1 Introduction

Denote by U the unit disc of the complex plane, U={zC:|z|<1}, and by H(U) the space of holomorphic functions in U. Let A n ={fH(U):f(z)=z+ a n + 1 z n + 1 +,zU} with A 1 =A and H[a,n]={fH(U):f(z)=a+ a n z n + a n + 1 z n + 1 +,zU} for aC and nN. Denote by K={fA:Re z f ( z ) f ( z ) +1>0,zU} the class of normalized convex functions in U.

If f and g are analytic functions in U, we say that f is subordinate to g, written fg, if there is a function w analytic in U, with w(0)=0, |w(z)|<1, for all zU, such that f(z)=g(w(z)) for all zU. If g is univalent, then fg if and only if f(0)=g(0) and f(U)g(U).

Let ψ: C 3 ×UC and let h be a univalent function in U. If p is analytic in U and satisfies the (second-order) differential subordination

ψ ( p ( z ) , z p ( z ) , z 2 p ( z ) ; z ) h(z),zU,
(1.1)

then p is called a solution of the differential subordination. The univalent function q is called a dominant of the solutions of the differential subordination, or more simply a dominant, if pq for all p satisfying (1.1).

A dominant q ˜ that satisfies q ˜ q for all dominants q of (1.1) is said to be the best dominant of (1.1). The best dominant is unique up to a rotation of U.

Definition 1.1 (Sălăgean [1])

For fA, nN, the operator S n is defined by S n :AA,

S 0 f ( z ) = f ( z ) , S 1 f ( z ) = z f ( z ) , S n + 1 f ( z ) = z ( S n f ( z ) ) , z U .

Remark 1.1 If fA, f(z)=z+ j = 2 a j z j , then S n f(z)=z+ j = 2 j n a j z j , zU.

Definition 1.2 (Ruscheweyh [2])

For fA, nN, the operator R n is defined by R n :AA,

R 0 f ( z ) = f ( z ) , R 1 f ( z ) = z f ( z ) , ( n + 1 ) R n + 1 f ( z ) = z ( R n f ( z ) ) + n R n f ( z ) , z U .

Remark 1.2 If fA, f(z)=z+ j = 2 a j z j , then R n f(z)=z+ j = 2 C n + j 1 n a j z j , zU.

Definition 1.3 ([3])

Let α0, nN. Denote by L α n the operator given by L α n :AA,

L α n f(z)=(1α) R n f(z)+α S n f(z),zU.

Remark 1.3 If fA, f(z)=z+ j = 2 a j z j , then L α n f(z)=z+ j = 2 (α j n +(1α) C n + j 1 n ) a j z j , zU.

This operator was studied also in [35].

Lemma 1.1 (Hallenbeck and Ruscheweyh [[6], Th. 3.1.6, p.71])

Let h be a convex function with h(0)=a, and let γC{0} be a complex number with Reγ0. If pH[a,n] and

p(z)+ 1 γ z p (z)h(z),zU,

then

p(z)g(z)h(z),zU,

where g(z)= γ n z γ / n 0 z h(t) t γ / n 1 dt, zU.

Lemma 1.2 (Miller and Mocanu [6])

Let g be a convex function in U and let h(z)=g(z)+nαz g (z), for zU, where α>0 and n is a positive integer.

If p(z)=g(0)+ p n z n + p n + 1 z n + 1 + , zU, is holomorphic in U and

p(z)+αz p (z)h(z),zU,

then

p(z)g(z),zU,

and this result is sharp.

2 Main results

Theorem 2.1 Let g be a convex function, g(0)=1 and let h be the function h(z)=g(z)+ z δ g (z), zU.

If α,δ0, nN, fA and satisfies the differential subordination

( L α n f ( z ) z ) δ 1 ( L α n f ( z ) ) h(z),zU,
(2.1)

then

( L α n f ( z ) z ) δ g(z),zU,

and this result is sharp.

Proof By using the properties of the operator L α n , we have

L α n f(z)=z+ j = 2 ( α j n + ( 1 α ) C n + j 1 n ) a j z j ,zU.

Consider p(z)= ( L α n f ( z ) z ) δ = ( z + j = 2 ( α j n + ( 1 α ) C n + j 1 n ) a j z j z ) δ =1+ p δ z δ + p δ + 1 z δ + 1 + , zU.

We deduce that pH[1,δ].

