1 Introduction

Branciari [1] was the first to study the existence of fixed points for the contractive mapping of integral type. He established a nice integral version of the Banach contraction principle and proved the following fixed point theorem.

Theorem 1.1 Let f be a mapping from a complete metric space (X,d) into itself satisfying

0 d ( f x , f y ) φ(t)dtc 0 d ( x , y ) φ(t)dt,x,yX,

where c(0,1) is a constant and φ Φ 1 . Then f has a unique fixed point aX such that lim n f n x=a for each xX.

Afterwards, many authors continued the study of Branciari and obtained many fixed point theorems for several classes of contractive mappings of integral type; see, e.g., [18] and the references therein. In particular, in 2011, Liu et al. [5] extended the result of Branciari [1] and deduced the following fixed point theorems.

Theorem 1.2 Let f be a mapping from a complete metric space (X,d) into itself satisfying

0 d ( f x , f y ) φ(t)dtα ( d ( x , y ) ) 0 d ( x , y ) φ(t)dt,x,yX,

where φ Φ 1 and α: R + [0,1) is a function with

lim sup s t α(s)<1,t>0.

Then f has a unique fixed point aX such that lim n f n x=a for each xX.

Theorem 1.3 Let f be a mapping from a complete metric space (X,d) into itself satisfying

0 d ( f x , f y ) φ(t)dtα ( d ( x , y ) ) 0 d ( x , f x ) φ(t)dt+β ( d ( x , y ) ) 0 d ( y , f y ) φ(t)dt,x,yX,

where φ Φ 1 and α,β: R + [0,1) are two functions with

α(t)+β(t)<1,t R + , lim sup s 0 + β(s)<1, lim sup s t + α ( s ) 1 β ( s ) <1,t>0.

Then f has a unique fixed point aX such that lim n f n x=a for each xX.

In 2008, Dutta and Choudhuty [9] proved the following result.

Theorem 1.4 Let f be a mapping from a complete metric space (X,d) into itself satisfying

ψ ( d ( f x , f y ) ) ψ ( d ( x , y ) ) φ ( d ( x , y ) ) ,x,yX,

where ψ,φ: R + R + are both continuous and monotone nondecreasing functions with ψ(t)=φ(t)=0 if and only if t=0. Then f has a unique fixed point aX such that lim n f n x=a for each xX.

However, to the best of our knowledge, no one studied the following contractive mappings of integral type:

ψ ( 0 d ( f x , f y ) φ ( t ) d t ) ψ ( 0 d ( x , y ) φ ( t ) d t ) ϕ ( 0 d ( x , y ) φ ( t ) d t ) ,x,yX,
(1.1)

where (φ,ϕ,ψ) Φ 1 × Φ 2 × Φ 3 ;

ψ ( 0 d ( f x , f y ) φ ( t ) d t ) α ( d ( x , y ) ) ψ ( 0 d ( x , y ) φ ( t ) d t ) ,x,yX,
(1.2)

where (φ,ψ,α) Φ 1 × Φ 3 × Φ 5 ;

ψ ( 0 d ( f x , f y ) φ ( t ) d t ) α ( d ( x , y ) ) ϕ ( 0 d ( x , f x ) φ ( t ) d t ) + β ( d ( x , y ) ) ψ ( 0 d ( y , f y ) φ ( t ) d t ) , x , y X ,
(1.3)

where (φ,ψ,ϕ) Φ 1 × Φ 3 × Φ 4 and (α,β) Φ 6 .

It is clear that the above contractive mappings of integral type include these mappings in Theorems 1.1-1.4 as special cases. The purpose of this paper is to investigate the existence of fixed points for contractive mappings (1.1)-(1.3) of integral type. Under certain conditions, we prove the existence, uniqueness and iterative approximations of fixed points for contractive mappings (1.1)-(1.3) of integral type in complete metric spaces. Three examples with uncountably many points are constructed.

2 Preliminaries

Throughout this paper, we assume that R + =[0,+), N 0 =N{0}, ℕ denotes the set of all positive integers, (X,d) is a metric space, f:XX is a self-mapping and

d n =d ( f n x , f n + 1 x ) ,(n,x) N 0 ×X,

Φ 1 = {φ:φ: R + R + is Lebesgue integrable, summable on each compact subset of R + and 0 ε φ(t)dt>0 for each ε>0};

Φ 2 = {φ:φ: R + R + satisfies that lim inf n φ( a n )>0 lim inf n a n >0 for each { a n } n N R + };

Φ 3 = {φ:φ: R + R + is nondecreasing continuous and φ(t)=0t=0};

Φ 4 = {φ:φ: R + R + satisfies that φ(0)=0};

Φ 5 = {φ:φ: R + [0,1) satisfies that lim sup s t φ(s)<1 for each t>0};

Φ 6 = {(α,β):α,β: R + [0,1) satisfy that lim sup s 0 + β(s)<1, lim sup s t + α ( s ) 1 β ( s ) <1 and α(t)+β(t)<1 for each t>0}.

