k ) ( P 6 k + 8 + 3 P 6 k + 7 + 39 41 P 2 k + 3 + 159 41 P 2 k + 2 ) = 1 8 ( 8 Q 12 k + 9 + 10 Q 12 k + 8 + 7 , 344 41 Q 8 k + 5 + 2 , 124 41 Q 8 k + 4 31 , 844 , 565 1 , 681 Q 4 k 1 13 , 186 , 923 1 , 681 Q 4 k 2 + 4 , 442 , 760 1 , 681 ) .

By these two identities and (12), we deduce that inequality (11) is equivalent to

P 6 k + 6 + P 6 k + 3 + 3 P 2 k + 1 3 P 2 k + 2 Q 12 k + 9 + 6 Q 8 k + 6 + 9 Q 4 k + 3 4 < 378 P 6 k + 2 + 154 P 6 k + 1 + 78 41 P 2 k + 2 + 318 41 P 2 k + 1 8 Q 12 k + 9 + 10 Q 12 k + 8 + 7 , 344 41 Q 8 k + 5 + 2 , 124 41 Q 8 k + 4 31 , 844 , 565 1 , 681 Q 4 k 1 13 , 186 , 923 1 , 681 Q 4 k 2 + 4 , 442 , 760 1 , 681 .
(13)

For convenience, we let

A = ( 8 Q 12 k + 9 + 10 Q 12 k + 8 + 7 , 344 41 Q 8 k + 5 + 2 , 124 41 Q 8 k + 4 31 , 844 , 565 1 , 681 Q 4 k 1 13 , 186 , 923 1 , 681 Q 4 k 2 + 4 , 442 , 760 1 , 681 ) × ( P 6 k + 6 + P 6 k + 3 + 3 P 2 k + 1 3 P 2 k + 2 )

and B =( Q 12 k + 9 +6 Q 8 k + 6 +9 Q 4 k + 3 4)(378 P 6 k + 2 +154 P 6 k + 1 + 78 41 P 2 k + 2 + 318 41 P 2 k + 1 ). Then we have

A = 8 ( P 18 k + 15 P 6 k + 3 ) + 10 ( P 18 k + 14 P 6 k + 2 ) + 7 , 344 41 ( P 14 k + 11 P 2 k 1 ) A = + 2 , 124 41 ( P 14 k + 10 P 2 k 2 ) 31 , 844 , 565 1 , 681 ( P 10 k + 5 P 2 k + 7 ) 13 , 186 , 923 1 , 681 ( P 10 k + 4 A = + P 2 k + 8 ) + 4 , 442 , 760 1 , 681 P 6 k + 6 + 8 ( P 18 k + 12 + P 6 k + 6 ) + 10 ( P 18 k + 11 + P 6 k + 5 ) A = + 7 , 344 41 ( P 14 k + 8 + P 2 k + 2 ) + 2 , 124 41 ( P 14 k + 7 + P 2 k + 1 ) 31 , 844 , 565 1 , 681 ( P 10 k + 2 P 2 k + 4 ) A = 13 , 186 , 923 1 , 681 ( P 10 k + 1 + P 2 k + 5 ) + 4 , 442 , 760 1 , 681 P 6 k + 3 + 3 × 8 ( P 14 k + 10 + P 10 k + 8 ) A = + 3 × 10 ( P 14 k + 9 + P 10 k + 7 ) + 7 , 344 × 3 41 ( P 10 k + 6 + P 6 k + 4 ) + 2 , 124 × 3 41 ( P 10 k + 5 A = + P 6 k + 3 ) 31 , 844 , 565 × 3 1 , 681 ( P 6 k + P 2 k 2 ) 13 , 186 , 923 × 3 1 , 681 ( P 6 k 1 + P 2 k 3 ) A = + 4 , 442 , 760 × 3 1 , 681 P 2 k + 1 3 × 8 ( P 14 k + 11 P 10 k + 7 ) 3 × 10 ( P 14 k + 10 P 10 k + 6 ) A = 7 , 344 × 3 41 ( P 10 k + 7 P 6 k + 3 ) 2 , 124 × 3 41 ( P 10 k + 6 P 6 k + 2 ) + 31 , 844 , 565 × 3 1 , 681 ( P 6 k + 1 A = P 2 k 3 ) + 13 , 186 , 923 × 3 1 , 681 ( P 6 k P 2 k 4 ) 4 , 442 , 760 × 3 1 , 681 P 2 k + 2 A = 154 P 18 k + 12 + 70 P 18 k + 11 + 95 , 514 41 P 14 k + 8 + 38 , 910 41 P 14 k + 7 506 , 756 , 250 1 , 681 P 10 k + 2 A = 209 , 906 , 976 1 , 681 P 10 k + 1 + 983 , 915 , 086 1 , 681 P 6 k A = + 407 , 692 , 984 1 , 681 P 6 k 1 771 , 966 , 210 1 , 681 P 2 k 3 A = 304 , 496 , 118 1 , 681 P 2 k 4 , B = 378 ( P 18 k + 11 P 6 k + 7 ) + 154 ( P 18 k + 10 + P 6 k + 8 ) + 78 41 ( P 14 k + 11 P 10 k + 7 ) B = + 318 41 ( P 14 k + 10 + P 10 k + 8 ) + 6 × 378 ( P 14 k + 8 P 2 k + 4 ) + 924 ( P 14 k + 7 + P 2 k + 5 ) B = + 468 41 ( P 10 k + 8 P 6 k + 4 ) + 1 , 908 41 ( P 10 k + 7 + P 6 k + 5 ) + 9 × 378 ( P 10 k + 5 P 2 k 1 ) B = + 1 , 386 ( P 10 k + 4 P 2 k 2 ) + 702 41 ( P 6 k + 5 P 2 k + 1 ) + 318 × 9 41 ( P 6 k + 4 + P 2 k + 2 ) B = 4 × 378 P 6 k + 2 4 × 154 P 6 k + 1 78 × 4 41 P 2 k + 2 318 × 4 41 P 2 k + 1 B = 154 P 18 k + 12 + 70 P 18 k + 11 + 95 , 514 41 P 14 k + 8 + 38 , 910 41 P 14 k + 7 + 158 , 064 41 P 10 k + 5 B = + 64 , 416 41 P 10 k + 4 36 , 496 41 P 6 k + 2 14 , 880 41 P 6 k + 1 225 , 516 41 P 2 k 1 92 , 796 41 P 2 k 2 .

