Background

Modeling quantitative trait loci (QTL) started with Yule [1, 2] and Pearson [3] (see [4, 5] for the early history of quantitative genetics). However, it was Fisher [6] who laid the firm foundation for quantitative genetics. Fisher defined gene effects (additive, dominance and epistatic effects) based on the partition of genetic variance. He partitioned the genetic variance into a portion due to additive effects (averaged allelic substitution effects), a portion due to dominance effects (allelic interactions), and a portion due to epistatic effects (non-allelic interactions) of genes. He then studied the correlation between relatives using the model. Cockerham [7] used the orthogonal contrasts to redefine the additive and dominance effects of QTL and, by extending the contrasts to include epistatic effects, he partitioned the epistatic variance of two loci into those due to additive × additive, additive × dominance, dominance × additive and dominance × dominance effects of QTL. Cockerham then generalized the model to multiple loci. This was further generalized by Kempthorne [8, 9] to multiple alleles. This model has been used as the basis for studying quantitative genetics ever since.

However, over years, many specialized models have also been proposed. Some are just special cases of the general genetic model and some are simplified variants tailored for particular applications or interpretations. With the propagation of numerous quantitative genetic models, there have also been some confusions in literature on the definition and interpretation of additive, dominance and epistatic effects of QTL and their relationship to the partition of genetic variance. Also, there has never been a study that considers both epistasis and linkage disequilibrium in the partition of genetic variance for multiple QTL. In this paper, we try to build the connection between the general genetic model and a few other commonly used genetic models to clarify the basis for the interpretation of different genetic models.

We start with an introduction of the genetic model as expressed in [7] in the context of variance components. Then by introducing an indicator variable for each QTL allele, we represent the model in a multiple regression setting and examine the definition and meaning of the genetic effects (additive, dominance and epistatic effects) of QTL and partition of the genetic variance in an equilibrium population and also in a disequilibrium population. Most of previous studies on modeling QTL discuss epistasis only in reference to an equilibrium population. An examination of properties of a model with both epistasis and linkage disequilibrium is important for QTL analysis in both experimental and natural populations. This is another goal of the paper and is studied in great detail here. We discuss a few reduced models used for QTL analysis, such as backcross model (essentially a haploid model) and F2 model. We also give details for a general two-allele model which may be useful for studying the genetic architecture in a natural population using single nucleotide polymorphisms (SNPs).

Previously, in [10], we compared F2 model and the general two-allele model with another commonly used genetic model, called F model. By specifying the basis of definition for each model, we compared the properties of these models in the estimation and interpretation of QTL effects including epistasis and discussed a few potential problems of using F model in a segregating population for QTL analysis. Similarly, we also compared these models with another model proposed by Cheverud [11, 12].

An important result of [10] is that the genetic effects defined in reference to an equilibrium population also apply to a disequilibrium population. The partial regression coefficients, that define the genetic effects in a disequilibrium population, equal to the simple regression coefficients in a corresponding equilibrium population – the usual basis to define and interpret a genetic effect including an epistatic effect. Hardy-Weinberg and linkage disequilibria only introduce covariances between different genetic effects. With this result, in this paper our discussion on epistasis and linkage disequilibrium is focused on the partition and composition of genetic variances and covariances between different genetic effects in different populations.

Results

The genetic model

A general genetic model for the partition of genetic variance (particularly epistatic variance) in a random mating population was first given by Cockerham [7, 13] and extended to multiple alleles by Kempthorne [8, 9], following the basic genetic model formulated by Fisher [6]. The model for two loci A and B with multiple alleles was expressed as follows

G j l i k = μ + α i + α j + δ j i + β k + β l + γ l k + ( α i β k ) + ( α i β l ) + ( α j β k ) + ( α j β l ) + ( α i γ l k ) + ( α j γ l k ) + ( δ j i β k ) + ( δ j i β l ) + ( δ j i γ l k ) ( 1 ) MathType@MTEF@5@5@+=feaafiart1ev1aaatCvAUfKttLearuWrP9MDH5MBPbIqV92AaeXatLxBI9gBaebbnrfifHhDYfgasaacH8akY=wiFfYdH8Gipec8Eeeu0xXdbba9frFj0=OqFfea0dXdd9vqai=hGuQ8kuc9pgc9s8qqaq=dirpe0xb9q8qiLsFr0=vr0=vr0dc8meaabaqaciaacaGaaeqabaqabeGadaaakeaafaqabeWabaaabaGaem4raC0aa0baaSqaaiabdQgaQjabdYgaSbqaaiabdMgaPjabdUgaRbaakiabg2da9GGaciab=X7aTHGaaiab+TcaRiab=f7aHnaaCaaaleqabaacbiGae0xAaKgaaOGaey4kaSIae8xSde2aaSbaaSqaaiabdQgaQbqabaGccqGHRaWkcqWF0oazdaqhaaWcbaGaemOAaOgabaGaemyAaKgaaOGaey4kaSIae8NSdi2aaWbaaSqabeaacqWGRbWAaaGccqGHRaWkcqWFYoGydaWgaaWcbaGaemiBaWgabeaakiabgUcaRiabeo7aNnaaDaaaleaacqWGSbaBaeaacqWGRbWAaaGccqGHRaWkcqGGOaakcqWFXoqydaahaaWcbeqaaiabdMgaPbaakiab=j7aInaaCaaaleqabaGaem4AaSgaaOGaeiykaKcabaGaey4kaSIaeiikaGIae8xSde2aaWbaaSqabeaacqWGPbqAaaGccqWFYoGydaWgaaWcbaGae0hBaWgabeaakiabcMcaPiabgUcaRiabcIcaOiab=f7aHnaaBaaaleaacqqFQbGAaeqaaOGae8NSdi2aaWbaaSqabeaacqWGRbWAaaGccqGGPaqkcqGHRaWkcqGGOaakcqWFXoqydaWgaaWcbaGaemOAaOgabeaakiab=j7aInaaBaaaleaacqWGSbaBaeqaaOGaeiykaKIaey4kaSIaeiikaGIae8xSde2aaWbaaSqabeaacqWGPbqAaaGccqaHZoWzdaqhaaWcbaGaemiBaWgabaGaem4AaSgaaOGaeiykaKcabaGaey4kaSIaeiikaGIae8xSde2aaSbaaSqaaiabdQgaQbqabaGccqaHZoWzdaqhaaWcbaGaemiBaWgabaGaem4AaSgaaOGaeiykaKIaey4kaSIaeiikaGIae8hTdq2aa0baaSqaaiabdQgaQbqaaiabdMgaPbaakiab=j7aInaaCaaaleqabaGaem4AaSgaaOGaeiykaKIaey4kaSIaeiikaGIae8hTdq2aa0baaSqaaiabdQgaQbqaaiabdMgaPbaakiab=j7aInaaBaaaleaacqWGSbaBaeqaaOGaeiykaKIaey4kaSIaeiikaGIae8hTdq2aa0baaSqaaiabdQgaQbqaaiabdMgaPbaakiabeo7aNnaaDaaaleaacqWGSbaBaeaacqWGRbWAaaGccqGGPaqkaaGaaCzcaiaaxMaadaqadaqaaiabigdaXaGaayjkaiaawMcaaaaa@AE28@

where the genotypic value G j l i k MathType@MTEF@5@5@+=feaafiart1ev1aaatCvAUfKttLearuWrP9MDH5MBPbIqV92AaeXatLxBI9gBaebbnrfifHhDYfgasaacH8akY=wiFfYdH8Gipec8Eeeu0xXdbba9frFj0=OqFfea0dXdd9vqai=hGuQ8kuc9pgc9s8qqaq=dirpe0xb9q8qiLsFr0=vr0=vr0dc8meaabaqaciaacaGaaeqabaqabeGadaaakeaacqWGhbWrdaqhaaWcbaGaemOAaOMaemiBaWgabaGaemyAaKMaem4AaSgaaaaa@3368@ is the expected phenotype of an individual carrying alleles A i , A j , B k , and B l with phased genotype A i B k /A j B l formed by the union of a paternal gamete A i B k and a maternal gamete A j B l . The model partitions the total genotypic value into a number of genetic effects which include additive effects of each allele (α's and β's), dominance effects between two alleles at each locus (δ's and γ's), additive × additive interactions between two alleles at two loci ((αβ)'s), additive × dominance interactions involving three alleles ((αγ)'s and (δβ)'s), and dominance × dominance interaction involving all four alleles ((δγ)'s).

As an ANOVA model, it is known that not all the parameters in model (1) are estimable. A number of constraint conditions on these parameters are therefore needed. Let pi, qkdenote allelic frequencies for alleles on paternal gametes, and p j , q l allelic frequencies for alleles on maternal gametes. It is usually assumed that a weighted summation of genetic effects is zero over any index for each genetic component as a deviation from the mean. Some examples are

i p i α i = 0 , i p i δ j i = 0 , j p j δ j i = 0 , i p i ( α i β k ) = 0 , k p k ( α i β k ) = 0 , j p j ( δ j i β k ) = 0 , k q k ( δ j i β k ) = 0 , ( 2 ) MathType@MTEF@5@5@+=feaafiart1ev1aaatCvAUfKttLearuWrP9MDH5MBPbIqV92AaeXatLxBI9gBaebbnrfifHhDYfgasaacH8akY=wiFfYdH8Gipec8Eeeu0xXdbba9frFj0=OqFfea0dXdd9vqai=hGuQ8kuc9pgc9s8qqaq=dirpe0xb9q8qiLsFr0=vr0=vr0dc8meaabaqaciaacaGaaeqabaqabeGadaaakeaafaqaaeWabaaabaWaaabuaeaacqWGWbaCdaahaaWcbeqaaiabdMgaPbaaiiGakiab=f7aHnaaCaaaleqabaGaemyAaKgaaOGaeyypa0JaeGimaaJaeiilaWIaeeiiaaYaaabuaeaacqWGWbaCdaahaaWcbeqaaiabdMgaPbaakiab=r7aKnaaDaaaleaacqWGQbGAaeaacqWGPbqAaaGccqGH9aqpcqaIWaamcqGGSaalcqqGGaaidaaeqbqaaiabdchaWnaaBaaaleaacqWGQbGAaeqaaOGae8hTdq2aa0baaSqaaiabdQgaQbqaaiabdMgaPbaakiabg2da9iabicdaWiabcYcaSaWcbaGaemOAaOgabeqdcqGHris5aaWcbaGaemyAaKgabeqdcqGHris5aaWcbaGaemyAaKgabeqdcqGHris5aaGcbaWaaabuaeaacqWGWbaCdaahaaWcbeqaaiabdMgaPbaakiabcIcaOiab=f7aHnaaCaaaleqabaGaemyAaKgaaOGae8NSdi2aaWbaaSqabeaacqWGRbWAaaGccqGGPaqkcqGH9aqpcqaIWaamcqGGSaalaSqaaiabdMgaPbqab0GaeyyeIuoakiabbccaGmaaqafabaGaemiCaa3aaWbaaSqabeaacqWGRbWAaaGccqGGOaakcqWFXoqydaahaaWcbeqaaiabdMgaPbaakiab=j7aInaaCaaaleqabaGaem4AaSgaaOGaeiykaKIaeyypa0JaeGimaaJaeiilaWcaleaacqWGRbWAaeqaniabggHiLdaakeaadaaeqbqaaiabdchaWnaaBaaaleaacqWGQbGAaeqaaOGaeiikaGIae8hTdq2aa0baaSqaaiabdQgaQbqaaiabdMgaPbaakiab=j7aInaaCaaaleqabaGaem4AaSgaaOGaeiykaKIaeyypa0JaeGimaaJaeiilaWIaeeiiaaYaaabuaeaacqWGXbqCdaahaaWcbeqaaiabdUgaRbaakiabcIcaOiab=r7aKnaaDaaaleaacqWGQbGAaeaacqWGPbqAaaGccqWFYoGydaahaaWcbeqaaiabdUgaRbaakiabcMcaPiabg2da9iabicdaWiabcYcaSaWcbaGaem4AaSgabeqdcqGHris5aaWcbaGaemOAaOgabeqdcqGHris5aOGaeeiiaaIaeS47IWKaeS47IWeaaiaaxMaacaWLjaWaaeWaaeaacqaIYaGmaiaawIcacaGLPaaaaaa@A8EF@