The following lemmas play important roles in this paper.

Lemma 2.1 ([5])

Let φ Φ 1 and { r n } n N be a nonnegative sequence with lim n r n =a. Then

lim n 0 r n φ(t)dt= 0 a φ(t)dt.

Lemma 2.2 ([5])

Let φ Φ 1 and { r n } n N be a nonnegative sequence. Then

lim n 0 r n φ(t)dt=0

if and only if lim n r n =0.

Lemma 2.3 Let φ Φ 2 . Then φ(t)>0 if and only if t>0.

Proof Let t>0. Put a n =t for each nN. It is easy to see that t= lim inf n a n >0, which together with φ Φ 2 ensures that

φ(t)= lim inf n φ( a n )>0.

Conversely, suppose that φ(t)>0 for some t R + . Set a n =t for each nN. It is clear that φ(t)= lim inf n φ( a n )>0, which together with φ Φ 2 guarantees that

t= lim inf n a n >0.

This completes the proof. □

3 Main results

In this section we show the existence, uniqueness and iterative approximations of fixed points for contractive mappings (1.1)-(1.3) of integral type, respectively.

Theorem 3.1 Let f be a mapping from a complete metric space (X,d) into itself satisfying (1.1). Then f has a unique fixed point aX such that lim n f n x=a for each xX.

Proof Let x be an arbitrary point in X. Firstly, we show that

d n d n 1 ,nN.
(3.1)

Suppose that (3.1) does not hold. It follows that there exists some n 0 N satisfying

d n 0 > d n 0 1 .
(3.2)

Note that (3.2) and φ Φ 1 imply that

0 d n 0 φ(t)dt>0.
(3.3)

Using (1.1), (3.2) and (φ,ϕ,ψ) Φ 1 × Φ 2 × Φ 3 , we conclude immediately that

ψ ( 0 d n 0 1 φ ( t ) d t ) ψ ( 0 d n 0 φ ( t ) d t ) = ψ ( 0 d ( f n 0 x , f n 0 + 1 x ) φ ( t ) d t ) ψ ( 0 d ( f n 0 1 x , f n 0 x ) φ ( t ) d t ) ϕ ( 0 d ( f n 0 1 x , f n 0 x ) φ ( t ) d t ) = ψ ( 0 d n 0 1 φ ( t ) d t ) ϕ ( 0 d n 0 1 φ ( t ) d t ) ψ ( 0 d n 0 1 φ ( t ) d t ) ,

which yields that

ψ ( 0 d n 0 φ ( t ) d t ) =ψ ( 0 d n 0 1 φ ( t ) d t )
(3.4)

and

ϕ ( 0 d n 0 1 φ ( t ) d t ) =0.
(3.5)

Combining (3.5) and Lemma 2.3, we get that

0 d n 0 1 φ(t)dt=0,

which together with ψ Φ 3 and (3.4) means that

ψ ( 0 d n 0 φ ( t ) d t ) =ψ ( 0 d n 0 1 φ ( t ) d t ) =ψ(0)=0,

that is,

0 d n 0 φ(t)dt=0,

which contradicts (3.3). Hence (3.1) holds.

Secondly, we show that

lim n d n =0.
(3.6)

In view of (3.1), we deduce that the nonnegative sequence { d n } n N 0 is nonincreasing, which means that there exists a constant c with lim n d n =c0. Suppose that c>0. It follows from (1.1) that

ψ ( 0 d n φ ( t ) d t ) = ψ ( 0 d ( f n x , f n + 1 x ) φ ( t ) d t ) ψ ( 0 d ( f n x , f n 1 x ) φ ( t ) d t ) ϕ ( 0 d ( f n x , f n 1 x ) φ ( t ) d t ) = ψ ( 0 d n 1 φ ( t ) d t ) ϕ ( 0 d n 1 φ ( t ) d t ) , n N .
(3.7)

Taking upper limit in (3.7) and using Lemma 2.1 and (φ,ϕ,ψ) Φ 1 × Φ 2 × Φ 3 , we conclude that

ψ ( 0 c φ ( t ) d t ) = lim sup n ψ ( 0 d n φ ( t ) d t ) lim sup n [ ψ ( 0 d n 1 φ ( t ) d t ) ϕ ( 0 d n 1 φ ( t ) d t ) ] lim sup n ψ ( 0 d n 1 φ ( t ) d t ) lim inf n ϕ ( 0 d n 1 φ ( t ) d t ) = ψ ( 0 c φ ( t ) d t ) lim inf n ϕ ( 0 d n 1 φ ( t ) d t ) < ψ ( 0 c φ ( t ) d t ) ,

which is a contradiction. Hence c=0.

