Background

Extreme heat is a public health risk [13]. In 2013, 58.729 heat stroke diagnoses have been recorded for Japan [4], for example, and the United States Centers for Disease Control report an annual 659 cases (on average) of heat-related deaths between 1999 and 2009 [5]. These numbers are likely underestimated: as the physical effects of heat primarily exacerbate underlying conditions, diagnoses of death as heat-related are of varied quality [6]. Data availability on heat stroke incidence also depends on whether an emergency room or ambulance call occurs, as well as on active collection of such data. Heat increases the risk of dying of preexisting cardiovascular disease [6]; and heat stroke may lead to multiple organ failure [68]. Heat-related morbidity and mortality are preventable. Older persons, people taking medications that impair thermoregulation [6], very young children, socially isolated elderly, and people physically active outdoors during very hot periods have been identified as particularly at risk [912]. It has been argued that populations residing in urban centers are more vulnerable to heat events due to the urban heat island effect and higher population density [1317]. In recent years additional concerns have arisen about a contribution of global warming to an increased frequency of extreme temperature events [18, 19]. “Business as usual” climate change scenarios estimate that the incidence of heat events is likely to increase in the near future [20, 21]. As a result, it has been suggested that future health risks from heat might increase [2224]. In 2012, extreme temperature events classified as disasters by the WHO Collaborating Centre for Research on the Epidemiology of Disasters - CRED occurred 51 times worldwide, giving climatological disasters (temperature events, droughts and wildfires) an overall share of 23.8% of all 2012 disasters [25]. Recent severe heat waves occurred in Europe and Russia in 2003, 2006 and 2010, in the United States in 2012, in Australia in 2009 and 2013, and in Japan in 2010 and 2013, among others [26, 27]. Beyond these extreme cases, smaller scale heat waves occur frequently and pose risks to human health. Heat impacts on humans can be measured through thermal indices [28]. Various methods to calculate a heat index exist, and without adherence to a standard, comparability between measurements and studies is challenging [29, 30].

With a changing climate, populations of large cities in temperate regions, subtropical or tropical climates have all been characterized as vulnerable to heat [3, 31, 32]. Further measures may be needed to continually protect human health from adverse effects of heat on all continents. Adaptation to climate change has been defined as a “process of adjustment to actual or expected climate and its effects, in order to moderate harm or exploit beneficial opportunities” [33]. In this study, we are particularly interested in intentional, planned adaptation.

While we have conflicting information on risk perception of heat among populations [11, 34, 35], older persons have been characterized as especially susceptible to ill effects of heat [3638]. Heat warning systems have been introduced as a prevention measure [3941]. These usually combine information from weather stations based on a cutoff system with more or less targeted communication campaigns. Such heat warning systems can now be found across the planet, usually at city level [42].

Despite increased interest in climate change and its impacts, and a large number of heat prevention plans in place in higher-income countries to protect human health [39, 43], we have hardly any conclusive evidence on the effects of said adaptation measures [44]. Is climate change adaptation to heat reducing heat stroke incidence and heat-related mortality? This study uses a systematic review design in an attempt to answer this question.

Methods

We conducted a systematic literature review of peer-reviewed published literature. The PRISMA checklist, research protocol and the data extraction sheet can be found in the supplementary material (Additional files 1, 2 and 3). The scope of our review was as follows:

Population: urban populations of all ages, sexes and ethnic groups.

Intervention: Heat adaptation measures conducted in an urban area.

Because heat adaptation aims at preventing adverse health effects, we use the terms heat adaptation and heat prevention interchangeably in this review.

Comparison: none (no adaptation).

Outcomes: impacts on heat-related morbidity and mortality.

Context: International large urban centersa.

The following outcomes were of interest:

  • Impacts measured as reduction in excess heat stroke incidence, hospitalization for heat-related illness, and cases of cardiovascular, respiratory and all-cause mortality in extreme heat periods as compared to previous heat periods.

  • Effectiveness measured

  1. 1)

    as reduction in excess heat stroke incidence, hospitalization for heat-related illness and cases of cardiovascular, respiratory and all-cause mortality, for which we accepted the proxy indicator of health services use (emergency medical care at facility or on ambulance; hospital release diagnosis or physician’s diagnosis) for heat stroke,

  2. 2)

    as heat island exposure reduction signaled through changes in urban planning or taking up of heat warning systems.