Under the assumption of random mating and linkage equilibrium and allowing for different allelic frequencies in paternal and maternal gametes, the mean and genetic effects can be expressed as follows based on the least squares principle:

μ = i , j , k , l p i p j q k q l G j l i k ( 3 ) α i = G .. i . G .. .. , β k = G .. . k G .. .. , α j = G j . .. G .. .. , β l = G . l .. G .. .. , δ j i = G j . i . G .. i . G j . .. + G .. .. , γ l k = G . l . k G .. . k G . l .. + G .. .. , ( α i β k ) = G .. i k G .. i . G .. . k + G .. .. , ( α i β l ) = G . l i . G .. i . G . l .. + G .. .. , ( α j β k ) = G j . . k G j . .. G .. . k + G .. .. , ( α j β l ) = G j l .. G j . .. G . l .. + G .. .. , ( α i γ l k ) = G . l i k G .. i k G . l i . G . l . k + G .. i . + G .. . k + G . l .. G .. .. , ( α j γ l k ) = G j l . k G j . . k G . l . k G j l .. + G j . .. + G .. . k + G . l .. G .. .. , ( δ j i β k ) = G j . i k G .. i k G j . i . G j . . k + G .. i . + G .. . k + G j . .. G .. .. , ( δ j i β l ) = G j l i . G j . i . G . l i . G j l .. + G .. i . + G j . .. + G . l .. G .. .. , ( δ j i γ l k ) = G j l i k G j . i k G . l i k G j l i . + G j l . k + G .. i k + G j l .. + G j . i . + G . l . k + G j . . k + G . l i . G .. i . G .. . k G j . .. G . j .. + G .. .. MathType@MTEF@5@5@+=feaafiart1ev1aaatCvAUfKttLearuWrP9MDH5MBPbIqV92AaeXatLxBI9gBaebbnrfifHhDYfgasaacH8akY=wiFfYdH8Gipec8Eeeu0xXdbba9frFj0=OqFfea0dXdd9vqai=hGuQ8kuc9pgc9s8qqaq=dirpe0xb9q8qiLsFr0=vr0=vr0dc8meaabaqaciaacaGaaeqabaqabeGadaaakqaabeqaaGGaciab=X7aTjabg2da9maaqafabaGaemiCaa3aaWbaaSqabeaacqWGPbqAaaGccqWGWbaCdaWgaaWcbaGaemOAaOgabeaakiabdghaXnaaCaaaleqabaGaem4AaSgaaOGaemyCae3aaSbaaSqaaiabdYgaSbqabaGccqWGhbWrdaqhaaWcbaGaemOAaOMaemiBaWgabaGaemyAaKMaem4AaSgaaaqaaiabdMgaPjabcYcaSiabdQgaQjabcYcaSiabdUgaRjabcYcaSiabdYgaSbqab0GaeyyeIuoakiaaxMaacaWLjaWaaeWaaeaacqaIZaWmaiaawIcacaGLPaaaaeaacqWFXoqydaahaaWcbeqaaiabdMgaPbaakiabg2da9iabdEeahnaaDaaaleaacqGGUaGlcqGGUaGlaeaacqWGPbqAcqGGUaGlaaGccqGHsislcqWGhbWrdaqhaaWcbaGaeiOla4IaeiOla4cabaGaeiOla4IaeiOla4caaOGaeiilaWIaeeiiaaIae8NSdi2aaWbaaSqabeaacqWGRbWAaaGccqGH9aqpcqWGhbWrdaqhaaWcbaGaeiOla4IaeiOla4cabaGaeiOla4Iaem4AaSgaaOGaeyOeI0Iaem4raC0aa0baaSqaaiabc6caUiabc6caUaqaaiabc6caUiabc6caUaaakiabcYcaSaqaaiab=f7aHnaaBaaaleaaieGacqGFQbGAaeqaaOGaeyypa0Jaem4raC0aa0baaSqaaiabdQgaQjabc6caUaqaaiabc6caUiabc6caUaaakiabgkHiTiabdEeahnaaDaaaleaacqGGUaGlcqGGUaGlaeaacqGGUaGlcqGGUaGlaaGccqGGSaalcqqGGaaicqWFYoGydaWgaaWcbaGae4hBaWgabeaakiabg2da9iabdEeahnaaDaaaleaacqGGUaGlcqWGSbaBaeaacqGGUaGlcqGGUaGlaaGccqGHsislcqWGhbWrdaqhaaWcbaGaeiOla4IaeiOla4cabaGaeiOla4IaeiOla4caaOGaeiilaWcabaGae8hTdq2aa0baaSqaaiabdQgaQbqaaiabdMgaPbaakiabg2da9iabdEeahnaaDaaaleaacqWGQbGAcqGGUaGlaeaacqWGPbqAcqGGUaGlaaGccqGHsislcqWGhbWrdaqhaaWcbaGaeiOla4IaeiOla4cabaGaemyAaKMaeiOla4caaOGaeyOeI0Iaem4raC0aa0baaSqaaiabdQgaQjabc6caUaqaaiabc6caUiabc6caUaaakiabgUcaRiabdEeahnaaDaaaleaacqGGUaGlcqGGUaGlaeaacqGGUaGlcqGGUaGlaaGccqGGSaalaeaacqaHZoWzdaqhaaWcbaGaemiBaWgabaGaem4AaSgaaOGaeyypa0Jaem4raC0aa0baaSqaaiabc6caUiabdYgaSbqaaiabc6caUiabdUgaRbaakiabgkHiTiabdEeahnaaDaaaleaacqGGUaGlcqGGUaGlaeaacqGGUaGlcqWGRbWAaaGccqGHsislcqWGhbWrdaqhaaWcbaGaeiOla4IaemiBaWgabaGaeiOla4IaeiOla4caaOGaey4kaSIaem4raC0aa0baaSqaaiabc6caUiabc6caUaqaaiabc6caUiabc6caUaaakiabcYcaSaqaaiabcIcaOiab=f7aHnaaCaaaleqabaGaemyAaKgaaOGae8NSdi2aaWbaaSqabeaacqWGRbWAaaGccqGGPaqkcqGH9aqpcqWGhbWrdaqhaaWcbaGaeiOla4IaeiOla4cabaGaemyAaKMaem4AaSgaaOGaeyOeI0Iaem4raC0aa0baaSqaaiabc6caUiabc6caUaqaaiabdMgaPjabc6caUaaakiabgkHiTiabdEeahnaaDaaaleaacqGGUaGlcqGGUaGlaeaacqGGUaGlcqWGRbWAaaGccqGHRaWkcqWGhbWrdaqhaaWcbaGaeiOla4IaeiOla4cabaGaeiOla4IaeiOla4caaOGaeiilaWcabaGaeiikaGIae8xSde2aaWbaaSqabeaacqWGPbqAaaGccqWFYoGydaWgaaWcbaGae4hBaWgabeaakiabcMcaPiabg2da9iabdEeahnaaDaaaleaacqGGUaGlcqWGSbaBaeaacqWGPbqAcqGGUaGlaaGccqGHsislcqWGhbWrdaqhaaWcbaGaeiOla4IaeiOla4cabaGaemyAaKMaeiOla4caaOGaeyOeI0Iaem4raC0aa0baaSqaaiabc6caUiabdYgaSbqaaiabc6caUiabc6caUaaakiabgUcaRiabdEeahnaaDaaaleaacqGGUaGlcqGGUaGlaeaacqGGUaGlcqGGUaGlaaGccqGGSaalaeaacqGGOaakcqWFXoqydaWgaaWcbaGae4NAaOgabeaakiab=j7aInaaCaaaleqabaGaem4AaSgaaOGaeiykaKIaeyypa0Jaem4raC0aa0baaSqaaiabdQgaQjabc6caUaqaaiabc6caUiabdUgaRbaakiabgkHiTiabdEeahnaaDaaaleaacqWGQbGAcqGGUaGlaeaacqGGUaGlcqGGUaGlaaGccqGHsislcqWGhbWrdaqhaaWcbaGaeiOla4IaeiOla4cabaGaeiOla4Iaem4AaSgaaOGaey4kaSIaem4raC0aa0baaSqaaiabc6caUiabc6caUaqaaiabc6caUiabc6caUaaakiabcYcaSaqaaiabcIcaOiab=f7aHnaaBaaaleaacqGFQbGAaeqaaOGae8NSdi2aaSbaaSqaaiab+XgaSbqabaGccqGGPaqkcqGH9aqpcqWGhbWrdaqhaaWcbaGaemOAaOMaemiBaWgabaGaeiOla4IaeiOla4caaOGaeyOeI0Iaem4raC0aa0baaSqaaiabdQgaQjabc6caUaqaaiabc6caUiabc6caUaaakiabgkHiTiabdEeahnaaDaaaleaacqGGUaGlcqWGSbaBaeaacqGGUaGlcqGGUaGlaaGccqGHRaWkcqWGhbWrdaqhaaWcbaGaeiOla4IaeiOla4cabaGaeiOla4IaeiOla4caaOGaeiilaWcabaGaeiikaGIae8xSde2aaWbaaSqabeaacqWGPbqAaaGccqaHZoWzdaqhaaWcbaGaemiBaWgabaGaem4AaSgaaOGaeiykaKIaeyypa0Jaem4raC0aa0baaSqaaiabc6caUiabdYgaSbqaaiabdMgaPjabdUgaRbaakiabgkHiTiabdEeahnaaDaaaleaacqGGUaGlcqGGUaGlaeaacqWGPbqAcqWGRbWAaaGccqGHsislcqWGhbWrdaqhaaWcbaGaeiOla4IaemiBaWgabaGaemyAaKMaeiOla4caaOGaeyOeI0Iaem4raC0aa0baaSqaaiabc6caUiabdYgaSbqaaiabc6caUiabdUgaRbaakiabgUcaRiabdEeahnaaDaaaleaacqGGUaGlcqGGUaGlaeaacqWGPbqAcqGGUaGlaaGccqGHRaWkcqWGhbWrdaqhaaWcbaGaeiOla4IaeiOla4cabaGaeiOla4Iaem4AaSgaaaGcbaGaaCzcaiabgUcaRiabdEeahnaaDaaaleaacqGGUaGlcqWGSbaBaeaacqGGUaGlcqGGUaGlaaGccqGHsislcqWGhbWrdaqhaaWcbaGaeiOla4IaeiOla4cabaGaeiOla4IaeiOla4caaOGaeiilaWcabaGaeiikaGIae8xSde2aaSbaaSqaaiab+PgaQbqabaGccqaHZoWzdaqhaaWcbaGaemiBaWgabaGaem4AaSgaaOGaeiykaKIaeyypa0Jaem4raC0aa0baaSqaaiabdQgaQjabdYgaSbqaaiabc6caUiabdUgaRbaakiabgkHiTiabdEeahnaaDaaaleaacqWGQbGAcqGGUaGlaeaacqGGUaGlcqWGRbWAaaGccqGHsislcqWGhbWrdaqhaaWcbaGaeiOla4IaemiBaWgabaGaeiOla4Iaem4AaSgaaOGaeyOeI0Iaem4raC0aa0baaSqaaiabdQgaQjabdYgaSbqaaiabc6caUiabc6caUaaakiabgUcaRiabdEeahnaaDaaaleaacqWGQbGAcqGGUaGlaeaacqGGUaGlcqGGUaGlaaGccqGHRaWkcqWGhbWrdaqhaaWcbaGaeiOla4IaeiOla4cabaGaeiOla4Iaem4AaSgaaaGcbaGaaCzcaiabgUcaRiabdEeahnaaDaaaleaacqGGUaGlcqWGSbaBaeaacqGGUaGlcqGGUaGlaaGccqGHsislcqWGhbWrdaqhaaWcbaGaeiOla4IaeiOla4cabaGaeiOla4IaeiOla4caaOGaeiilaWcabaGaeiikaGIae8hTdq2aa0baaSqaaiabdQgaQbqaaiabdMgaPbaakiab=j7aInaaCaaaleqabaGaem4AaSgaaOGaeiykaKIaeyypa0Jaem4raC0aa0baaSqaaiabdQgaQjabc6caUaqaaiabdMgaPjabdUgaRbaakiabgkHiTiabdEeahnaaDaaaleaacqGGUaGlcqGGUaGlaeaacqWGPbqAcqWGRbWAaaGccqGHsislcqWGhbWrdaqhaaWcbaGaemOAaOMaeiOla4cabaGaemyAaKMaeiOla4caaOGaeyOeI0Iaem4raC0aa0baaSqaaiabdQgaQjabc6caUaqaaiabc6caUiabdUgaRbaakiabgUcaRiabdEeahnaaDaaaleaacqGGUaGlcqGGUaGlaeaacqWGPbqAcqGGUaGlaaGccqGHRaWkcqWGhbWrdaqhaaWcbaGaeiOla4IaeiOla4cabaGaeiOla4Iaem4AaSgaaaGcbaGaaCzcaiabgUcaRiabdEeahnaaDaaaleaacqWGQbGAcqGGUaGlaeaacqGGUaGlcqGGUaGlaaGccqGHsislcqWGhbWrdaqhaaWcbaGaeiOla4IaeiOla4cabaGaeiOla4IaeiOla4caaOGaeiilaWcabaGaeiikaGIae8hTdq2aa0baaSqaaiabdQgaQbqaaiabdMgaPbaakiab=j7aInaaBaaaleaacqGFSbaBaeqaaOGaeiykaKIaeyypa0Jaem4raC0aa0baaSqaaiabdQgaQjabdYgaSbqaaiabdMgaPjabc6caUaaakiabgkHiTiabdEeahnaaDaaaleaacqWGQbGAcqGGUaGlaeaacqWGPbqAcqGGUaGlaaGccqGHsislcqWGhbWrdaqhaaWcbaGaeiOla4IaemiBaWgabaGaemyAaKMaeiOla4caaOGaeyOeI0Iaem4raC0aa0baaSqaaiabdQgaQjabdYgaSbqaaiabc6caUiabc6caUaaakiabgUcaRiabdEeahnaaDaaaleaacqGGUaGlcqGGUaGlaeaacqWGPbqAcqGGUaGlaaGccqGHRaWkcqWGhbWrdaqhaaWcbaGaemOAaOMaeiOla4cabaGaeiOla4IaeiOla4caaaGcbaGaaCzcaiabgUcaRiabdEeahnaaDaaaleaacqGGUaGlcqWGSbaBaeaacqGGUaGlcqGGUaGlaaGccqGHsislcqWGhbWrdaqhaaWcbaGaeiOla4IaeiOla4cabaGaeiOla4IaeiOla4caaOGaeiilaWcabaGaeiikaGIae8hTdq2aa0baaSqaaiabdQgaQbqaaiabdMgaPbaakiabeo7aNnaaDaaaleaacqWGSbaBaeaacqWGRbWAaaGccqGGPaqkcqGH9aqpcqWGhbWrdaqhaaWcbaGaemOAaOMaemiBaWgabaGaemyAaKMaem4AaSgaaOGaeyOeI0Iaem4raC0aa0baaSqaaiabdQgaQjabc6caUaqaaiabdMgaPjabdUgaRbaakiabgkHiTiabdEeahnaaDaaaleaacqGGUaGlcqWGSbaBaeaacqWGPbqAcqWGRbWAaaGccqGHsislcqWGhbWrdaqhaaWcbaGaemOAaOMaemiBaWgabaGaemyAaKMaeiOla4caaOGaey4kaSIaem4raC0aa0baaSqaaiabdQgaQjabdYgaSbqaaiabc6caUiabdUgaRbaakiabgUcaRiabdEeahnaaDaaaleaacqGGUaGlcqGGUaGlaeaacqWGPbqAcqWGRbWAaaaakeaacaWLjaGaey4kaSIaem4raC0aa0baaSqaaiabdQgaQjabdYgaSbqaaiabc6caUiabc6caUaaakiabgUcaRiabdEeahnaaDaaaleaacqWGQbGAcqGGUaGlaeaacqWGPbqAcqGGUaGlaaGccqGHRaWkcqWGhbWrdaqhaaWcbaGaeiOla4IaemiBaWgabaGaeiOla4Iaem4AaSgaaOGaey4kaSIaem4raC0aa0baaSqaaiabdQgaQjabc6caUaqaaiabc6caUiabdUgaRbaakiabgUcaRiabdEeahnaaDaaaleaacqGGUaGlcqWGSbaBaeaacqWGPbqAcqGGUaGlaaGccqGHsislcqWGhbWrdaqhaaWcbaGaeiOla4IaeiOla4cabaGaemyAaKMaeiOla4caaaGcbaGaaCzcaiabgkHiTiabdEeahnaaDaaaleaacqGGUaGlcqGGUaGlaeaacqGGUaGlcqWGRbWAaaGccqGHsislcqWGhbWrdaqhaaWcbaGaemOAaOMaeiOla4cabaGaeiOla4IaeiOla4caaOGaeyOeI0Iaem4raC0aa0baaSqaaiabc6caUiabdQgaQbqaaiabc6caUiabc6caUaaakiabgUcaRiabdEeahnaaDaaaleaacqGGUaGlcqGGUaGlaeaacqGGUaGlcqGGUaGlaaaaaaa@CBD7@