Thirdly, we show that { f n x } n N is a Cauchy sequence. Suppose that { f n x } n N is not a Cauchy sequence, which means that there is a constant ε>0 such that for each positive integer k, there are positive integers m(k) and n(k) with m(k)>n(k)>k satisfying

d ( f m ( k ) x , f n ( k ) x ) >ε.
(3.8)

For each positive integer k, let m(k) denote the least integer exceeding n(k) and satisfying (3.8). It follows that

d ( f m ( k ) x , f n ( k ) x ) >εandd ( f m ( k ) 1 x , f n ( k ) x ) ε,kN.
(3.9)

Note that

d ( f m ( k ) x , f n ( k ) x ) d ( f n ( k ) x , f m ( k ) 1 x ) + d m ( k ) 1 , k N ; | d ( f m ( k ) x , f n ( k ) + 1 x ) d ( f m ( k ) x , f n ( k ) x ) | d n ( k ) , k N ; | d ( f m ( k ) + 1 x , f n ( k ) + 1 x ) d ( f m ( k ) x , f n ( k ) + 1 x ) | d m ( k ) , k N ; | d ( f m ( k ) + 1 x , f n ( k ) + 1 x ) d ( f m ( k ) + 1 x , f n ( k ) + 2 x ) | d n ( k ) + 1 , k N .
(3.10)

In light of (3.9) and (3.10), we get that

ε = lim k d ( f n ( k ) x , f m ( k ) x ) = lim k d ( f m ( k ) x , f n ( k ) + 1 x ) = lim k d ( f m ( k ) + 1 x , f n ( k ) + 1 x ) = lim k d ( f m ( k ) + 1 x , f n ( k ) + 2 x ) .
(3.11)

In view of (1.1), we deduce that

ψ ( 0 d ( f m ( k ) + 1 x , f n ( k ) + 2 x ) φ ( t ) d t ) ψ ( 0 d ( f m ( k ) x , f n ( k ) + 1 x ) φ ( t ) d t ) ϕ ( 0 d ( f m ( k ) x , f n ( k ) + 1 x ) φ ( t ) d t ) , k N .
(3.12)

Taking upper limit in (3.12) and using (3.11), (φ,ϕ,ψ) Φ 1 × Φ 2 × Φ 3 and Lemma 2.1, we deduce that

ψ ( 0 ε φ ( t ) d t ) = lim sup k ψ ( 0 d ( f m ( k ) + 1 x , f n ( k ) + 2 x ) φ ( t ) d t ) lim sup k [ ψ ( 0 d ( f m ( k ) x , f n ( k ) + 1 x ) φ ( t ) d t ) ϕ ( 0 d ( f m ( k ) x , f n ( k ) + 1 x ) φ ( t ) d t ) ] lim sup k ψ ( 0 d ( f m ( k ) x , f n ( k ) + 1 x ) φ ( t ) d t ) lim inf k ϕ ( 0 d ( f m ( k ) x , f n ( k ) + 1 x ) φ ( t ) d t ) = ψ ( 0 ε φ ( t ) d t ) lim inf k ϕ ( 0 d ( f m ( k ) x , f n ( k ) + 1 x ) φ ( t ) d t ) < ψ ( 0 ε φ ( t ) d t ) ,

which is impossible. Thus { f n x } n N is a Cauchy sequence.

Since (X,d) is complete, it follows that there exists a point aX satisfying lim n f n x=a. By virtue of (1.1), we infer that

ψ ( 0 d ( f n + 1 x , f a ) φ ( t ) d t ) ψ ( 0 d ( f n x , a ) φ ( t ) d t ) ϕ ( 0 d ( f n x , a ) φ ( t ) d t ) ,nN,

which together with (φ,ϕ,ψ) Φ 1 × Φ 2 × Φ 3 and Lemmas 2.1 and 2.2 gives that

ψ ( 0 d ( a , f a ) φ ( t ) d t ) = lim sup n ψ ( 0 d ( f n + 1 x , f a ) φ ( t ) d t ) lim sup n [ ψ ( 0 d ( f n x , a ) φ ( t ) d t ) ϕ ( 0 d ( f n x , a ) φ ( t ) d t ) ] lim sup n ψ ( 0 d ( f n x , a ) φ ( t ) d t ) lim inf n ϕ ( 0 d ( f n x , a ) φ ( t ) d t ) = ψ ( 0 ) 0 = 0 ,

which together with ψ Φ 3 yields that

0 d ( a , f a ) φ(t)dt=0,

that is, a=fa.

Finally, we show that a is a unique fixed point of f in X. Suppose that f has another fixed point bX{a}. It follows from (1.1) and (φ,ϕ,ψ) Φ 1 × Φ 2 × Φ 3 that

ψ ( 0 d ( a , b ) φ ( t ) d t ) = ψ ( 0 d ( f a , f b ) φ ( t ) d t ) ψ ( 0 d ( a , b ) φ ( t ) d t ) ϕ ( 0 d ( a , b ) φ ( t ) d t ) < ψ ( 0 d ( a , b ) φ ( t ) d t ) ,

which is a contradiction. This completes the proof. □

Theorem 3.2 Let f be a mapping from a complete metric space (X,d) into itself satisfying (1.2). Then f has a unique fixed point aX such that lim n f n x=a for each xX.