Differentiating, we obtain ( L α n f ( z ) z ) δ 1 ( L α n f ( z ) ) =p(z)+ 1 δ z p (z), zU.

Then (2.1) becomes

p(z)+ 1 δ z p (z)h(z)=g(z)+ z δ g (z),zU.

By using Lemma 1.2, we have

p(z)g(z),zU, i.e. , ( L α n f ( z ) z ) δ g(z),zU.

 □

Theorem 2.2 Let h be a holomorphic function which satisfies the inequality Re(1+ z h ( z ) h ( z ) )> 1 2 , zU, and h(0)=1.

If α,δ0, nN, fA and satisfies the differential subordination

( L α n f ( z ) z ) δ 1 ( L α n f ( z ) ) h(z),zU,
(2.2)

then

( L α n f ( z ) z ) δ q(z),zU,

where q(z)= δ z δ 0 z h(t) t δ 1 dt. The function q is convex and it is the best dominant.

Proof Let

p ( z ) = ( L α n f ( z ) z ) δ = ( z + j = 2 ( α j n + ( 1 α ) C n + j 1 n ) a j z j z ) δ = ( 1 + j = 2 ( α j n + ( 1 α ) C n + j 1 n ) a j z j 1 ) δ = 1 + j = δ + 1 p j z j 1

for zU, pH[1,δ].

Differentiating, we obtain ( L α n f ( z ) z ) δ 1 ( L α n f ( z ) ) =p(z)+ 1 δ z p (z), zU, and (2.2) becomes

p(z)+ 1 δ z p (z)h(z),zU.

Using Lemma 1.1, we have

p(z)q(z),zU, i.e. , ( L α n f ( z ) z ) δ q(z)= δ z δ 0 z h(t) t δ 1 dt,zU,

and q is the best dominant. □

Corollary 2.3 Let h(z)= 1 + ( 2 β 1 ) z 1 + z be a convex function in U, where 0β<1.

If α,δ0, nN, fA and satisfies the differential subordination

( L α n f ( z ) z ) δ 1 ( L α n f ( z ) ) h(z),zU,
(2.3)

then

( L α n f ( z ) z ) δ q(z),zU,

where q is given by q(z)=(2β1)+ 2 ( 1 β ) δ z δ 0 z t δ 1 1 + t dt, zU. The function q is convex and it is the best dominant.

Proof Following the same steps as in the proof of Theorem 2.2 and considering p(z)= ( L α n f ( z ) z ) δ , the differential subordination (2.3) becomes

p(z)+ z δ p (z)h(z)= 1 + ( 2 β 1 ) z 1 + z ,zU.

By using Lemma 1.1 for γ=δ, we have p(z)q(z), i.e.,

( L α n f ( z ) z ) δ q ( z ) = δ z δ 0 z h ( t ) t δ 1 d t = δ z δ 0 z t δ 1 1 + ( 2 β 1 ) t 1 + t d t = δ z δ 0 z [ ( 2 β 1 ) t δ 1 + 2 ( 1 β ) t δ 1 1 + t ] d t = ( 2 β 1 ) + 2 ( 1 β ) δ z δ 0 z t δ 1 1 + t d t , z U .

 □

Remark 2.1 For n=1, α=2, δ=1, we obtain the same example as in [[7], Example 2.2.1, p.26].

Theorem 2.4 Let g be a convex function such that g(0)=1 and let h be the function h(z)=g(z)+ z γ g (z), zU, where γ>0.

If α0, nN, fA and the differential subordination

( γ + 1 ) z γ L α n f ( z ) ( L α n + 1 f ( z ) ) 2 + z 2 γ L α n f ( z ) ( L α n + 1 f ( z ) ) 2 [ ( L α n f ( z ) ) L α n f ( z ) 2 ( L α n + 1 f ( z ) ) L α n + 1 f ( z ) ] h(z),zU,
(2.4)

holds, then

z L α n f ( z ) ( L α n + 1 f ( z ) ) 2 g(z),zU,

and this result is sharp.

Proof For fA, f(z)=z+ j = 2 a j z j , we have L α n f(z)=z+ j = 2 (α j n +(1α) C n + j 1 n ) a j z j , zU.

Consider p(z)=z L α n f ( z ) ( L α n + 1 f ( z ) ) 2 and we obtain p(z)+ z γ p (z)= ( γ + 1 ) z γ L α n f ( z ) ( L α n + 1 f ( z ) ) 2 + z 2 γ L α n f ( z ) ( L α n + 1 f ( z ) ) 2 [ ( L α n f ( z ) ) L α n f ( z ) 2 ( L α n + 1 f ( z ) ) L α n + 1 f ( z ) ].