where G .. .. = i , j , k , l p i p j q k q l G j l i k MathType@MTEF@5@5@+=feaafiart1ev1aaatCvAUfKttLearuWrP9MDH5MBPbIqV92AaeXatLxBI9gBaebbnrfifHhDYfgasaacH8akY=wiFfYdH8Gipec8Eeeu0xXdbba9frFj0=OqFfea0dXdd9vqai=hGuQ8kuc9pgc9s8qqaq=dirpe0xb9q8qiLsFr0=vr0=vr0dc8meaabaqaciaacaGaaeqabaqabeGadaaakeaacqWGhbWrdaqhaaWcbaGaeiOla4IaeiOla4cabaGaeiOla4IaeiOla4caaOGaeyypa0ZaaabeaeaacqWGWbaCdaahaaWcbeqaaiabdMgaPbaakiabdchaWnaaBaaaleaacqWGQbGAaeqaaOGaemyCae3aaWbaaSqabeaacqWGRbWAaaGccqWGXbqCdaWgaaWcbaGaemiBaWgabeaakiabdEeahnaaDaaaleaacqWGQbGAcqWGSbaBaeaacqWGPbqAcqWGRbWAaaaabaGaemyAaKMaeiilaWIaemOAaOMaeiilaWIaem4AaSMaeiilaWIaemiBaWgabeqdcqGHris5aaaa@4F36@ , G .. i . = j , k , l p j q k q l G j l i k MathType@MTEF@5@5@+=feaafiart1ev1aaatCvAUfKttLearuWrP9MDH5MBPbIqV92AaeXatLxBI9gBaebbnrfifHhDYfgasaacH8akY=wiFfYdH8Gipec8Eeeu0xXdbba9frFj0=OqFfea0dXdd9vqai=hGuQ8kuc9pgc9s8qqaq=dirpe0xb9q8qiLsFr0=vr0=vr0dc8meaabaqaciaacaGaaeqabaqabeGadaaakeaacqWGhbWrdaqhaaWcbaGaeiOla4IaeiOla4cabaGaemyAaKMaeiOla4caaOGaeyypa0ZaaabeaeaacqWGWbaCdaWgaaWcbaGaemOAaOgabeaakiabdghaXnaaCaaaleqabaGaem4AaSgaaOGaemyCae3aaSbaaSqaaiabdYgaSbqabaGccqWGhbWrdaqhaaWcbaGaemOAaOMaemiBaWgabaGaemyAaKMaem4AaSgaaaqaaiabdQgaQjabcYcaSiabdUgaRjabcYcaSiabdYgaSbqab0GaeyyeIuoaaaa@4A77@ , and so on. The total genetic variance is V G = i , j , k , l p i p j p k p l ( G j l i k μ ) 2 MathType@MTEF@5@5@+=feaafiart1ev1aaatCvAUfKttLearuWrP9MDH5MBPbIqV92AaeXatLxBI9gBaebbnrfifHhDYfgasaacH8akY=wiFfYdH8Gipec8Eeeu0xXdbba9frFj0=OqFfea0dXdd9vqai=hGuQ8kuc9pgc9s8qqaq=dirpe0xb9q8qiLsFr0=vr0=vr0dc8meaabaqaciaacaGaaeqabaqabeGadaaakeaacqWGwbGvdaWgaaWcbaGaem4raCeabeaakiabg2da9maaqababaGaemiCaa3aaWbaaSqabeaacqWGPbqAaaGccqWGWbaCdaWgaaWcbaGaemOAaOgabeaakiabdchaWnaaCaaaleqabaGaem4AaSgaaOGaemiCaa3aaSbaaSqaaiabdYgaSbqabaGccqGGOaakcqWGhbWrdaqhaaWcbaGaemOAaOMaemiBaWgabaGaemyAaKMaem4AaSgaaOGaeyOeI0ccciGae8hVd0MaeiykaKYaaWbaaSqabeaacqaIYaGmaaaabaGaemyAaKMaeiilaWIaemOAaOMaeiilaWIaem4AaSMaeiilaWIaemiBaWgabeqdcqGHris5aaaa@525B@ , and has an orthogonal partition under random mating and linkage equilibrium