Proof Let x be an arbitrary point in X. Suppose that (3.2) holds for some n 0 N. Using (1.2), (3.2) and (φ,ψ,α) Φ 1 × Φ 3 × Φ 5 , we get that

ψ ( 0 d n 0 φ ( t ) d t ) >0

and

ψ ( 0 d n 0 1 φ ( t ) d t ) ψ ( 0 d n 0 φ ( t ) d t ) = ψ ( 0 d ( f n 0 x , f n 0 + 1 x ) φ ( t ) d t ) α ( d ( f n 0 1 x , f n 0 x ) ) ψ ( 0 d ( f n 0 1 x , f n 0 x ) φ ( t ) d t ) = α ( d n 0 1 ) ψ ( 0 d n 0 1 φ ( t ) d t ) < ψ ( 0 d n 0 1 φ ( t ) d t ) ,

which is a contradiction, and hence (3.2) does not hold. Consequently, (3.1) is true. Notice that the nonnegative sequence { d n } n N 0 is nonincreasing, which implies that there exists a constant c0 with lim n d n =c. Suppose that c>0. In light of (1.2), we infer that

ψ ( 0 d n φ ( t ) d t ) = ψ ( 0 d ( f n x , f n + 1 x ) φ ( t ) d t ) α ( d ( f n 1 x , f n x ) ) ψ ( 0 d ( f n 1 x , f n x ) φ ( t ) d t ) = α ( d n 1 ) ψ ( 0 d n 1 φ ( t ) d t ) , n N .
(3.13)

Taking upper limit in (3.13) and using Lemma 2.1 and (φ,ψ,α) Φ 1 × Φ 3 × Φ 5 , we know that

ψ ( 0 c φ ( t ) d t ) = lim sup n ψ ( 0 d n φ ( t ) d t ) lim sup n [ α ( d n 1 ) ψ ( 0 d n 1 φ ( t ) d t ) ] lim sup n α ( d n 1 ) lim sup n ψ ( 0 d n 1 φ ( t ) d t ) < ψ ( 0 c φ ( t ) d t ) ,

which is a contradiction, and hence c=0, that is, (3.6) holds.

Now we show that { f n x } n N is a Cauchy sequence. Suppose that { f n x } n N is not a Cauchy sequence. As in the proof of Theorem 3.1, we conclude that there exist ε>0 and {m(k),n(k):kN}N with m(k)>n(k)>k for each kN satisfying (3.8)-(3.11). By means of (1.2), (3.11), Lemma 2.1 and (φ,ψ,α) Φ 1 × Φ 3 × Φ 5 , we get that

ψ ( 0 ε φ ( t ) d t ) = lim sup k ψ ( 0 d ( f m ( k ) + 1 x , f n ( k ) + 2 x ) φ ( t ) d t ) = lim sup k [ α ( d ( f m ( k ) x , f n ( k ) + 1 x ) ) ψ ( 0 d ( f m ( k ) x , f n ( k ) + 1 x ) φ ( t ) d t ) ] lim sup k α ( d ( f m ( k ) x , f n ( k ) + 1 x ) ) lim sup k ψ ( 0 d ( f m ( k ) x , f n ( k ) + 1 x ) φ ( t ) d t ) < ψ ( 0 ε φ ( t ) d t ) ,

which is a contradiction. Hence { f n x } n N is a Cauchy sequence.

It follows from completeness of (X,d) that there exists aX with lim n f n x=a. In view of (1.2), we have

ψ ( 0 d ( f n + 1 x , f a ) φ ( t ) d t ) α ( d ( f n x , a ) ) ψ ( 0 d ( f n x , a ) φ ( t ) d t ) ,n N 0 .
(3.14)

Taking upper limit in (3.14) and making use of (φ,ψ,α) Φ 1 × Φ 3 × Φ 5 and Lemmas 2.1 and 2.2, we get that

ψ ( 0 d ( a , f a ) φ ( t ) d t ) = lim sup n ψ ( 0 d ( f n + 1 x , f a ) φ ( t ) d t ) lim sup n [ α ( d ( f n x , a ) ) ψ ( 0 d ( f n x , a ) φ ( t ) d t ) ] lim sup n α ( d ( f n x , a ) ) lim sup n ψ ( 0 d ( f n x , a ) φ ( t ) d t ) = 0 ,

which means that

ψ ( 0 d ( a , f a ) φ ( t ) d t ) =0,

that is, fa=a.

Next we prove that a is a unique fixed point of f in X. Suppose that f has another fixed point bX{a}. It follows from (1.2) and (φ,ψ,α) Φ 1 × Φ 3 × Φ 5 that

ψ ( 0 d ( a , b ) φ ( t ) d t ) = ψ ( 0 d ( f a , f b ) φ ( t ) d t ) α ( d ( a , b ) ) ψ ( 0 d ( a , b ) φ ( t ) d t ) < ψ ( 0 d ( a , b ) φ ( t ) d t ) ,

which is a contradiction. This completes the proof. □

Theorem 3.3 Let f be a mapping from a complete metric space (X,d) into itself satisfying (1.3) and

ϕ(t)ψ(t),t R + .
(3.15)

Then f has a unique fixed point aX such that lim n f n x=a for each xX.