Relation (2.4) becomes

p(z)+ z γ p (z)h(z)=g(z)+γ g (z),zU.

By using Lemma 1.2, we have

p(z)g(z),zU, i.e. , z L α n f ( z ) ( L α n + 1 f ( z ) ) 2 g(z),zU.

 □

Theorem 2.5 Let h be a holomorphic function which satisfies the inequality Re(1+ z h ( z ) h ( z ) )> 1 2 , zU, and h(0)=1.

If α0, γC{0} is a complex number with Reγ0, nN, fA and satisfies the differential subordination

( γ + 1 ) z γ L α n f ( z ) ( L α n + 1 f ( z ) ) 2 + z 2 γ L α n f ( z ) ( L α n + 1 f ( z ) ) 2 [ ( L α n f ( z ) ) L α n f ( z ) 2 ( L α n + 1 f ( z ) ) L α n + 1 f ( z ) ] h(z),zU,
(2.5)

then

z L α n f ( z ) ( L α n + 1 f ( z ) ) 2 q(z),zU,

where q(z)= γ z γ 0 z h(t) t γ 1 dt. The function q is convex and it is the best dominant.

Proof Let p(z)=z L α n f ( z ) ( L α n + 1 f ( z ) ) 2 , zU, pH[1,1]. Differentiating, we obtain p(z)+ z γ p (z)= ( γ + 1 ) z γ L α n f ( z ) ( L α n + 1 f ( z ) ) 2 + z 2 γ L α n f ( z ) ( L α n + 1 f ( z ) ) 2 [ ( L α n f ( z ) ) L α n f ( z ) 2 ( L α n + 1 f ( z ) ) L α n + 1 f ( z ) ], zU, and (2.5) becomes

p(z)+ z γ p (z)h(z),zU.

Using Lemma 1.1, we have

p(z)q(z),zU, i.e. , z L α n f ( z ) ( L α n + 1 f ( z ) ) 2 q(z)= γ z γ 0 z h(t) t γ 1 dt,zU,

and q is the best dominant. □

Theorem 2.6 Let g be a convex function such that g(0)=1 and let h be the function h(z)=g(z)+ z γ g (z), zU, where γ>0.

If α0, nN, fA and the differential subordination

( γ + 2 ) z 2 γ ( L α n f ( z ) ) L α n f ( z ) + z 3 γ [ ( L α n f ( z ) ) L α n f ( z ) ( ( L α n f ( z ) ) L α n f ( z ) ) 2 ] h(z),zU,
(2.6)

holds, then

z 2 ( L α n f ( z ) ) L α n f ( z ) g(z),zU.

This result is sharp.

Proof Let p(z)= z 2 ( L α n f ( z ) ) L α n f ( z ) . We deduce that pH[0,1].

Differentiating, we obtain p(z)+ z γ p (z)= ( γ + 2 ) z 2 γ ( L α n f ( z ) ) L α n f ( z ) + z 3 γ [ ( L α n f ( z ) ) L α n f ( z ) ( ( L α n f ( z ) ) L α n f ( z ) ) 2 ], zU.

Using the notation in (2.6), the differential subordination becomes

p(z)+ 1 γ z p (z)h(z)=g(z)+ z γ g (z).

By using Lemma 1.2, we have

p(z)g(z),zU, i.e. , z 2 ( L α n f ( z ) ) L α n f ( z ) g(z),zU,

and this result is sharp. □

Theorem 2.7 Let h be a holomorphic function which satisfies the inequality Re(1+ z h ( z ) h ( z ) )> 1 2 , zU, and h(0)=1.

If α0, γC{0} is a complex number with Reγ0, nN, fA and satisfies the differential subordination

( γ + 2 ) z 2 γ ( L α n f ( z ) ) L α n f ( z ) + z 3 γ [ ( L α n f ( z ) ) L α n f ( z ) ( ( L α n f ( z ) ) L α n f ( z ) ) 2 ] h(z),zU,
(2.7)

then

z 2 ( L α n f ( z ) ) L α n f ( z ) q(z),zU,

where q(z)= γ z γ 0 z h(t) t γ 1 dt. The function q is convex and it is the best dominant.