Search strategy

We applied a combined search strategy of automated search and hand search of journals. Two researchers independently searched the electronic databases PubMed, Web of Knowledge, Biological Abstracts, CAB Abstracts and ProQuest Dissertation & Theses A&I.

We applied combinations of the search terms climat*, heat, adapt*, compounds of climate change, adaptation, adapting, heat wave, extreme heat, heat island combined with evaluat*, effect* and exposure in the automated searchesb.

Search strings had been pre-tested during a mapping review.

Additionally, both researchers manually searched the journals Climatic Change and International Journal of Climate Change Strategies and Management to increase our chances of finding articles that focus on evaluating adaptation strategies from a management or urban planning perspective.

Ancillary search procedures included checking the reference lists of identified primary studies as well as asking three leading international researchers for suggestions and works in progress.

Selection criteria

The following inclusion and exclusion criteria were applied:

Inclusion

Must include adaptation specifically for heat. All languages as long as an English abstract is available. Only reviews and original research articles as well as books or published national and international reports (defined as having an ISBN number). Must include at least one human health outcome, or health-related behavior changes. Must contain an evaluation or assessment. All publication years included.

Exclusion

No English abstract available. Comments, editorials, correspondences and letters are excluded. Mitigation rather than adaptation focus of the article. Focus too limited: only a description of heat adaptation planned or implemented without assessment of effects. No evaluation of human health impacts.

Two researchers independently selected relevant articles from the searches with the same search terms as well as through cross-checking reference lists. One researcher contacted leading experts for input on work-in-progress and further studies to be included via email.

Any disagreement between the two researchers was resolved and evaluated by a third member of the research team.

Study quality assessment

For study quality assessment, the NHS Critical Appraisal Skills Program (CASP) [45] checklists were used according to each study type. CASP also provides a checklist for quality appraisal of qualitative studies. Although specific tools for each study type prohibit a general comparison across study types, Katrak et al. [46] have previously criticized generic assessment tools for being too general. In addition, our review aimed at being comprehensive and therefore intentionally included a vast range of studies. Any attempt to assess these with a generic tool was unfit for representing their diversity. The CASP checklists were aimed at answering general guiding questions also provided by Booth et al. [47]:

  1. 1.

    Validity: Do the results of a study fit with other available evidence? How are confounding and bias handled?

  2. 2.

    Reliability: What are the results and how much might they be owed to chance?

  3. 3.

    Applicability: Can we generalize the results? How strong are recommendations for practice based on these study results?

For the specific questions, see Additional file 4.

To reduce the risk of subjective quality judgment, we decided not to exclude nor weigh studies based on quality rating or scales. While study quality assessment is important to judge the overall evidence base for adaptation effectiveness, the usefulness of excluding studies based on quality has been contested [47, 48].

Study synthesis

Due to the heterogeneity and varied designs of studies and reports, no overall quantitative meta-analysis could be performed. Instead, we applied narrative synthesis.

We conducted two subgroup analyses of survey studies and observational studies as these were the two most common study types.

Results

The database search led to 5539 results, 2299 after removal of duplicates. After title and abstract screening 2252 articles were excluded because they did not concern human health or did not contain an evaluation. 47 articles were assessed as full texts. We excluded 29 articles after reading the full texts because no evaluation according to our criteria was described. Through additional sources such as reference lists we identified 12 studies. All in all, 30 articles were included in the review, as shown in the PRISMA flowchart (Figure 1).

Figure 1
figure 1

PRISMA flowchart of study selection process.

Study characteristics

Of the 30 articles, 12 were studies conducted in European countries [35, 4959], 10 studies were from the United States, one of which included a Canadian study city [34, 6068], two from East Asian countries [69, 70], one from Canada [71], and one from Australia [72]. The systematic reviews were not restricted to any continent [7376]. Figure 2 shows the imbalance of country of origin for the publications in a distorted cartogram [77]: more studies were published in higher-income, Western countries versus lower-income countries. Countries with a higher output are represented as larger in the cartogram (Figure 2). We did not identify any studies from Africa, Southeast Asia or Central and South America. The Pacific Region was also underrepresented.