Proof Let x be an arbitrary point in X. If there exists n 0 N 0 satisfying d n 0 =0, it is clear that f n 0 x is a fixed point of f and lim n f n x= f n 0 x. Now we assume that d n 0 for all n N 0 . Suppose that (3.2) holds for some n 0 N. It follows from (1.3) that

ψ ( 0 d n 0 φ ( t ) d t ) = ψ ( 0 d ( f n 0 x , f n 0 + 1 x ) φ ( t ) d t ) α ( d ( f n 0 1 x , f n 0 x ) ) ϕ ( 0 d ( f n 0 1 x , f n 0 x ) φ ( t ) d t ) + β ( d ( f n 0 1 x , f n 0 x ) ) ψ ( 0 d ( f n 0 x , f n 0 + 1 x ) φ ( t ) d t ) = α ( d n 0 1 ) ϕ ( 0 d n 0 1 φ ( t ) d t ) + β ( d n 0 1 ) ψ ( 0 d n 0 φ ( t ) d t ) ,

which together with (3.2), (3.15), (φ,ψ,ϕ) Φ 1 × Φ 3 × Φ 4 and (α,β) Φ 6 implies that

0 < ψ ( 0 d n 0 1 φ ( t ) d t ) ψ ( 0 d n 0 φ ( t ) d t ) α ( d n 0 1 ) 1 β ( d n 0 1 ) ϕ ( 0 d n 0 1 φ ( t ) d t ) α ( d n 0 1 ) 1 β ( d n 0 1 ) ψ ( 0 d n 0 1 φ ( t ) d t ) < ψ ( 0 d n 0 1 φ ( t ) d t ) ,

which is a contradiction, and hence (3.2) does not hold. Consequently, (3.1) holds.

Next we show that lim n d n =0. Note that the nonnegative sequence { d n } n N is nonincreasing, which implies that there exists a constant c0 with lim n d n =c. Suppose that c>0. It follows from (1.3) that

ψ ( 0 d n φ ( t ) d t ) = ψ ( 0 d ( f n x , f n + 1 x ) φ ( t ) d t ) α ( d ( f n 1 x , f n x ) ) ϕ ( 0 d ( f n 1 x , f n x ) φ ( t ) d t ) + β ( d ( f n 1 x , f n x ) ) ψ ( 0 d ( f n x , f n + 1 x ) φ ( t ) d t ) = α ( d n 1 ) ϕ ( 0 d n 1 φ ( t ) d t ) + β ( d n 1 ) ψ ( 0 d n φ ( t ) d t ) , n N ,

which means that

ψ ( 0 d n φ ( t ) d t ) α ( d n 1 ) 1 β ( d n 1 ) ϕ ( 0 d n 1 φ ( t ) d t ) ,nN.
(3.16)

Taking upper limit in (3.16) and using (3.15), (φ,ψ,ϕ) Φ 1 × Φ 3 × Φ 4 , (α,β) Φ 6 and Lemma 2.1, we arrive at

ψ ( 0 c φ ( t ) d t ) = lim sup n ψ ( 0 d n φ ( t ) d t ) lim sup n [ α ( d n 1 ) 1 β ( d n 1 ) ϕ ( 0 d n 1 φ ( t ) d t ) ] lim sup n α ( d n 1 ) 1 β ( d n 1 ) lim sup n ψ ( 0 d n 1 φ ( t ) d t ) lim sup s c + α ( s ) 1 β ( s ) ψ ( 0 c φ ( t ) d t ) < ψ ( 0 c φ ( t ) d t ) ,

which is impossible. Therefore c=0, that is, lim n d n =0.

Next we show that { f n x } n N is a Cauchy sequence. Suppose that { f n x } n N is not a Cauchy sequence. As in the proof of Theorem 3.1, we conclude that there exist ε>0 and {m(k),n(k):kN}N with m(k)>n(k)>k for each kN satisfying (3.8)-(3.11). By means of (3.12), we deduce that

ψ ( 0 d ( f m ( k ) + 1 x , f n ( k ) + 2 x ) φ ( t ) d t ) α ( d ( f m ( k ) x , f n ( k ) + 1 x ) ) ϕ ( 0 d ( f m ( k ) x , f m ( k ) + 1 x ) φ ( t ) d t ) + β ( d ( f m ( k ) x , f n ( k ) + 1 x ) ) ψ ( 0 d ( f n ( k ) + 1 x , f n ( k ) + 2 x ) φ ( t ) d t ) = α ( d ( f m ( k ) x , f n ( k ) + 1 x ) ) ϕ ( 0 d m ( k ) φ ( t ) d t ) + β ( d ( f m ( k ) x , f n ( k ) + 1 x ) ) ψ ( 0 d n ( k ) φ ( t ) d t ) , k N .
(3.17)