Proof Let p(z)= z 2 ( L α n f ( z ) ) L α n f ( z ) , zU, pH[0,1].

Differentiating, we obtain p(z)+ z γ p (z)= ( γ + 2 ) z 2 γ ( L α n f ( z ) ) L α n f ( z ) + z 3 γ [ ( L α n f ( z ) ) L α n f ( z ) ( ( L α n f ( z ) ) L α n f ( z ) ) 2 ], zU, and (2.7) becomes

p(z)+ 1 γ z p (z)h(z),zU.

Using Lemma 1.1, we have

p(z)q(z),zU, i.e. , z 2 ( L α n f ( z ) ) L α n f ( z ) q(z)= γ z γ 0 z h(t) t γ 1 dt,zU,

and q is the best dominant. □

Theorem 2.8 Let g be a convex function such that g(0)=1 and let h be the function h(z)=g(z)+z g (z), zU.

If α0, nN, fA and the differential subordination

1 L α n f ( z ) ( L α n f ( z ) ) [ ( L α n f ( z ) ) ] 2 h(z),zU,
(2.8)

holds, then

L α n f ( z ) z ( L α n f ( z ) ) g(z),zU.

This result is sharp.

Proof Let p(z)= L α n f ( z ) z ( L α n f ( z ) ) . We deduce that pH[1,1].

Differentiating, we obtain 1 L α n f ( z ) ( L α n f ( z ) ) [ ( L α n f ( z ) ) ] 2 =p(z)+z p (z), zU.

Using the notation in (2.8), the differential subordination becomes

p(z)+z p (z)h(z)=g(z)+z g (z).

By using Lemma 1.2, we have

p(z)g(z),zU, i.e. , L α n f ( z ) z ( L α n f ( z ) ) g(z),zU,

and this result is sharp. □

Theorem 2.9 Let h be a holomorphic function which satisfies the inequality Re(1+ z h ( z ) h ( z ) )> 1 2 , zU, and h(0)=1.

If α0, nN, fA and satisfies the differential subordination

1 L α n f ( z ) ( L α n f ( z ) ) [ ( L α n f ( z ) ) ] 2 h(z),zU,
(2.9)

then

L α n f ( z ) z ( L α n f ( z ) ) q(z),zU,

where q(z)= 1 z 0 z h(t)dt. The function q is convex and it is the best dominant.

Proof Let p(z)= L α n f ( z ) z ( L α n f ( z ) ) , zU, pH[0,1].

Differentiating, we obtain 1 L α n f ( z ) ( L α n f ( z ) ) [ ( L α n f ( z ) ) ] 2 =p(z)+z p (z), zU, and (2.9) becomes

p(z)+z p (z)h(z),zU.

Using Lemma 1.1, we have

p(z)q(z),zU, i.e. , L α n f ( z ) z ( L α n f ( z ) ) q(z)= 1 z 0 z h(t)dt,zU,

and q is the best dominant. □

Corollary 2.10 Let h(z)= 1 + ( 2 β 1 ) z 1 + z be a convex function in U, where 0β<1.

If α0, nN, fA and satisfies the differential subordination

1 L α n f ( z ) ( L α n f ( z ) ) [ ( L α n f ( z ) ) ] 2 h(z),zU,
(2.10)

then

L α n f ( z ) z ( L α n f ( z ) ) q(z),zU,

where q is given by q(z)=(2β1)+2(1β) ln ( 1 + z ) z , zU. The function q is convex and it is the best dominant.

Proof Following the same steps as in the proof of Theorem 2.9 and considering p(z)= L α n f ( z ) z ( L α n f ( z ) ) , the differential subordination (2.10) becomes

p(z)+z p (z)h(z)= 1 + ( 2 β 1 ) z 1 + z ,zU.

By using Lemma 1.1 for γ=1, we have p(z)q(z), i.e.,

L α n f ( z ) z ( L α n f ( z ) ) q ( z ) = 1 z 0 z h ( t ) d t = 1 z 0 z 1 + ( 2 β 1 ) t 1 + t d t = 1 z 0 z [ ( 2 β 1 ) + 2 ( 1 β ) 1 + t ] d t = ( 2 β 1 ) + 2 ( 1 β ) ln ( 1 + z ) z , z U .

 □

Example 2.1 Let h(z)= 1 z 1 + z be a convex function in U with h(0)=1 and Re( z h ( z ) h ( z ) +1)> 1 2 .