V G = V A 1 + V A 2 + V D 1 + V D 2 + V A 1 A 2 + V A 1 D 2 ( 4 ) + V D 1 A 2 + V D 1 D 2 MathType@MTEF@5@5@+=feaafiart1ev1aaatCvAUfKttLearuWrP9MDH5MBPbIqV92AaeXatLxBI9gBaebbnrfifHhDYfgasaacH8akY=wiFfYdH8Gipec8Eeeu0xXdbba9frFj0=OqFfea0dXdd9vqai=hGuQ8kuc9pgc9s8qqaq=dirpe0xb9q8qiLsFr0=vr0=vr0dc8meaabaqaciaacaGaaeqabaqabeGadaaakqGabeqaaaWabaGaemOvay1aaSbaaSqaaiabdEeahbqabaGccqGH9aqpcqWGwbGvdaWgaaWcbaGaemyqae0aaSbaaWqaaiabigdaXaqabaaaleqaaOGaey4kaSIaemOvay1aaSbaaSqaaiabdgeabnaaBaaameaacqaIYaGmaeqaaaWcbeaakiabgUcaRiabdAfawnaaBaaaleaacqWGebardaWgaaadbaGaeGymaedabeaaaSqabaGccqGHRaWkcqWGwbGvdaWgaaWcbaGaemiraq0aaSbaaWqaaiabikdaYaqabaaaleqaaOGaey4kaSIaemOvay1aaSbaaSqaaiabdgeabnaaBaaameaacqaIXaqmaeqaaSGaemyqae0aaSbaaWqaaiabikdaYaqabaaaleqaaOGaey4kaSIaemOvay1aaSbaaSqaaiabdgeabnaaBaaameaacqaIXaqmaeqaaSGaemiraq0aaSbaaWqaaiabikdaYaqabaaaleqaaOGaaCzcaiaaxMaadaqadaqaaiabisda0aGaayjkaiaawMcaaaqaaiaaxMaacqGHRaWkcqWGwbGvdaWgaaWcbaGaemiraq0aaSbaaWqaaiabigdaXaqabaWccqWGbbqqdaWgaaadbaGaeGOmaidabeaaaSqabaGccqGHRaWkcqWGwbGvdaWgaaWcbaGaemiraq0aaSbaaWqaaiabigdaXaqabaWccqWGebardaWgaaadbaGaeGOmaidabeaaaSqabaaaaaa@60B6@

with

V A 1 = i p i ( α i ) 2 + j p j ( α j ) 2 V D 1 = i , j p i p j ( δ j i ) 2 V A 2 = k q k ( β k ) 2 + l q l ( β l ) 2 V D 2 = k , l q k q l ( γ l k ) 2 V A 1 A 2 = i , k p i q k ( α i β k ) 2 + j , l p j q l ( α j β l ) 2 + i , l p i q l ( α i β l ) 2 + j , k p j q k ( α j β k ) 2 V A 1 D 2 = i , k , l p i q k q l ( α i γ l k ) 2 + j , k , l p j q k q l ( α j γ l k ) 2 V D 1 A 2 = i , j , k p i p j q k ( δ j i β k ) 2 + i , j , l p i p j q l ( δ j i β l ) 2 V D 1 D 2 = i , j , k , l p i p j q k q l ( δ j i γ l k ) 2 MathType@MTEF@5@5@+=feaafiart1ev1aaatCvAUfKttLearuWrP9MDH5MBPbIqV92AaeXatLxBI9gBaebbnrfifHhDYfgasaacH8akY=wiFfYdH8Gipec8Eeeu0xXdbba9frFj0=OqFfea0dXdd9vqai=hGuQ8kuc9pgc9s8qqaq=dirpe0xb9q8qiLsFr0=vr0=vr0dc8meaabaqaciaacaGaaeqabaqabeGadaaakqaabeqaaiabdAfawnaaBaaaleaacqWGbbqqdaWgaaadbaGaeGymaedabeaaaSqabaGccqGH9aqpdaaeqbqaaiabdchaWnaaCaaaleqabaGaemyAaKgaaOGaeiikaGccciGae8xSde2aaWbaaSqabeaacqWGPbqAaaGccqGGPaqkdaahaaWcbeqaaiabikdaYaaaaeaacqWGPbqAaeqaniabggHiLdGccqGHRaWkdaaeqbqaaiabdchaWnaaBaaaleaacqWGQbGAaeqaaOGaeiikaGIae8xSde2aaSbaaSqaaiabdQgaQbqabaGccqGGPaqkdaahaaWcbeqaaiabikdaYaaaaeaacqWGQbGAaeqaniabggHiLdaakeaacqWGwbGvdaWgaaWcbaGaemiraq0aaSbaaWqaaiabigdaXaqabaaaleqaaOGaeyypa0ZaaabuaeaacqWGWbaCdaahaaWcbeqaaiabdMgaPbaakiabdchaWnaaBaaaleaacqWGQbGAaeqaaOGaeiikaGIae8hTdq2aa0baaSqaaiabdQgaQbqaaiabdMgaPbaakiabcMcaPmaaCaaaleqabaGaeGOmaidaaaqaaiabdMgaPjabcYcaSiabdQgaQbqab0GaeyyeIuoaaOqaaiabdAfawnaaBaaaleaacqWGbbqqdaWgaaadbaGaeGOmaidabeaaaSqabaGccqGH9aqpdaaeqbqaaiabdghaXnaaCaaaleqabaGaem4AaSgaaOGaeiikaGIae8NSdi2aaWbaaSqabeaacqWGRbWAaaGccqGGPaqkdaahaaWcbeqaaiabikdaYaaaaeaacqWGRbWAaeqaniabggHiLdGccqGHRaWkdaaeqbqaaiabdghaXnaaBaaaleaacqWGSbaBaeqaaOGaeiikaGIae8NSdi2aaSbaaSqaaGqaciab+XgaSbqabaGccqGGPaqkdaahaaWcbeqaaiabikdaYaaaaeaacqWGSbaBaeqaniabggHiLdaakeaacqWGwbGvdaWgaaWcbaGaemiraq0aaSbaaWqaaiabikdaYaqabaaaleqaaOGaeyypa0ZaaabuaeaacqWGXbqCdaahaaWcbeqaaiabdUgaRbaakiabdghaXnaaBaaaleaacqWGSbaBaeqaaOGaeiikaGIaeq4SdC2aa0baaSqaaiabdYgaSbqaaiabdUgaRbaakiabcMcaPmaaCaaaleqabaGaeGOmaidaaaqaaiabdUgaRjabcYcaSiabdYgaSbqab0GaeyyeIuoaaOqaaiabdAfawnaaBaaaleaacqWGbbqqdaWgaaadbaGaeGymaedabeaaliabdgeabnaaBaaameaacqaIYaGmaeqaaaWcbeaakiabg2da9maaqafabaGaemiCaa3aaWbaaSqabeaacqWGPbqAaaGccqWGXbqCdaahaaWcbeqaaiabdUgaRbaakiabcIcaOiab=f7aHnaaCaaaleqabaGaemyAaKgaaOGae8NSdi2aaWbaaSqabeaacqWGRbWAaaGccqGGPaqkdaahaaWcbeqaaiabikdaYaaaaeaacqWGPbqAcqGGSaalcqWGRbWAaeqaniabggHiLdGccqGHRaWkdaaeqbqaaiabdchaWnaaBaaaleaacqWGQbGAaeqaaOGaemyCae3aaSbaaSqaaiabdYgaSbqabaGccqGGOaakcqWFXoqydaWgaaWcbaGaemOAaOgabeaakiab=j7aInaaBaaaleaacqGFSbaBaeqaaOGaeiykaKYaaWbaaSqabeaacqaIYaGmaaaabaGaemOAaOMaeiilaWIaemiBaWgabeqdcqGHris5aaGcbaGaaCzcaiabgUcaRmaaqafabaGaemiCaa3aaWbaaSqabeaacqWGPbqAaaGccqWGXbqCdaWgaaWcbaGaemiBaWgabeaakiabcIcaOiab=f7aHnaaCaaaleqabaGaemyAaKgaaOGae8NSdi2aaSbaaSqaaiab+XgaSbqabaGccqGGPaqkdaahaaWcbeqaaiabikdaYaaaaeaacqWGPbqAcqGGSaalcqWGSbaBaeqaniabggHiLdGccqGHRaWkdaaeqbqaaiabdchaWnaaBaaaleaacqWGQbGAaeqaaOGaemyCae3aaWbaaSqabeaacqWGRbWAaaGccqGGOaakcqWFXoqydaWgaaWcbaGae4NAaOgabeaakiab=j7aInaaCaaaleqabaGae43AaSgaaOGaeiykaKYaaWbaaSqabeaacqaIYaGmaaaabaGaemOAaOMaeiilaWIaem4AaSgabeqdcqGHris5aaGcbaGaemOvay1aaSbaaSqaaiabdgeabnaaBaaameaacqaIXaqmaeqaaSGaemiraq0aaSbaaWqaaiabikdaYaqabaaaleqaaOGaeyypa0ZaaabuaeaacqWGWbaCdaahaaWcbeqaaiabdMgaPbaakiabdghaXnaaCaaaleqabaGaem4AaSgaaOGaemyCae3aaSbaaSqaaiabdYgaSbqabaGccqGGOaakcqWFXoqydaahaaWcbeqaaiabdMgaPbaakiabeo7aNnaaDaaaleaacqGFSbaBaeaacqGFRbWAaaGccqGGPaqkdaahaaWcbeqaaiabikdaYaaaaeaacqWGPbqAcqGGSaalcqWGRbWAcqGGSaalcqWGSbaBaeqaniabggHiLdGccqGHRaWkdaaeqbqaaiabdchaWnaaBaaaleaacqWGQbGAaeqaaOGaemyCae3aaWbaaSqabeaacqWGRbWAaaGccqWGXbqCdaWgaaWcbaGaemiBaWgabeaakiabcIcaOiab=f7aHnaaBaaaleaacqGFQbGAaeqaaOGaeq4SdC2aa0baaSqaaiab+XgaSbqaaiab+TgaRbaakiabcMcaPmaaCaaaleqabaGaeGOmaidaaaqaaiabdQgaQjabcYcaSiabdUgaRjabcYcaSiabdYgaSbqab0GaeyyeIuoaaOqaaiabdAfawnaaBaaaleaacqWGebardaWgaaadbaGaeGymaedabeaaliabdgeabnaaBaaameaacqaIYaGmaeqaaaWcbeaakiabg2da9maaqafabaGaemiCaa3aaWbaaSqabeaacqWGPbqAaaGccqWGWbaCdaWgaaWcbaGaemOAaOgabeaakiabdghaXnaaCaaaleqabaGaem4AaSgaaOGaeiikaGIae8hTdq2aa0baaSqaaiabdQgaQbqaaiabdMgaPbaakiab=j7aInaaCaaaleqabaGaem4AaSgaaOGaeiykaKYaaWbaaSqabeaacqaIYaGmaaaabaGaemyAaKMaeiilaWIaemOAaOMaeiilaWIaem4AaSgabeqdcqGHris5aOGaey4kaSYaaabuaeaacqWGWbaCdaahaaWcbeqaaiabdMgaPbaakiabdchaWnaaBaaaleaacqWGQbGAaeqaaOGaemyCae3aaSbaaSqaaiabdYgaSbqabaGccqGGOaakcqaH0oazdaqhaaWcbaGaemOAaOgabaGaemyAaKgaaOGae8NSdi2aaSbaaSqaaiabdYgaSbqabaGccqGGPaqkdaahaaWcbeqaaiabikdaYaaaaeaacqWGPbqAcqGGSaalcqWGQbGAcqGGSaalcqWGSbaBaeqaniabggHiLdaakeaacqWGwbGvdaWgaaWcbaGaemiraq0aaSbaaWqaaiabigdaXaqabaWccqWGebardaWgaaadbaGaeGOmaidabeaaaSqabaGccqGH9aqpdaaeqbqaaiabdchaWnaaCaaaleqabaGaemyAaKgaaOGaemiCaa3aaSbaaSqaaiabdQgaQbqabaGccqWGXbqCdaahaaWcbeqaaiabdUgaRbaakiabdghaXnaaBaaaleaacqWGSbaBaeqaaOGaeiikaGIae8hTdq2aa0baaSqaaiabdQgaQbqaaiabdMgaPbaakiabeo7aNnaaDaaaleaacqGFSbaBaeaacqGFRbWAaaGccqGGPaqkdaahaaWcbeqaaiabikdaYaaaaeaacqWGPbqAcqGGSaalcqWGQbGAcqGGSaalcqWGRbWAcqGGSaalcqWGSbaBaeqaniabggHiLdaaaaa@9DD5@