Figure 2
figure 2

Continents of study origin. Distorted cartogram of continents of study origin, weighted by number of studies per country. Countries with higher number of publications are larger in the cartogram.

Time of publication ranged from 1992 to 2013 (median = 2008). Regarding study population, about one-third of the studies focused on older persons (n = 11) [35, 49, 50, 52, 5759, 61, 66, 67, 69]. However, definitions of an older person differed and ranged from inclusion of over 64 to 75 and beyond. The remaining studies included all adults aged 18 years and older.

Half of the identified studies were observational studies with regression as main analysis method (n = 16) [49, 5153, 55, 56, 5860, 6365, 6770], followed by survey research (n = 6) [34, 54, 62, 66, 71, 72]. We identified two qualitative interview studies [35, 50], one randomized controlled trial (RCT) [57], one economic analysis [61], and four systematic reviews [7376]. Additional file 5 describes characteristics of the studies included in the review.

Heat adaptation

Adaptation options to heat assessed in the included studies ranged from heat warning campaign communication [35, 49, 50], use of fans [75], and active surveillance programs [57] to biological acclimatization over decades [55, 56] (Figure 3).

Figure 3
figure 3

Type of adaptation in studies included in review. Adaptation measures discussed in the individual studies.

Main outcomes were mortality rate trends over several years, mortality rates pre- and post-intervention, and changes in awareness or behavior over time. Due to limited comparability of the studies, specific study results will be discussed under subgroup analysis for regression analysis and perception survey results (Tables 1 and 2).

Table 1 Results of the regression analysis studies and RCT
Table 2 Results of reviews, survey studies qualitative interview studies and economic analysis

Quality appraisal

We used the CASP checklists [45] to assess study quality. As expected from scoping literature searches, studies included in the review were highly heterogeneous in research question and design. We used the CASP checklists for RCT (n = 1) [57], systematic reviews (n = 4) [7376], qualitative studies, also used for survey research (n = 7) [34, 35, 50, 54, 66, 71, 72], case–control studies including one survey-based case–control study (n = 15) [5153, 55, 5860, 6264, 6770, 78], economic analyses (n = 1) [61] and cohort studies (n = 2) [49, 65]. Results of the quality appraisal are presented in Additional file 4. Although we did not assign a quality score, we were able to see two main challenges for research design in the studies that may compromise quality: for survey and qualitative research on awareness changes, no baseline assessment was performed. For regression analyses, the definition of a control was not standardized.

Subgroup analysis: articles comparing mortality and morbidity

The majority of articles (n = 17) compared mortality or morbidity, either over a period of several years or before and after implementation of a heat wave warning system. Study types in this assessment included one RCT [57], 14 case–control studies [5153, 55, 58, 59, 63, 64, 6770, 78, 79] and 2 cohort studies [49, 65]. However, the variety of outcomes reported prevented us from combining results in a meta-analysis (Figure 4).

Figure 4
figure 4

Model of the variability in reported outcomes.

Outcomes were reported as odds ratios, mortality rates, excess deaths, relative risk, increased percentage of mortality per centigrade temperature increase, or as a mortality index. Table 1 shows results of these studies. The studies were of high quality using standard epidemiological methods. Overall, the majority of assessments report a reduction of adverse effects during extreme heat. This applies both to longitudinal and short-term studies. For instance, Chau et al. [69] report an increase of 1.23 deaths from ischemic heart disease in Hong Kong where a heat warning system was absent between 1997 and 2005. For the cities in the United States, on the other hand, Davis et al. [60] find an increased heat-related mortality rate since 1964 for Atlanta, Buffalo, Dallas, Denver, Seattle and San Francisco. In Central Europe, Kysely and Plavcova [78] describe an overall decrease in mortality by 10% from 1986 to 2009. A common challenge for the studies is linking the decrease to specific adaptation measures: alternative hypotheses for the observed declines in sensitivity have not been tested.

Subgroup analysis: perception and behavior change studies

The second largest group of study types was comprised of awareness and perception surveys and interviews. The articles all shared a common definition of awareness and behavior change. No pre-test was conducted in the survey and interview studies except for the study by Mattern et al. [62]. Results are presented in Table 2.