Taking upper limit in (3.17) and making use of (1.3), (3.11), Lemma 2.1, (φ,ψ,ϕ) Φ 1 × Φ 3 × Φ 4 and (α,β) Φ 6 , we deduce that

0 < ψ ( 0 ε φ ( t ) d t ) = lim sup k ψ ( 0 d ( f m ( k ) + 1 x , f n ( k ) + 2 x ) φ ( t ) d t ) lim sup k [ α ( d ( f m ( k ) x , f n ( k ) + 1 x ) ) ϕ ( 0 d m ( k ) φ ( t ) d t ) + β ( d ( f m ( k ) x , f n ( k ) + 1 x ) ) ψ ( 0 d n ( k ) φ ( t ) d t ) ] lim sup k α ( d ( f m ( k ) x , f n ( k ) + 1 x ) ) lim sup k ψ ( 0 d m ( k ) φ ( t ) d t ) + lim sup k β ( d ( f m ( k ) x , f n ( k ) + 1 x ) ) lim sup k ψ ( 0 d n ( k ) φ ( t ) d t ) lim sup s ε α ( s ) ψ ( 0 0 φ ( t ) d t ) + lim sup s ε β ( s ) ψ ( 0 0 φ ( t ) d t ) = 0 ,

which is a contradiction. Hence { f n x } n N is a Cauchy sequence.

Completeness of (X,d) implies that there exists a point aX such that lim n f n x=a. In view of (1.3), (φ,ψ,ϕ) Φ 1 × Φ 3 × Φ 4 , (α,β) Φ 6 and Lemma 2.1, we infer that

ψ ( 0 d ( a , f a ) φ ( t ) d t ) = lim sup n ψ ( 0 d ( f n + 1 x , f a ) φ ( t ) d t ) lim sup n [ α ( d ( f n x , a ) ) ϕ ( 0 d ( f n x , f n + 1 x ) φ ( t ) d t ) + β ( d ( f n x , a ) ) ψ ( 0 d ( a , f a ) φ ( t ) d t ) ] lim sup n α ( d ( f n x , a ) ) lim sup n ψ ( 0 d n φ ( t ) d t ) + lim sup n β ( d ( f n x , a ) ) ψ ( 0 d ( a , f a ) φ ( t ) d t ) lim sup s 0 + β ( s ) ψ ( 0 d ( a , f a ) φ ( t ) d t ) ,

which together with (α,β) Φ 6 yields that

ψ ( 0 d ( a , f a ) φ ( t ) d t ) =0,

which gives that d(fa,a)=0, that is, fa=a.

Finally, we prove that a is a unique fixed point of f in X. Suppose that f has another fixed point bX{a}. It follows from (1.3) and (φ,ψ,ϕ) Φ 1 × Φ 3 × Φ 4 and (α,β) Φ 6 that

0 ψ ( 0 d ( f a , f b ) φ ( t ) d t ) α ( d ( a , b ) ) ϕ ( 0 d ( a , f a ) φ ( t ) d t ) + β ( d ( a , b ) ) ψ ( 0 d ( b , f b ) φ ( t ) d t ) = 0 ,

which is a contradiction. This completes the proof. □

4 Three examples

Now we construct three examples to explain Theorems 3.1-3.3.

Example 4.1 Let X=[0, 1 2 ]{1}{3} be endowed with the Euclidean metric d=||. Assume that f:XX and φ,ϕ,ψ: R + R + are defined by

f ( x ) = { x 2 , x [ 0 , 1 2 ] , 0 , x = 1 , 1 , x = 3 , φ ( t ) = { t 2 , t [ 0 , 1 ] , 1 , t ( 1 , + ) , ϕ ( t ) = { t 2 4 , t [ 0 , 1 ] , t 2 8 , t ( 1 , + ) , ψ ( t ) = { t , t [ 0 , 1 ] , t 2 + 1 2 , t ( 1 , + ) .

Clearly, (X,d) is a complete metric and (φ,ϕ,ψ) Φ 1 × Φ 2 × Φ 3 . Let x,yX with x<y. In order to verify (1.1), we have to consider the following four cases.

Case 1. Let x,y[0, 1 2 ]. Note that

ψ ( 0 d ( f x , f y ) φ ( t ) d t ) = ψ ( 0 1 2 | x y | φ ( t ) d t ) = ψ ( | x y | 2 16 ) = | x y | 2 16 | x y | 2 4 | x y | 4 16 = ψ ( | x y | 2 4 ) ϕ ( | x y | 2 4 ) = ψ ( 0 | x y | φ ( t ) d t ) ϕ ( 0 | x y | φ ( t ) d t ) = ψ ( 0 d ( x , y ) φ ( t ) d t ) ϕ ( 0 d ( x , y ) φ ( t ) d t ) .