Using indicator variables, we can represent model (1) in another form. Assume that the two loci A and B have alleles A i , i = 1, 2, ..., n1; and B k , i = 1, 2, ..., n2, respectively. We define the following indicator variables to represent the segregation of alleles in a population.

z M i ( 1 ) = { 1 , for  A i  allele from paternal gamete 0 , otherwise . z F j ( 1 ) = { 1 , for  A j  allele from maternal gamete 0 , otherwise . MathType@MTEF@5@5@+=feaafiart1ev1aaatCvAUfKttLearuWrP9MDH5MBPbIqV92AaeXatLxBI9gBaebbnrfifHhDYfgasaacH8akY=wiFfYdH8Gipec8Eeeu0xXdbba9frFj0=OqFfea0dXdd9vqai=hGuQ8kuc9pgc9s8qqaq=dirpe0xb9q8qiLsFr0=vr0=vr0dc8meaabaqaciaacaGaaeqabaqabeGadaaakqaabeqaaiabdQha6naaDaaaleaacqWGnbqtdaWgaaadbaGaemyAaKgabeaaaSqaaiabcIcaOiabigdaXiabcMcaPaaakiabg2da9maaceaabaqbaeaabiGaaaqaaiabigdaXiabcYcaSaqaaiabbAgaMjabb+gaVjabbkhaYjabbccaGiabdgeabnaaBaaaleaacqWGPbqAaeqaaOGaeeiiaaIaeeyyaeMaeeiBaWMaeeiBaWMaeeyzauMaeeiBaWMaeeyzauMaeeiiaaIaeeOzayMaeeOCaiNaee4Ba8MaeeyBa0MaeeiiaaIaeeiCaaNaeeyyaeMaeeiDaqNaeeyzauMaeeOCaiNaeeOBa4MaeeyyaeMaeeiBaWMaeeiiaaIaee4zaCMaeeyyaeMaeeyBa0MaeeyzauMaeeiDaqNaeeyzaugabaGaeGimaaJaeiilaWcabaGaee4Ba8MaeeiDaqNaeeiAaGMaeeyzauMaeeOCaiNaee4DaCNaeeyAaKMaee4CamNaeeyzauMaeiOla4caaaGaay5EaaaabaGaemOEaO3aa0baaSqaaiabdAeagnaaBaaameaacqWGQbGAaeqaaaWcbaGaeiikaGIaeGymaeJaeiykaKcaaOGaeyypa0ZaaiqaaeaafaqaaeGacaaabaGaeGymaeJaeiilaWcabaGaeeOzayMaee4Ba8MaeeOCaiNaeeiiaaIaemyqae0aaSbaaSqaaiabdQgaQbqabaGccqqGGaaicqqGHbqycqqGSbaBcqqGSbaBcqqGLbqzcqqGSbaBcqqGLbqzcqqGGaaicqqGMbGzcqqGYbGCcqqGVbWBcqqGTbqBcqqGGaaicqqGTbqBcqqGHbqycqqG0baDcqqGLbqzcqqGYbGCcqqGUbGBcqqGHbqycqqGSbaBcqqGGaaicqqGNbWzcqqGHbqycqqGTbqBcqqGLbqzcqqG0baDcqqGLbqzaeaacqaIWaamcqGGSaalaeaacqqGVbWBcqqG0baDcqqGObaAcqqGLbqzcqqGYbGCcqqG3bWDcqqGPbqAcqqGZbWCcqqGLbqzcqGGUaGlaaaacaGL7baaaaaa@B74B@

for i, j = 1, 2, ..., n1 at locus A, and

z M k ( 2 ) = { 1 , for  B k  allele from paternal gamete 0 , otherwise . z F l ( 2 ) = { 1 , for  B l  allele from maternal gamete 0 , otherwise . MathType@MTEF@5@5@+=feaafiart1ev1aaatCvAUfKttLearuWrP9MDH5MBPbIqV92AaeXatLxBI9gBaebbnrfifHhDYfgasaacH8akY=wiFfYdH8Gipec8Eeeu0xXdbba9frFj0=OqFfea0dXdd9vqai=hGuQ8kuc9pgc9s8qqaq=dirpe0xb9q8qiLsFr0=vr0=vr0dc8meaabaqaciaacaGaaeqabaqabeGadaaakqaabeqaaiabdQha6naaDaaaleaacqWGnbqtdaWgaaadbaGaem4AaSgabeaaaSqaaiabcIcaOiabikdaYiabcMcaPaaakiabg2da9maaceaabaqbaeaabiGaaaqaaiabigdaXiabcYcaSaqaaiabbAgaMjabb+gaVjabbkhaYjabbccaGGqaciab=jeacnaaBaaaleaacqWGRbWAaeqaaOGaeeiiaaIaeeyyaeMaeeiBaWMaeeiBaWMaeeyzauMaeeiBaWMaeeyzauMaeeiiaaIaeeOzayMaeeOCaiNaee4Ba8MaeeyBa0MaeeiiaaIaeeiCaaNaeeyyaeMaeeiDaqNaeeyzauMaeeOCaiNaeeOBa4MaeeyyaeMaeeiBaWMaeeiiaaIaee4zaCMaeeyyaeMaeeyBa0MaeeyzauMaeeiDaqNaeeyzaugabaGaeGimaaJaeiilaWcabaGaee4Ba8MaeeiDaqNaeeiAaGMaeeyzauMaeeOCaiNaee4DaCNaeeyAaKMaee4CamNaeeyzauMaeiOla4caaaGaay5EaaaabaGaemOEaO3aa0baaSqaaiabdAeagnaaBaaameaacqWGSbaBaeqaaaWcbaGaeiikaGIaeGOmaiJaeiykaKcaaOGaeyypa0ZaaiqaaeaafaqaaeGacaaabaGaeGymaeJaeiilaWcabaGaeeOzayMaee4Ba8MaeeOCaiNaeeiiaaIae8Nqai0aaSbaaSqaaiabdYgaSbqabaGccqqGGaaicqqGHbqycqqGSbaBcqqGSbaBcqqGLbqzcqqGSbaBcqqGLbqzcqqGGaaicqqGMbGzcqqGYbGCcqqGVbWBcqqGTbqBcqqGGaaicqqGTbqBcqqGHbqycqqG0baDcqqGLbqzcqqGYbGCcqqGUbGBcqqGHbqycqqGSbaBcqqGGaaicqqGNbWzcqqGHbqycqqGTbqBcqqGLbqzcqqG0baDcqqGLbqzaeaacqaIWaamcqGGSaalaeaacqqGVbWBcqqG0baDcqqGObaAcqqGLbqzcqqGYbGCcqqG3bWDcqqGPbqAcqqGZbWCcqqGLbqzcqGGUaGlaaaacaGL7baaaaaa@B766@

for k, l = 1, 2, ..., n2 at locus B. In terms of these indicator variables, we have the following.

• Hardy-Weinberg equilibrium (HWE) implies that { z M i ( 1 ) MathType@MTEF@5@5@+=feaafiart1ev1aaatCvAUfKttLearuWrP9MDH5MBPbIqV92AaeXatLxBI9gBaebbnrfifHhDYfgasaacH8akY=wiFfYdH8Gipec8Eeeu0xXdbba9frFj0=OqFfea0dXdd9vqai=hGuQ8kuc9pgc9s8qqaq=dirpe0xb9q8qiLsFr0=vr0=vr0dc8meaabaqaciaacaGaaeqabaqabeGadaaakeaacqWG6bGEdaqhaaWcbaGaemyta00aaSbaaWqaaiabdMgaPbqabaaaleaacqGGOaakcqaIXaqmcqGGPaqkaaaaaa@33AE@ , i = 1, 2, ..., n1} are independent of { z F j ( 1 ) MathType@MTEF@5@5@+=feaafiart1ev1aaatCvAUfKttLearuWrP9MDH5MBPbIqV92AaeXatLxBI9gBaebbnrfifHhDYfgasaacH8akY=wiFfYdH8Gipec8Eeeu0xXdbba9frFj0=OqFfea0dXdd9vqai=hGuQ8kuc9pgc9s8qqaq=dirpe0xb9q8qiLsFr0=vr0=vr0dc8meaabaqaciaacaGaaeqabaqabeGadaaakeaacqWG6bGEdaqhaaWcbaGaemOray0aaSbaaWqaaiabdQgaQbqabaaaleaacqGGOaakcqaIXaqmcqGGPaqkaaaaaa@33A2@ , j = 1, 2, ..., n1}, and { z M k ( 2 ) MathType@MTEF@5@5@+=feaafiart1ev1aaatCvAUfKttLearuWrP9MDH5MBPbIqV92AaeXatLxBI9gBaebbnrfifHhDYfgasaacH8akY=wiFfYdH8Gipec8Eeeu0xXdbba9frFj0=OqFfea0dXdd9vqai=hGuQ8kuc9pgc9s8qqaq=dirpe0xb9q8qiLsFr0=vr0=vr0dc8meaabaqaciaacaGaaeqabaqabeGadaaakeaacqWG6bGEdaqhaaWcbaGaemyta00aaSbaaWqaaiabdUgaRbqabaaaleaacqGGOaakcqaIYaGmcqGGPaqkaaaaaa@33B4@ , k = 1, 2, ..., n2} are independent of { z F l ( 2 ) MathType@MTEF@5@5@+=feaafiart1ev1aaatCvAUfKttLearuWrP9MDH5MBPbIqV92AaeXatLxBI9gBaebbnrfifHhDYfgasaacH8akY=wiFfYdH8Gipec8Eeeu0xXdbba9frFj0=OqFfea0dXdd9vqai=hGuQ8kuc9pgc9s8qqaq=dirpe0xb9q8qiLsFr0=vr0=vr0dc8meaabaqaciaacaGaaeqabaqabeGadaaakeaacqWG6bGEdaqhaaWcbaGaemOray0aaSbaaWqaaiabdYgaSbqabaaaleaacqGGOaakcqaIYaGmcqGGPaqkaaaaaa@33A8@ , l = 1, 2, ..., n2}.