Let f(z)=z+ z 2 , zU. For n=1, α=2, we obtain L 2 1 f(z)= R 1 f(z)+2 S 1 f(z)=z f (z)+2z f (z)=z f (z)=z+2 z 2 .

Then ( L 2 1 f ( z ) ) =1+4z,

L 2 1 f ( z ) z ( L 2 1 f ( z ) ) = z + 2 z 2 z ( 1 + 4 z ) = 1 + 2 z 1 + 4 z , 1 L 2 1 f ( z ) ( L 2 1 f ( z ) ) [ ( L 2 1 f ( z ) ) ] 2 = 1 ( z + 2 z 2 ) 4 ( 1 + 4 z ) 2 = 8 z 2 + 4 z + 1 ( 1 + 4 z ) 2 .

We have q(z)= 1 z 0 z 1 t 1 + t dt=1+ 2 ln ( 1 + z ) z .

Using Theorem 2.9, we obtain

8 z 2 + 4 z + 1 ( 1 + 4 z ) 2 1 z 1 + z ,zU,

induce

1 + 2 z 1 + 4 z 1+ 2 ln ( 1 + z ) z ,zU.

Theorem 2.11 Let g be a convex function such that g(0)=0 and let h be the function h(z)=g(z)+z g (z), zU.

If α0, nN, fA and the differential subordination

[ ( L α n f ( z ) ) ] 2 + L α n f(z) ( L α n f ( z ) ) h(z),zU,
(2.11)

holds, then

L α n f ( z ) ( L α n f ( z ) ) z g(z),zU.

This result is sharp.

Proof Let p(z)= L α n f ( z ) ( L α n f ( z ) ) z . We deduce that pH[0,1].

Differentiating, we obtain [ ( L α n f ( z ) ) ] 2 + L α n f(z) ( L α n f ( z ) ) =p(z)+z p (z), zU.

Using the notation in (2.11), the differential subordination becomes

p(z)+z p (z)h(z)=g(z)+z g (z).

By using Lemma 1.2, we have

p(z)g(z),zU, i.e. , L α n f ( z ) ( L α n f ( z ) ) z g(z),zU,

and this result is sharp. □

Theorem 2.12 Let h be a holomorphic function which satisfies the inequality Re(1+ z h ( z ) h ( z ) )> 1 2 , zU, and h(0)=0.

If α0, nN, fA and satisfies the differential subordination

[ ( L α n f ( z ) ) ] 2 + L α n f(z) ( L α n f ( z ) ) h(z),zU,
(2.12)

then

L α n f ( z ) ( L α n f ( z ) ) z q(z),zU,

where q(z)= 1 z 0 z h(t)dt. The function q is convex and it is the best dominant.

Proof Let p(z)= L α n f ( z ) ( L α n f ( z ) ) z , zU, pH[0,1].

Differentiating, we obtain [ ( L α n f ( z ) ) ] 2 + L α n f(z) ( L α n f ( z ) ) =p(z)+z p (z), zU, and (2.12) becomes

p(z)+z p (z)h(z),zU.

Using Lemma 1.1, we have

p(z)q(z),zU, i.e. , L α n f ( z ) ( L α n f ( z ) ) z q(z)= 1 z 0 z h(t)dt,zU,

and q is the best dominant. □

Corollary 2.13 Let h(z)= 1 + ( 2 β 1 ) z 1 + z be a convex function in U, where 0β<1.

If α0, nN, fA and satisfies the differential subordination

[ ( L α n f ( z ) ) ] 2 + L α n f(z) ( L α n f ( z ) ) h(z),zU,
(2.13)

then

L α n f ( z ) ( L α n f ( z ) ) z q(z),zU,

where q is given by q(z)=(2β1)+2(1β) ln ( 1 + z ) z , zU. The function q is convex and it is the best dominant.

Proof Following the same steps as in the proof of Theorem 2.12 and considering p(z)= L α n f ( z ) ( L α n f ( z ) ) z , the differential subordination (2.13) becomes

p(z)+z p (z)h(z)= 1 + ( 2 β 1 ) z 1 + z ,zU.

By using Lemma 1.1 for γ=1, we have p(z)q(z), i.e.,

L α n f ( z ) ( L α n f ( z ) ) z q ( z ) = 1 z 0 z h ( t ) d t = 1 z 0 z 1 + ( 2 β 1 ) t 1 + t d t = 1 z 0 z [ ( 2 β 1 ) + 2 ( 1 β ) 1 + t ] d t = ( 2 β 1 ) + 2 ( 1 β ) ln ( 1 + z ) z , z U .