Note that P n + 2 =2 P n + 1 + P n , we have

B A = 597 , 729 , 018 1 , 681 P 10 k + 2 + 247 , 592 , 208 1 , 681 P 10 k + 1 992 , 616 , 926 1 , 681 P 6 k 411 , 295 , 736 1 , 681 P 6 k 1 + 718 , 126 , 158 1 , 681 P 2 k 3 + 282 , 199 , 170 1 , 681 P 2 k 4 = ( 3 , 483 , 829 , 506 1 , 681 P 10 k 992 , 616 , 926 1 , 681 P 6 k ) + ( 1 , 443 , 050 , 244 1 , 681 P 10 k 1 411 , 295 , 736 1 , 681 P 6 k 1 ) + 718 , 126 , 158 1 , 681 P 2 k 3 + 282 , 199 , 170 1 , 681 P 2 k 4 > 0

for all integers k4. So, inequalities (11), (12) and (13) hold for all integers k4.

Now, applying (11) repeatedly, we have

k = 2 m + 1 1 P k 3 = k = m ( 1 P 2 k + 1 3 + 1 P 2 k + 2 3 ) < k = m 1 P 2 k + 1 2 P 2 k + 3 P 2 k + 1 P 2 k 2 + 1 82 ( 61 P 2 k + 1 + 91 P 2 k ) k = m 1 P 2 k + 3 2 P 2 k + 2 + 3 P 2 k + 3 P 2 k + 2 2 + 1 82 ( 61 P 2 k + 3 + 91 P 2 k + 2 ) .
(14)

On the other hand, we prove the inequality

1 P 2 k + 1 3 + 1 P 2 k + 2 3 > 1 P 2 k + 1 2 P 2 k + 3 P 2 k + 1 P 2 k 2 + 1 82 ( 61 P 2 k + 1 + 91 P 2 k ) + 1 82 1 P 2 k + 3 2 P 2 k + 2 + 3 P 2 k + 3 P 2 k + 2 2 + 1 82 ( 61 P 2 k + 3 + 91 P 2 k + 2 ) + 1 82 .
(15)

It is easy to check that inequality (15) is correct for k=1,2 and 3. So, we can assume that k4. This time, inequality (15) is equivalent to

P 6 k + 6 + P 6 k + 3 + 3 P 2 k + 1 3 P 2 k + 2 Q 12 k + 9 + 6 Q 8 k + 6 + 9 Q 4 k + 3 4 > 378 P 6 k + 2 + 154 P 6 k + 1 + 78 41 P 2 k + 2 + 318 41 P 2 k + 1 ( P 6 k + 2 + 3 P 6 k + 1 + 39 41 P 2 k + 1 + 159 41 P 2 k + 4 41 ) ( P 6 k + 8 + 3 P 6 k + 7 + 39 41 P 2 k + 3 + 159 41 P 2 k + 2 + 4 41 )

or

4 41 ( P 6 k + 6 + P 6 k + 3 + 3 P 2 k + 1 3 P 2 k + 2 ) ( 60 P 6 k + 4 + 40 P 6 k + 3 + 552 41 P 2 k + 1 + 396 41 P 2 k + 4 41 ) > B A

or

140 Q 12 k + 9 + 140 Q 12 k + 8 17 , 904 41 Q 8 k + 4 8 , 352 41 Q 8 k + 3 + 19 , 116 41 Q 4 k + 2 + 9 , 444 41 Q 4 k + 1 + 4 41 P 6 k + 6 + 4 41 P 6 k + 3 + 12 41 P 2 k + 1 12 41 P 2 k + 2 + 21 , 152 41 > 41 4 ( B A ) .
(16)

It is clear that inequality (16) holds for all integers k4, so inequality (15) is true. Now, applying (15) repeatedly, we have

k = 2 m + 1 1 P k 3 = k = m ( 1 P 2 k + 1 3 + 1 P 2 k + 2 3 ) > 1 P 2 m + 1 2 P 2 m + 3 P 2 m + 1 P 2 m 2 + 1 82 ( 61 P 2 m + 1 + 91 P 2 m ) + 1 82 .
(17)

Combining (14) and (17), we may immediately deduce inequality (10).

Now our theorem follows from inequalities (2) and (10). This completes the proof of our theorem.