• Linkage equilibrium (LE) implies that { z M i ( 1 ) MathType@MTEF@5@5@+=feaafiart1ev1aaatCvAUfKttLearuWrP9MDH5MBPbIqV92AaeXatLxBI9gBaebbnrfifHhDYfgasaacH8akY=wiFfYdH8Gipec8Eeeu0xXdbba9frFj0=OqFfea0dXdd9vqai=hGuQ8kuc9pgc9s8qqaq=dirpe0xb9q8qiLsFr0=vr0=vr0dc8meaabaqaciaacaGaaeqabaqabeGadaaakeaacqWG6bGEdaqhaaWcbaGaemyta00aaSbaaWqaaiabdMgaPbqabaaaleaacqGGOaakcqaIXaqmcqGGPaqkaaaaaa@33AE@ , i = 1, 2, ..., n1} are independent of { z M k ( 2 ) MathType@MTEF@5@5@+=feaafiart1ev1aaatCvAUfKttLearuWrP9MDH5MBPbIqV92AaeXatLxBI9gBaebbnrfifHhDYfgasaacH8akY=wiFfYdH8Gipec8Eeeu0xXdbba9frFj0=OqFfea0dXdd9vqai=hGuQ8kuc9pgc9s8qqaq=dirpe0xb9q8qiLsFr0=vr0=vr0dc8meaabaqaciaacaGaaeqabaqabeGadaaakeaacqWG6bGEdaqhaaWcbaGaemyta00aaSbaaWqaaiabdUgaRbqabaaaleaacqGGOaakcqaIYaGmcqGGPaqkaaaaaa@33B4@ , k = 1, 2, ..., n2}, and { z F j ( 1 ) MathType@MTEF@5@5@+=feaafiart1ev1aaatCvAUfKttLearuWrP9MDH5MBPbIqV92AaeXatLxBI9gBaebbnrfifHhDYfgasaacH8akY=wiFfYdH8Gipec8Eeeu0xXdbba9frFj0=OqFfea0dXdd9vqai=hGuQ8kuc9pgc9s8qqaq=dirpe0xb9q8qiLsFr0=vr0=vr0dc8meaabaqaciaacaGaaeqabaqabeGadaaakeaacqWG6bGEdaqhaaWcbaGaemOray0aaSbaaWqaaiabdQgaQbqabaaaleaacqGGOaakcqaIXaqmcqGGPaqkaaaaaa@33A2@ , j = 1, 2, ..., n1} are independent of { z F l ( 2 ) MathType@MTEF@5@5@+=feaafiart1ev1aaatCvAUfKttLearuWrP9MDH5MBPbIqV92AaeXatLxBI9gBaebbnrfifHhDYfgasaacH8akY=wiFfYdH8Gipec8Eeeu0xXdbba9frFj0=OqFfea0dXdd9vqai=hGuQ8kuc9pgc9s8qqaq=dirpe0xb9q8qiLsFr0=vr0=vr0dc8meaabaqaciaacaGaaeqabaqabeGadaaakeaacqWG6bGEdaqhaaWcbaGaemOray0aaSbaaWqaaiabdYgaSbqabaaaleaacqGGOaakcqaIYaGmcqGGPaqkaaaaaa@33A8@ , l = 1, 2, ..., n2}.

• There is another type of disequilibrium; i.e., the so-called genotypic disequilibrium [14] for two alleles on different gametes and at different loci. So, the genotypic equilibrium (GE) here means that { z M i ( 1 ) MathType@MTEF@5@5@+=feaafiart1ev1aaatCvAUfKttLearuWrP9MDH5MBPbIqV92AaeXatLxBI9gBaebbnrfifHhDYfgasaacH8akY=wiFfYdH8Gipec8Eeeu0xXdbba9frFj0=OqFfea0dXdd9vqai=hGuQ8kuc9pgc9s8qqaq=dirpe0xb9q8qiLsFr0=vr0=vr0dc8meaabaqaciaacaGaaeqabaqabeGadaaakeaacqWG6bGEdaqhaaWcbaGaemyta00aaSbaaWqaaiabdMgaPbqabaaaleaacqGGOaakcqaIXaqmcqGGPaqkaaaaaa@33AE@ , i = 1, 2,..., n1} are independent of { z F l ( 2 ) MathType@MTEF@5@5@+=feaafiart1ev1aaatCvAUfKttLearuWrP9MDH5MBPbIqV92AaeXatLxBI9gBaebbnrfifHhDYfgasaacH8akY=wiFfYdH8Gipec8Eeeu0xXdbba9frFj0=OqFfea0dXdd9vqai=hGuQ8kuc9pgc9s8qqaq=dirpe0xb9q8qiLsFr0=vr0=vr0dc8meaabaqaciaacaGaaeqabaqabeGadaaakeaacqWG6bGEdaqhaaWcbaGaemOray0aaSbaaWqaaiabdYgaSbqabaaaleaacqGGOaakcqaIYaGmcqGGPaqkaaaaaa@33A8@ , l = 1, 2, ..., n2}, and { z F j ( 1 ) MathType@MTEF@5@5@+=feaafiart1ev1aaatCvAUfKttLearuWrP9MDH5MBPbIqV92AaeXatLxBI9gBaebbnrfifHhDYfgasaacH8akY=wiFfYdH8Gipec8Eeeu0xXdbba9frFj0=OqFfea0dXdd9vqai=hGuQ8kuc9pgc9s8qqaq=dirpe0xb9q8qiLsFr0=vr0=vr0dc8meaabaqaciaacaGaaeqabaqabeGadaaakeaacqWG6bGEdaqhaaWcbaGaemOray0aaSbaaWqaaiabdQgaQbqabaaaleaacqGGOaakcqaIXaqmcqGGPaqkaaaaaa@33A2@ , j = 1, 2, ..., n1} are independent of { z M k ( 2 ) MathType@MTEF@5@5@+=feaafiart1ev1aaatCvAUfKttLearuWrP9MDH5MBPbIqV92AaeXatLxBI9gBaebbnrfifHhDYfgasaacH8akY=wiFfYdH8Gipec8Eeeu0xXdbba9frFj0=OqFfea0dXdd9vqai=hGuQ8kuc9pgc9s8qqaq=dirpe0xb9q8qiLsFr0=vr0=vr0dc8meaabaqaciaacaGaaeqabaqabeGadaaakeaacqWG6bGEdaqhaaWcbaGaemyta00aaSbaaWqaaiabdUgaRbqabaaaleaacqGGOaakcqaIYaGmcqGGPaqkaaaaaa@33B4@ , k = 1, 2, ..., n2}.

It is known that under random mating we have both HWE and GE, which together are called gametic phase equilibrium. Now, let G denote the genotypic value of a progeny drawn randomly from the current population. Based on Cockerham model, G can be expressed as