 □

Example 2.2 Let h(z)= 1 z 1 + z be a convex function in U with h(0)=1 and Re( z h ( z ) h ( z ) +1)> 1 2 .

Let f(z)=z+ z 2 , zU. For n=1, α=2, we obtain L 2 1 f(z)= R 1 f(z)+2 S 1 f(z)=z f (z)+2z f (z)=z f (z)=z+2 z 2 , zU.

Then ( L 2 1 f ( z ) ) =1+4z,

L 2 1 f ( z ) ( L 2 1 f ( z ) ) z = ( z + 2 z 2 ) ( 1 + 4 z ) z = 8 z 2 + 6 z + 1 , [ ( L 2 1 f ( z ) ) ] 2 + L 2 1 f ( z ) ( L 2 1 f ( z ) ) = ( 1 + 4 z ) 2 + ( z + 2 z 2 ) 4 = 24 z 2 + 12 z + 1 .

We have q(z)= 1 z 0 z 1 t 1 + t dt=1+ 2 ln ( 1 + z ) z .

Using Theorem 2.12, we obtain

24 z 2 +12z+1 1 z 1 + z ,zU,

induce

8 z 2 +6z+11+ 2 ln ( 1 + z ) z ,zU.

Theorem 2.14 Let g be a convex function such that g(0)=0 and let h be the function h(z)=g(z)+ z 1 δ g (z), zU.

If α0, δ(0,1), nN, fA and the differential subordination

( z L α n f ( z ) ) δ L α n + 1 f ( z ) 1 δ ( ( L α n + 1 f ( z ) ) L α n + 1 f ( z ) δ ( L α n f ( z ) ) L α n f ( z ) ) h(z),zU,
(2.14)

holds, then

L α n + 1 f ( z ) z ( z L α n f ( z ) ) δ g(z),zU.

This result is sharp.

Proof Let p(z)= L α n + 1 f ( z ) z ( z L α n f ( z ) ) δ . We deduce that pH[1,1].

Differentiating, we obtain ( z L α n f ( z ) ) δ L α n + 1 f ( z ) 1 δ ( ( L α n + 1 f ( z ) ) L α n + 1 f ( z ) δ ( L α n f ( z ) ) L α n f ( z ) )=p(z)+ 1 1 δ z p (z), zU.

Using the notation in (2.14), the differential subordination becomes

p(z)+ 1 1 δ z p (z)h(z)=g(z)+ z 1 δ g (z).

By using Lemma 1.2, we have

p(z)g(z),zU, i.e. , L α n + 1 f ( z ) z ( z L α n f ( z ) ) δ g(z),zU,

and this result is sharp. □

Theorem 2.15 Let h be a holomorphic function which satisfies the inequality Re(1+ z h ( z ) h ( z ) )> 1 2 , zU, and h(0)=1.

If α0, δ(0,1), nN, fA and satisfies the differential subordination

( z L α n f ( z ) ) δ L α n + 1 f ( z ) 1 δ ( ( L α n + 1 f ( z ) ) L α n + 1 f ( z ) δ ( L α n f ( z ) ) L α n f ( z ) ) h(z),zU,
(2.15)

then

L α n + 1 f ( z ) z ( z L α n f ( z ) ) δ q(z),zU,

where q(z)= 1 δ z 1 δ 0 z h(t) t δ dt. The function q is convex and it is the best dominant.

Proof Let p(z)= L α n + 1 f ( z ) z ( z L α n f ( z ) ) δ , zU, pH[0,1].

Differentiating, we obtain ( z L α n f ( z ) ) δ L α n + 1 f ( z ) 1 δ ( ( L α n + 1 f ( z ) ) L α n + 1 f ( z ) δ ( L α n f ( z ) ) L α n f ( z ) )=p(z)+ 1 1 δ z p (z), zU, and (2.15) becomes

p(z)+ 1 1 δ z p (z)h(z),zU.

Using Lemma 1.1, we have

p ( z ) q ( z ) , z U , i.e. , L α n + 1 f ( z ) z ( z L α n f ( z ) ) δ q ( z ) = 1 δ z 1 δ 0 z h ( t ) t δ d t , z U ,

and q is the best dominant. □