Case 2. Let x[0, 1 2 ] and y=1. It follows that

ψ ( 0 d ( f x , f y ) φ ( t ) d t ) = ψ ( 0 x 2 φ ( t ) d t ) = ψ ( x 2 16 ) = x 2 16 ( 1 x ) 2 4 ( 1 x ) 4 16 = ψ ( ( 1 x ) 2 4 ) ϕ ( ( 1 x ) 2 4 ) = ψ ( 0 | x 1 | φ ( t ) d t ) ϕ ( 0 | x 1 | φ ( t ) d t ) = ψ ( 0 d ( x , y ) φ ( t ) d t ) ϕ ( 0 d ( x , y ) φ ( t ) d t ) .

Case 3. Let x[0, 1 2 ] and y=3. It follows that

ψ ( 0 d ( f x , f y ) φ ( t ) d t ) = ψ ( 0 2 x 2 φ ( t ) d t ) = ψ ( ( 2 x ) 2 16 ) = ( 2 x ) 2 16 < 1 2 1 2 [ ( 9 4 x ) 2 + 1 ] 1 8 ( 9 4 x ) 2 = ψ ( 9 4 x ) ϕ ( 9 4 x ) = ψ ( 0 1 φ ( t ) d t + 1 3 x φ ( t ) d t ) ϕ ( 0 1 φ ( t ) d t + 1 3 x φ ( t ) d t ) = ψ ( 0 3 x φ ( t ) d t ) ϕ ( 0 3 x φ ( t ) d t ) = ψ ( 0 d ( x , y ) φ ( t ) d t ) ϕ ( 0 d ( x , y ) φ ( t ) d t ) .

Case 4. Let x=1 and y=3. Note that

ψ ( 0 d ( f x , f y ) φ ( t ) d t ) = ψ ( 0 1 φ ( t ) d t ) = ψ ( 1 4 ) = 1 4 < 139 128 = 1 2 ( 25 16 + 1 ) 1 8 25 16 = ψ ( 5 4 ) ϕ ( 5 4 ) = ψ ( 0 1 φ ( t ) d t + 1 2 φ ( t ) d t ) ϕ ( 0 1 φ ( t ) d t + 1 2 φ ( t ) d t ) = ψ ( 0 2 φ ( t ) d t ) ϕ ( 0 2 φ ( t ) d t ) = ψ ( 0 d ( x , y ) φ ( t ) d t ) ϕ ( 0 d ( x , y ) φ ( t ) d t ) .

That is, (1.1) holds. Thus Theorem 3.1 guarantees that f has a unique fixed point 0X such that lim n f n x=0 for each xX.

Example 4.2 Let X=[0,1][4,5] be endowed with the Euclidean metric d=||. Assume that f:XX and φ,ψ: R + R + and α: R + [0,1) are defined by

f ( x ) = { x 2 4 , x [ 0 , 1 ] , x 2 26 , x [ 4 , 5 ] , φ ( t ) = { 4 t 3 , t [ 0 , 1 ] , 2 t , t [ 4 , 5 ] , ψ ( t ) = t 1 2 , t R + , α ( t ) = { 1 3 + t 2 2 , t [ 0 , 1 ] , 1 2 t , t ( 1 , 3 ) , 1 t , t ( 3 , + ) .

Obviously, (φ,ψ,α) Φ 1 × Φ 3 × Φ 5 . Put x,yX with x<y. In order to verify (1.2), we have to consider three possible cases as follows.

Case 1. Let x,y[0,1]. It is clear that

ψ ( 0 d ( f x , f y ) φ ( t ) d t ) = ( 0 y 2 x 2 4 4 t 3 d t ) 1 2 = ( x + y ) 2 16 | x y | 2 1 4 | x y | 2 ( 1 3 + 1 2 | x y | 2 ) | x y | 2 = α ( d ( x , y ) ) ψ ( 0 d ( x , y ) φ ( t ) d t ) .

Case 2. Let x,y[4,5]. It follows that

ψ ( 0 d ( f x , f y ) φ ( t ) d t ) = ( 0 y 2 x 2 26 4 t 3 d t ) 1 2 = ( x + y 26 ) 2 | x y | 2 25 169 | x y | 2 ( 1 3 + 1 2 | x y | 2 ) | x y | 2 = α ( d ( x , y ) ) ψ ( 0 d ( x , y ) φ ( t ) d t ) .

Case 3. Let x[0,1] and y[4,5]. It follows that

ψ ( 0 d ( f x , f y ) φ ( t ) d t ) = ( 0 y 2 26 x 2 4 4 t 3 d t ) 1 2 = ( y 2 26 x 2 4 ) 2 ( 25 26 ) 2 < 1 < | x y | = α ( | x y | ) | x y | = α ( | x y | ) ( 0 1 4 t 3 d t + 1 | x y | 2 t d t ) 1 2 = α ( d ( x , y ) ) ( 0 | x y | φ ( t ) d t ) 1 2 = α ( d ( x , y ) ) ψ ( 0 d ( x , y ) φ ( t ) d t ) .