G = μ + i = 1 n 1 α i z M i ( 1 ) + j = 1 n 1 α j z F j ( 1 ) + i , j δ j i z M i ( 1 ) z F j ( 1 ) + k = 1 n 2 β k z M k ( 2 ) + l = 1 n 2 β l z F l ( 2 ) + k , l γ l k z M k ( 2 ) z F l ( 2 ) + [ i , k ( α i β k ) z M i ( 1 ) z M k ( 2 ) + i , l ( α i β l ) z M i ( 1 ) z F l ( 2 ) + j , k ( α j β k ) z F j ( 1 ) z M k ( 2 ) + j , l ( α j β l ) z F j ( 1 ) z F l ( 2 ) ] + [ i , k , l ( α i γ l k ) z M i ( 1 ) z M k ( 2 ) z F l ( 2 ) + j , k , l ( α j γ l k ) z F j ( 1 ) z M k ( 2 ) z F l ( 2 ) ] + [ i , j , k ( δ j i β k ) z M i ( 1 ) z F j ( 1 ) z M k ( 2 ) + i , j , l ( δ j i β l ) z M i ( 1 ) z F j ( 1 ) z F l ( 2 ) ] + i , j , k , l ( δ j i γ l k ) z M i ( 1 ) z F j ( 1 ) z M k ( 2 ) z F l ( 2 ) ( 5 ) MathType@MTEF@5@5@+=feaafiart1ev1aaatCvAUfKttLearuWrP9MDH5MBPbIqV92AaeXatLxBI9gBaebbnrfifHhDYfgasaacH8akY=wiFfYdH8Gipec8Eeeu0xXdbba9frFj0=OqFfea0dXdd9vqai=hGuQ8kuc9pgc9s8qqaq=dirpe0xb9q8qiLsFr0=vr0=vr0dc8meaabaqaciaacaGaaeqabaqabeGadaaakqaabeqaaiabdEeahjabg2da9GGaciab=X7aTjabgUcaRmaaqahabaGae8xSde2aaWbaaSqabeaacqWGPbqAaaGccqWG6bGEdaqhaaWcbaGaemyta00aaSbaaWqaaiabdMgaPbqabaaaleaacqGGOaakcqaIXaqmcqGGPaqkaaaabaGaemyAaKMaeyypa0JaeGymaedabaGaemOBa42aaSbaaWqaaiabigdaXaqabaaaniabggHiLdGccqGHRaWkdaaeWbqaaiab=f7aHnaaBaaaleaaieGacqGFQbGAaeqaaOGaemOEaO3aa0baaSqaaiabdAeagnaaBaaameaacqWGQbGAaeqaaaWcbaGaeiikaGIaeGymaeJaeiykaKcaaaqaaiabdQgaQjabg2da9iabigdaXaqaaiabd6gaUnaaBaaameaacqaIXaqmaeqaaaqdcqGHris5aOGaey4kaSYaaabuaeaacqWF0oazdaqhaaWcbaGaemOAaOgabaGaemyAaKgaaOGaemOEaO3aa0baaSqaaiabd2eannaaBaaameaacqWGPbqAaeqaaaWcbaGaeiikaGIaeGymaeJaeiykaKcaaOGaemOEaO3aa0baaSqaaiabdAeagnaaBaaameaacqWGQbGAaeqaaaWcbaGaeiikaGIaeGymaeJaeiykaKcaaaqaaiabdMgaPjabcYcaSiabdQgaQbqab0GaeyyeIuoaaOqaaiabgUcaRmaaqahabaGae8NSdi2aaWbaaSqabeaacqWGRbWAaaGccqWG6bGEdaqhaaWcbaGaemyta00aaSbaaWqaaiabdUgaRbqabaaaleaacqGGOaakcqaIYaGmcqGGPaqkaaaabaGaem4AaSMaeyypa0JaeGymaedabaGaemOBa42aaSbaaWqaaiabikdaYaqabaaaniabggHiLdGccqGHRaWkdaaeWbqaaiab=j7aInaaBaaaleaacqGFSbaBaeqaaOGaemOEaO3aa0baaSqaaiabdAeagnaaBaaameaacqWGSbaBaeqaaaWcbaGaeiikaGIaeGOmaiJaeiykaKcaaaqaaiabdYgaSjabg2da9iabigdaXaqaaiabd6gaUnaaBaaameaacqaIYaGmaeqaaaqdcqGHris5aOGaey4kaSYaaabuaeaacqaHZoWzdaqhaaWcbaGaemiBaWgabaGaem4AaSgaaOGaemOEaO3aa0baaSqaaiabd2eannaaBaaameaacqWGRbWAaeqaaaWcbaGaeiikaGIaeGOmaiJaeiykaKcaaOGaemOEaO3aa0baaSqaaiabdAeagnaaBaaameaacqWGSbaBaeqaaaWcbaGaeiikaGIaeGOmaiJaeiykaKcaaaqaaiabdUgaRjabcYcaSiabdYgaSbqab0GaeyyeIuoaaOqaaiabgUcaRiabcUfaBnaaqafabaGaeiikaGIae8xSde2aaWbaaSqabeaacqWGPbqAaaGccqWFYoGydaahaaWcbeqaaiabdUgaRbaakiabcMcaPiabdQha6naaDaaaleaacqWGnbqtdaWgaaadbaGaemyAaKgabeaaaSqaaiabcIcaOiabigdaXiabcMcaPaaakiabdQha6naaDaaaleaacqWGnbqtdaWgaaadbaGaem4AaSgabeaaaSqaaiabcIcaOiabikdaYiabcMcaPaaaaeaacqWGPbqAcqGGSaalcqWGRbWAaeqaniabggHiLdGccqGHRaWkdaaeqbqaaiabcIcaOiab=f7aHnaaCaaaleqabaGaemyAaKgaaOGae8NSdi2aaSbaaSqaaiab+XgaSbqabaGccqGGPaqkcqWG6bGEdaqhaaWcbaGaemyta00aaSbaaWqaaiabdMgaPbqabaaaleaacqGGOaakcqaIXaqmcqGGPaqkaaGccqWG6bGEdaqhaaWcbaGaemOray0aaSbaaWqaaiabdYgaSbqabaaaleaacqGGOaakcqaIYaGmcqGGPaqkaaaabaGaemyAaKMaeiilaWIaemiBaWgabeqdcqGHris5aaGcbaGaey4kaSYaaabuaeaacqGGOaakcqWFXoqydaWgaaWcbaGae4NAaOgabeaakiab=j7aInaaCaaaleqabaGaem4AaSgaaOGaeiykaKIaemOEaO3aa0baaSqaaiabdAeagnaaBaaameaacqWGQbGAaeqaaaWcbaGaeiikaGIaeGymaeJaeiykaKcaaOGaemOEaO3aa0baaSqaaiabd2eannaaBaaameaacqWGRbWAaeqaaaWcbaGaeiikaGIaeGOmaiJaeiykaKcaaaqaaiabdQgaQjabcYcaSiabdUgaRbqab0GaeyyeIuoakiabgUcaRmaaqafabaGaeiikaGIae8xSde2aaSbaaSqaaiab+PgaQbqabaGccqWFYoGydaWgaaWcbaGae4hBaWgabeaakiabcMcaPiabdQha6naaDaaaleaacqWGgbGrdaWgaaadbaGaemOAaOgabeaaaSqaaiabcIcaOiabigdaXiabcMcaPaaakiabdQha6naaDaaaleaacqWGgbGrdaWgaaadbaGaemiBaWgabeaaaSqaaiabcIcaOiabikdaYiabcMcaPaaaaeaacqWGQbGAcqGGSaalcqWGSbaBaeqaniabggHiLdGccqGGDbqxaeaacqGHRaWkcqGGBbWwdaaeqbqaaiabcIcaOiab=f7aHnaaCaaaleqabaGaemyAaKgaaOGaeq4SdC2aa0baaSqaaiabdYgaSbqaaiabdUgaRbaakiabcMcaPiabdQha6naaDaaaleaacqWGnbqtdaWgaaadbaGaemyAaKgabeaaaSqaaiabcIcaOiabigdaXiabcMcaPaaakiabdQha6naaDaaaleaacqWGnbqtdaWgaaadbaGaem4AaSgabeaaaSqaaiabcIcaOiabikdaYiabcMcaPaaakiabdQha6naaDaaaleaacqWGgbGrdaWgaaadbaGaemiBaWgabeaaaSqaaiabcIcaOiabikdaYiabcMcaPaaaaeaacqWGPbqAcqGGSaalcqWGRbWAcqGGSaalcqWGSbaBaeqaniabggHiLdGccqGHRaWkdaaeqbqaaiabcIcaOiab=f7aHnaaBaaaleaacqGFQbGAaeqaaOGaeq4SdC2aa0baaSqaaiabdYgaSbqaaiabdUgaRbaakiabcMcaPiabdQha6naaDaaaleaacqWGgbGrdaWgaaadbaGaemOAaOgabeaaaSqaaiabcIcaOiabigdaXiabcMcaPaaakiabdQha6naaDaaaleaacqWGnbqtdaWgaaadbaGaem4AaSgabeaaaSqaaiabcIcaOiabikdaYiabcMcaPaaakiabdQha6naaDaaaleaacqWGgbGrdaWgaaadbaGaemiBaWgabeaaaSqaaiabcIcaOiabikdaYiabcMcaPaaaaeaacqWGQbGAcqGGSaalcqWGRbWAcqGGSaalcqWGSbaBaeqaniabggHiLdGccqGGDbqxaeaacqGHRaWkcqGGBbWwdaaeqbqaaiabcIcaOiab=r7aKnaaDaaaleaacqWGQbGAaeaacqWGPbqAaaGccqWFYoGydaahaaWcbeqaaiabdUgaRbaakiabcMcaPiabdQha6naaDaaaleaacqWGnbqtdaWgaaadbaGaemyAaKgabeaaaSqaaiabcIcaOiabigdaXiabcMcaPaaakiabdQha6naaDaaaleaacqWGgbGrdaWgaaadbaGaemOAaOgabeaaaSqaaiabcIcaOiabigdaXiabcMcaPaaakiabdQha6naaDaaaleaacqWGnbqtdaWgaaadbaGaem4AaSgabeaaaSqaaiabcIcaOiabikdaYiabcMcaPaaaaeaacqWGPbqAcqGGSaalcqWGQbGAcqGGSaalcqWGRbWAaeqaniabggHiLdGccqGHRaWkdaaeqbqaaiabcIcaOiab=r7aKnaaDaaaleaacqWGQbGAaeaacqWGPbqAaaGccqWFYoGydaWgaaWcbaGae4hBaWgabeaakiabcMcaPiabdQha6naaDaaaleaacqWGnbqtdaWgaaadbaGaemyAaKgabeaaaSqaaiabcIcaOiabigdaXiabcMcaPaaakiabdQha6naaDaaaleaacqWGgbGrdaWgaaadbaGaemOAaOgabeaaaSqaaiabcIcaOiabigdaXiabcMcaPaaakiabdQha6naaDaaaleaacqWGgbGrdaWgaaadbaGaemiBaWgabeaaaSqaaiabcIcaOiabikdaYiabcMcaPaaaaeaacqWGPbqAcqGGSaalcqWGQbGAcqGGSaalcqWGSbaBaeqaniabggHiLdGccqGGDbqxaeaacqGHRaWkdaaeqbqaaiabcIcaOiab=r7aKnaaDaaaleaacqWGQbGAaeaacqWGPbqAaaGccqaHZoWzdaqhaaWcbaGaemiBaWgabaGaem4AaSgaaOGaeiykaKIaemOEaO3aa0baaSqaaiabd2eannaaBaaameaacqWGPbqAaeqaaaWcbaGaeiikaGIaeGymaeJaeiykaKcaaOGaemOEaO3aa0baaSqaaiabdAeagnaaBaaameaacqWGQbGAaeqaaaWcbaGaeiikaGIaeGymaeJaeiykaKcaaOGaemOEaO3aa0baaSqaaiabd2eannaaBaaameaacqWGRbWAaeqaaaWcbaGaeiikaGIaeGOmaiJaeiykaKcaaOGaemOEaO3aa0baaSqaaiabdAeagnaaBaaameaacqWGSbaBaeqaaaWcbaGaeiikaGIaeGOmaiJaeiykaKcaaaqaaiabdMgaPjabcYcaSiabdQgaQjabcYcaSiabdUgaRjabcYcaSiabdYgaSbqab0GaeyyeIuoakiaaxMaacaWLjaWaaeWaaeaacqaI1aqnaiaawIcacaGLPaaaaaaa@FD6E@

This is simply a different presentation of Cockerham model with the same constraint conditions applied on the coefficient parameters. For a given individual with genotype A i B k /A j B l , G will take the same value of G j l i k MathType@MTEF@5@5@+=feaafiart1ev1aaatCvAUfKttLearuWrP9MDH5MBPbIqV92AaeXatLxBI9gBaebbnrfifHhDYfgasaacH8akY=wiFfYdH8Gipec8Eeeu0xXdbba9frFj0=OqFfea0dXdd9vqai=hGuQ8kuc9pgc9s8qqaq=dirpe0xb9q8qiLsFr0=vr0=vr0dc8meaabaqaciaacaGaaeqabaqabeGadaaakeaacqWGhbWrdaqhaaWcbaGaemOAaOMaemiBaWgabaGaemyAaKMaem4AaSgaaaaa@3368@ as before. However, this expression is helpful for us to understand some details about each component of genetic effects. We can see this more clearly in the examination of some reduced models later.

In general, the genetic effects can be defined separately for alleles that are paternally and maternally transmitted to account for possible biological differences. As a fully parameterized model for G j l i k MathType@MTEF@5@5@+=feaafiart1ev1aaatCvAUfKttLearuWrP9MDH5MBPbIqV92AaeXatLxBI9gBaebbnrfifHhDYfgasaacH8akY=wiFfYdH8Gipec8Eeeu0xXdbba9frFj0=OqFfea0dXdd9vqai=hGuQ8kuc9pgc9s8qqaq=dirpe0xb9q8qiLsFr0=vr0=vr0dc8meaabaqaciaacaGaaeqabaqabeGadaaakeaacqWGhbWrdaqhaaWcbaGaemOAaOMaemiBaWgabaGaemyAaKMaem4AaSgaaaaa@3368@ , model (3) may give G j l i k G j k i l G i l j k G i k j l MathType@MTEF@5@5@+=feaafiart1ev1aaatCvAUfKttLearuWrP9MDH5MBPbIqV92AaeXatLxBI9gBaebbnrfifHhDYfgasaacH8akY=wiFfYdH8Gipec8Eeeu0xXdbba9frFj0=OqFfea0dXdd9vqai=hGuQ8kuc9pgc9s8qqaq=dirpe0xb9q8qiLsFr0=vr0=vr0dc8meaabaqaciaacaGaaeqabaqabeGadaaakeaacqWGhbWrdaqhaaWcbaGaemOAaOMaemiBaWgabaGaemyAaKMaem4AaSgaaOGaeyiyIKRaem4raC0aa0baaSqaaiabdQgaQjabdUgaRbqaaiabdMgaPjabdYgaSbaakiabgcMi5kabdEeahnaaDaaaleaacqWGPbqAcqWGSbaBaeaacqWGQbGAcqWGRbWAaaGccqGHGjsUcqWGhbWrdaqhaaWcbaGaemyAaKMaem4AaSgabaGaemOAaOMaemiBaWgaaaaa@4D0F@ depending on how genetic effects are defined. If locus A has n1 alleles, and locus B has n2 alleles, there are N = n 1 2 n 2 2 MathType@MTEF@5@5@+=feaafiart1ev1aaatCvAUfKttLearuWrP9MDH5MBPbIqV92AaeXatLxBI9gBaebbnrfifHhDYfgasaacH8akY=wiFfYdH8Gipec8Eeeu0xXdbba9frFj0=OqFfea0dXdd9vqai=hGuQ8kuc9pgc9s8qqaq=dirpe0xb9q8qiLsFr0=vr0=vr0dc8meaabaqaciaacaGaaeqabaqabeGadaaakeaacqWGUbGBdaqhaaWcbaGaeGymaedabaGaeGOmaidaaOGaemOBa42aa0baaSqaaiabikdaYaqaaiabikdaYaaaaaa@33A0@ possible phased genotypes in total with the partition of the degrees of freedom given in Table 1.