Most participants were informed of risks of extreme heat through media, television being the most common [34, 54, 66, 71, 72]. Individual adaptation behaviors were use of air condition, drinking water and avoiding strenuous activities [34, 35, 50, 54, 66, 71, 72]. Risk perception was discussed in the publications by Abrahamson et al. [35] and Bittner and Stößel [50]: both discovered that among their participants, older persons did not feel more at risk than younger populations. Concern about the costs of increased air condition use was mentioned by Sheridan [66]. We argue that due to the lack of pretests, the success of behavioral intervention advice cannot be estimated conclusively as it cannot be compared to knowledge and behavioral habits prior to the implementation of an adaptation measure.

Discussion

The results of our review reveal difficulties in assessing adaptation effectiveness and are consistent with previous research. This suggests that issues of methodological rigor and what to measure when speaking about effectiveness of heat adaptation have not yet been resolved, despite increased interest in the matter.

Common themes in all studies were difficulties assessing adaptation effectiveness with standard epidemiological methods. This has been discussed particularly in the four systematic reviews. Specifically, the following issues in conducting rigorous studies to generate conclusive evidence of adaptation effects have been named:

  • Differing heat wave impacts due to unstable intensity and frequency [76].

  • Role of confounders such as socio-economic variables and long-term healthcare improvements [76].

  • Short time frame between implementation of heat prevention and evaluation [73].

  • Location-specific acclimatization [73].

  • Simultaneous implementation of sub-interventions in a heat prevention plan [73].

  • Data availability [76].

Gupta et al. [75] call for experimental study designs to assess the effectiveness of using fans during a heat wave as they were unable to resolve conflicting information from observational studies in their Cochrane review. In our included studies a call for more rigorous methods was the standard solution to the above mentioned issues, without specific recommendations on how to achieve this. When trying to judge whether the information we gathered through the review is sufficient proof that heat adaptation reduces heat-related mortality and illness, we struggle with the following problems posed by the available studies:

  • Although older persons are generally included as a vulnerable group, age ranges differ and impede comparability.

  • Lack of pre-tests in awareness studies. Participants’ knowledge of heat warning systems or healthy behaviors cannot clearly be attributed to the adaptation.

  • Most of the observational studies did not examine alternative hypotheses for changes. Often authors mentioned a variety of reasons for changes, all of them with equal or unknown likeliness.

Why is conducting experimental research of adaptation to heat so difficult? For one, defining the counterfactual, i.e. what would have happened in the absence of the adaptation measure, is problematic, because usually an entire city or even country is exposed to the adaptation measure. Choosing a different city as control would require careful matching. This is difficult for many reasons: for example, intercity microclimate variability could bias results, and to assess effects the control city would need to be exposed to a heat event of similar magnitude and length. Unlike other public health interventions, researchers and practitioners cannot limit exposure; they can only mediate it.

Second, heat prevention can occur at structural level, or at individual level through behavior change. Ethical concerns could be raised if structural prevention or a warning system were only available to an intervention group in one city. For instance, control populations could not be prevented from accessing public green spaces.

Third, heat by itself is not a new phenomenon. Much of the heat-related health advice provided by risk communication campaigns is common sense information: to stay hydrated, for example, or to seek shade and cool places [80]. Physical discomfort during heat makes it likely that people have followed such advice before official warnings were even issued. This might not only suggest absence of the classic control group for behavior, it is also more difficult to compare knowledge pre- and post-information campaigns. In light of future population aging, potential improvements to adaptation effects lie with targeting those elderly people who do not feel at risk through awareness raising interventions despite these difficulties. The use of innovative materials and social norms approaches could be evaluated.

While we argue that concrete evidence for the effectiveness of specific planned adaptation measures is lacking, our results show a mostly unanimous decline in sensitivity to heat over longer time periods. Alternative hypotheses for the causes of this decline should be investigated. Proposed alternatives have included biological adaptation [81], improvements to healthcare systems [82], technological advancements [83], adjustments to the urban built environment [84], and social progress [84]. The role each of the alternatives plays in declining heat sensitivity is debated [78].

Aware of these shortcomings, recent research projects into methods specifically for adaptation assessments have been designed [85], results are not yet available.