That is, (1.2) holds. Consequently, the conditions of Theorem 3.2 are satisfied. It follows from Theorem 3.2 that f has a unique fixed point 0X such that lim n f n x=0 for each xX.

Example 4.3 Let X=[ 1 2 ,1][ 3 2 ,2] be endowed with the Euclidean metric d=||. Assume that f:XX, φ,ϕ,ψ: R + R + and α,β: R + [0,1) are defined by

f ( x ) = { 1 , x [ 1 2 , 1 ] , x 2 , x [ 3 2 , 2 ] , ϕ ( t ) = { 0 , t [ 0 , 9 16 ) 32 t 2 9 , t [ 9 16 , + ) , φ ( t ) = 2 t , ψ ( t ) = 4 t 2 , α ( t ) = t ( 1 2 + t ) 2 , β ( t ) = t 2 ( 1 2 + t ) 2 , t R + .

It is easy to see that (φ,ψ,ϕ) Φ 1 × Φ 3 × Φ 4 , (α,β) Φ 6 and (3.15) holds. In order to verify (1.3), we have to consider the five possible cases below.

Case 1. Let x,y[ 3 2 ,2] with xy. Note that

ψ ( 0 d ( f x , f y ) φ ( t ) d t ) = ψ ( 0 | x y | 2 φ ( t ) d t ) = ψ ( ( x y ) 2 4 ) = ( x y ) 4 4 x y 2 x y 2 x 4 ( 1 2 + x y ) 2 x y ( 1 2 + x y ) 2 32 9 ( x 2 4 ) 2 = α ( d ( x , y ) ) ϕ ( 0 d ( x , f x ) φ ( t ) d t ) α ( d ( x , y ) ) ϕ ( 0 d ( x , f x ) φ ( t ) d t ) d + β ( d ( x , y ) ) ψ ( 0 d ( y , f y ) φ ( t ) d t ) .

Case 2. Let x,y[ 3 2 ,2] with y>x. Note that

ψ ( 0 d ( f x , f y ) φ ( t ) d t ) = ψ ( 0 | y x | 2 φ ( t ) d t ) = ( y x ) 4 4 ( y x ) 2 4 y 4 ( 1 2 + y x ) 2 = ( y x ) 2 ( 1 2 + y x ) 2 y 4 4 = β ( d ( x , y ) ) ψ ( y 2 4 ) = β ( d ( x , y ) ) ψ ( 0 y 2 φ ( t ) d t ) = β ( d ( x , y ) ) ψ ( 0 d ( y , f y ) φ ( t ) d t ) α ( d ( x , y ) ) ϕ ( 0 d ( x , f x ) φ ( t ) d t ) + β ( d ( x , y ) ) ψ ( 0 d ( y , f y ) φ ( t ) d t ) .

Case 3. Let x[ 3 2 ,2] and y[ 1 2 ,1]. It follows that

ψ ( 0 d ( f x , f y ) φ ( t ) d t ) = ψ ( 0 x 2 2 φ ( t ) d t ) = ψ ( ( x 2 ) 2 4 ) = ( x 2 ) 4 4 1 64 < 27 64 = 3 8 2 9 81 16 x y ( 1 2 + x y ) 2 2 9 x 4 = α ( d ( x , y ) ) ϕ ( x 2 4 ) = α ( d ( x , y ) ) ϕ ( 0 d ( x , f x ) φ ( t ) d t ) α ( d ( x , y ) ) ϕ ( 0 d ( x , f x ) φ ( t ) d t ) + β ( d ( x , y ) ) ψ ( 0 d ( y , f y ) φ ( t ) d t ) .

Case 4. Let x[ 1 2 ,1] and y[ 3 2 ,2]. Note that

ψ ( 0 d ( f x , f y ) φ ( t ) d t ) = ψ ( 0 | y 2 | 2 2 t d t ) = ( y 2 ) 4 4 1 64 < 1 4 81 64 ( y x ) 2 ( 1 2 + y x ) 2 y 4 4 = β ( d ( x , y ) ) ψ ( y 2 4 ) = β ( d ( x , y ) ) ψ ( 0 d ( y , f y ) φ ( t ) d t ) α ( d ( x , y ) ) ϕ ( 0 d ( x , f x ) φ ( t ) d t ) + β ( d ( x , y ) ) ψ ( 0 d ( y , f y ) φ ( t ) d t ) .

Case 5. Let x,y[ 1 2 ,1]. Notice that fx=fy=1. It follows that

ψ ( 0 d ( f x , f y ) φ ( t ) d t ) = 0 α ( d ( x , y ) ) ϕ ( 0 d ( x , f x ) φ ( t ) d t ) + β ( d ( x , y ) ) ψ ( 0 d ( y , f y ) φ ( t ) d t ) .

That is, (1.3) holds. Thus all the conditions of Theorem 3.3 are satisfied. It follows from Theorem 3.3 that f has a unique fixed point 1X such that lim n f n x=1 for each xX.