We were surprised to be unable to identify articles assessing infrastructural measures such as greening, or supply of air conditioning, although we had specifically intended to include these. Our focus on human health and our health–related search terms may have prevented us from finding articles on urban planning effects. Connecting specific urban planning to public health assessments might be a challenging but interesting future research topic.

Policy implications

With such little conclusive evidence of effectiveness, recommendations for future action need to be carefully considered. On the one hand, policymakers may feel a moral imperative to act regardless of the evidence base. On the other hand, negative health effects of the adaptation measures themselves should be avoided. Possible risks from adaptation include misinformation on protective behaviors leading to maladaptation, or increased allergic disease incidence through greening of urban spaces [86]. Using “low-regret” adaptation measures could be an interim solution until more suitable assessment methods have been developed. In climate change adaptation, low-regret options are generally all strategies that either offer more than one benefit or keep options for amendments open [87, 88]. Such options have been described as useful when uncertainties are large, as they do not rely on exact climate change projections [88, 89]. They yield a number of benefits for a system’s capacities to deal with climatic changes while only requiring moderate input, and are less likely to have negative effects [87, 88]. In practice, benefits will have to be weighed against opportunity costs and trade-offs [90].

Examples for popular low-regret options in heat adaptation might be urban greening and heat wave warnings [91]. However, creating such an inventory of low-regret measures does not actually solve the issue of whether adaptation works. A prominent voice in climate change and health research, Anthony McMichael, argued that a focus on traditional epidemiological assessments methods may not lead to increased knowledge as desired [92]. Instead, McMichael wrote, taking risks with new concepts, methods and interdisciplinary approaches to research are required [92].

Limitations

In this review, we focused on peer-reviewed literature and excluded all unpublished or grey literature directing main attention towards database searches. This was justified by our specified interest in evidence of effectiveness as proven by rigorous scientific research, rather than in any evaluation possibly conducted by practitioners. A previous review from 2010 [73] stated that grey literature would be a more likely source of effectiveness information than peer-reviewed journal articles owing to the low number of evaluations conducted in research. Nonetheless, Bassil and Cole [73, 93] only found one unpublished study that contributed to the information on effects. As there is no legal imperative for policymakers in Europe to evaluate adaptation strategies, for example, few assessments are undertaken [94]. We aimed for comprehensiveness and therefore included non-health related databases to search for infrastructural evaluations. The final article selection, however, was entirely from academic health and medicine journals. This suggests that even if evaluation of green spaces or other infrastructural measures occur, these evaluations are less likely to consider co-effects on human health.

We identified no articles from Africa, Southeast Asia, the Pacific or Central and South America. This confirms previous findings on a dominance of high-income Western countries in adaptation research [95].

Nevertheless, we were able to identify 30 articles dealing with issues of evaluating heat adaptation, a large number in light of the novelty of adaptation and evaluation research. By our subgroup analysis approach, we contributed to knowledge on effectiveness as generated by two current adaptation evaluation standards: awareness surveys and mortality rate comparisons. Our review identifies major challenges to evaluation and proposes further research into the potential of adaptation measures for health protection from extreme heat.

Conclusions

Our results show that rigorous evaluation of adaptation is rare and difficult to conduct. The potential health effects of adaptation can currently not be measured conclusively. Up to now, we find limited intersectoral efforts between public health agencies and climate change adaptation policy. Such efforts might contribute to a reduction in adverse health effects of heat. In addition, involvement of the health sector in adaptation design, implementation and evaluation might increase chances of successful adaptation.

Current knowledge does not prove effectiveness of planned adaptation, yet a decline in sensitivity to heat hints at important developments. Recent articles published after the search period for this review observe a similar decline over long time periods [9698]. Whether biological adaptation, continuous improvements in healthcare, changes to the urban environment not declared “adaptation,” or a different unknown reason caused said decline is a matter of further interest. The seeming paradox between the observed decline in the examined studies and scholarly works referring to an expected increase in heat-related adverse health effects [99] needs to be assessed further as well. Low-regret adaptation options might be investigated while simultaneously increasing efforts to overcome methodological evaluation challenges with further research.

Endnotes

aOriginally we had planned to include only cities with more than 500,000 inhabitants. Due to the limited study availability, however, we decided to broaden this criterion to cities of any size.

b* = wildcard, all possible word endings included.