Table 1 Partition of degrees of freedom for two loci with number of alleles n1 and n2 (a general case)

If we assume that the union of paternal gamete A i B k with maternal gamete A j B l have the same mean effect as that of paternal gamete A j B l with maternal gamete A i B k (i.e., G j l i k = G i k j l MathType@MTEF@5@5@+=feaafiart1ev1aaatCvAUfKttLearuWrP9MDH5MBPbIqV92AaeXatLxBI9gBaebbnrfifHhDYfgasaacH8akY=wiFfYdH8Gipec8Eeeu0xXdbba9frFj0=OqFfea0dXdd9vqai=hGuQ8kuc9pgc9s8qqaq=dirpe0xb9q8qiLsFr0=vr0=vr0dc8meaabaqaciaacaGaaeqabaqabeGadaaakeaacqWGhbWrdaqhaaWcbaGaemOAaOMaemiBaWgabaGaemyAaKMaem4AaSgaaOGaeyypa0Jaem4raC0aa0baaSqaaiabdMgaPjabdUgaRbqaaiabdQgaQjabdYgaSbaaaaa@3B34@ ), the coupling and repulsion heterozygotes have the same genotypic value (i.e., G j l i k = G j k i l MathType@MTEF@5@5@+=feaafiart1ev1aaatCvAUfKttLearuWrP9MDH5MBPbIqV92AaeXatLxBI9gBaebbnrfifHhDYfgasaacH8akY=wiFfYdH8Gipec8Eeeu0xXdbba9frFj0=OqFfea0dXdd9vqai=hGuQ8kuc9pgc9s8qqaq=dirpe0xb9q8qiLsFr0=vr0=vr0dc8meaabaqaciaacaGaaeqabaqabeGadaaakeaacqWGhbWrdaqhaaWcbaGaemOAaOMaemiBaWgabaGaemyAaKMaem4AaSgaaOGaeyypa0Jaem4raC0aa0baaSqaaiabdQgaQjabdUgaRbqaaiabdMgaPjabdYgaSbaaaaa@3B34@ ), and paternal and maternal gametes have the same gametic frequency distribution, we do not need to distinguish paternal and maternal effects. In this case, the two loci can be regarded as 2 factors and each factor has n i 2 MathType@MTEF@5@5@+=feaafiart1ev1aaatCvAUfKttLearuWrP9MDH5MBPbIqV92AaeXatLxBI9gBaebbnrfifHhDYfgasaacH8akY=wiFfYdH8Gipec8Eeeu0xXdbba9frFj0=OqFfea0dXdd9vqai=hGuQ8kuc9pgc9s8qqaq=dirpe0xb9q8qiLsFr0=vr0=vr0dc8meaabaqaciaacaGaaeqabaqabeGadaaakeaacqWGUbGBdaqhaaWcbaGaemyAaKgabaGaeGOmaidaaaaa@308B@ (i = 1, 2) levels produced by the allelic combinations of n i alleles (cf. [7]). The total number of genotypes is N = n1(n1 + 1)n2(n2 + 1)/4 and the partition of degrees of freedom is shown in Table 2. Since in this case, αi= α i , βk= β k , ..., and so on, the model can also be expressed as follows

G = μ + i = 1 n 1 α i ( z M i ( 1 ) + z F i ( 1 ) ) + i , j δ j i z M i ( 1 ) z F j ( 1 ) + k = 1 n 2 β k ( z M k ( 2 ) + z F k ( 2 ) ) + k , l γ l k z M k ( 2 ) z F l ( 2 ) + i , k ( α i β k ) ( z M i ( 1 ) + z F i ( 1 ) ) ( z M k ( 2 ) + z F k ( 2 ) ) + i , k , l ( α i γ l k ) ( z M i ( 1 ) + z F i ( 1 ) ) z M k ( 2 ) z F l ( 2 ) + i , j , k ( δ j i β k ) z M i ( 1 ) z F j ( 1 ) ( z M k ( 2 ) + z F k ( 2 ) ) + i , j , k , l ( δ j i γ l k ) z M i ( 1 ) z F j ( 1 ) z M k ( 2 ) z F l ( 2 ) ) ( 6 ) MathType@MTEF@5@5@+=feaafiart1ev1aaatCvAUfKttLearuWrP9MDH5MBPbIqV92AaeXatLxBI9gBaebbnrfifHhDYfgasaacH8akY=wiFfYdH8Gipec8Eeeu0xXdbba9frFj0=OqFfea0dXdd9vqai=hGuQ8kuc9pgc9s8qqaq=dirpe0xb9q8qiLsFr0=vr0=vr0dc8meaabaqaciaacaGaaeqabaqabeGadaaakqaabeqaaiabdEeahjabg2da9GGaciab=X7aTjabgUcaRmaaqahabaGae8xSde2aaSbaaSqaaiabdMgaPbqabaGccqGGOaakcqWG6bGEdaqhaaWcbaGaemyta00aaSbaaWqaaiabdMgaPbqabaaaleaacqGGOaakcqaIXaqmcqGGPaqkaaGccqGHRaWkcqWG6bGEdaqhaaWcbaGaemOray0aaSbaaWqaaiabdMgaPbqabaaaleaacqGGOaakcqaIXaqmcqGGPaqkaaGccqGGPaqkaSqaaiabdMgaPjabg2da9iabigdaXaqaaiabd6gaUnaaBaaameaacqaIXaqmaeqaaaqdcqGHris5aOGaey4kaSYaaabuaeaacqWF0oazdaqhaaWcbaGaemOAaOgabaGaemyAaKgaaOGaemOEaO3aa0baaSqaaiabd2eannaaBaaameaacqWGPbqAaeqaaaWcbaGaeiikaGIaeGymaeJaeiykaKcaaOGaemOEaO3aa0baaSqaaiabdAeagnaaBaaameaacqWGQbGAaeqaaaWcbaGaeiikaGIaeGymaeJaeiykaKcaaaqaaiabdMgaPjabcYcaSiabdQgaQbqab0GaeyyeIuoaaOqaaiabgUcaRmaaqahabaGae8NSdi2aaSbaaSqaaiabdUgaRbqabaGccqGGOaakcqWG6bGEdaqhaaWcbaGaemyta00aaSbaaWqaaiabdUgaRbqabaaaleaacqGGOaakcqaIYaGmcqGGPaqkaaGccqGHRaWkcqWG6bGEdaqhaaWcbaGaemOray0aaSbaaWqaaiabdUgaRbqabaaaleaacqGGOaakcqaIYaGmcqGGPaqkaaGccqGGPaqkaSqaaiabdUgaRjabg2da9iabigdaXaqaaiabd6gaUnaaBaaameaacqaIYaGmaeqaaaqdcqGHris5aOGaey4kaSYaaabuaeaacqaHZoWzdaqhaaWcbaGaemiBaWgabaGaem4AaSgaaOGaemOEaO3aa0baaSqaaiabd2eannaaBaaameaacqWGRbWAaeqaaaWcbaGaeiikaGIaeGOmaiJaeiykaKcaaOGaemOEaO3aa0baaSqaaiabdAeagnaaBaaameaacqWGSbaBaeqaaaWcbaGaeiikaGIaeGOmaiJaeiykaKcaaaqaaiabdUgaRjabcYcaSiabdYgaSbqab0GaeyyeIuoaaOqaaiabgUcaRmaaqafabaGaeiikaGIae8xSde2aaSbaaSqaaiabdMgaPbqabaGccqWFYoGydaWgaaWcbaGaem4AaSgabeaakiabcMcaPaWcbaGaemyAaKMaeiilaWIaem4AaSgabeqdcqGHris5aOGaeiikaGIaemOEaO3aa0baaSqaaiabd2eannaaBaaameaacqWGPbqAaeqaaaWcbaGaeiikaGIaeGymaeJaeiykaKcaaOGaey4kaSIaemOEaO3aa0baaSqaaiabdAeagnaaBaaameaacqWGPbqAaeqaaaWcbaGaeiikaGIaeGymaeJaeiykaKcaaOGaeiykaKIaeiikaGIaemOEaO3aa0baaSqaaiabd2eannaaBaaameaacqWGRbWAaeqaaaWcbaGaeiikaGIaeGOmaiJaeiykaKcaaOGaey4kaSIaemOEaO3aa0baaSqaaiabdAeagnaaBaaameaacqWGRbWAaeqaaaWcbaGaeiikaGIaeGOmaiJaeiykaKcaaOGaeiykaKcabaGaey4kaSYaaabuaeaacqGGOaakcqWFXoqydaWgaaWcbaGaemyAaKgabeaakiabeo7aNnaaDaaaleaacqWGSbaBaeaacqWGRbWAaaGccqGGPaqkaSqaaiabdMgaPjabcYcaSiabdUgaRjabcYcaSiabdYgaSbqab0GaeyyeIuoakiabcIcaOiabdQha6naaDaaaleaacqWGnbqtdaWgaaadbaGaemyAaKgabeaaaSqaaiabcIcaOiabigdaXiabcMcaPaaakiabgUcaRiabdQha6naaDaaaleaacqWGgbGrdaWgaaadbaGaemyAaKgabeaaaSqaaiabcIcaOiabigdaXiabcMcaPaaakiabcMcaPiabdQha6naaDaaaleaacqWGnbqtdaWgaaadbaGaem4AaSgabeaaaSqaaiabcIcaOiabikdaYiabcMcaPaaakiabdQha6naaDaaaleaacqWGgbGrdaWgaaadbaGaemiBaWgabeaaaSqaaiabcIcaOiabikdaYiabcMcaPaaaaOqaaiabgUcaRmaaqafabaGaeiikaGIae8hTdq2aa0baaSqaaiabdQgaQbqaaiabdMgaPbaakiab=j7aInaaBaaaleaacqWGRbWAaeqaaOGaeiykaKcaleaacqWGPbqAcqGGSaalcqWGQbGAcqGGSaalcqWGRbWAaeqaniabggHiLdGccqWG6bGEdaqhaaWcbaGaemyta00aaSbaaWqaaiabdMgaPbqabaaaleaacqGGOaakcqaIXaqmcqGGPaqkaaGccqWG6bGEdaqhaaWcbaGaemOray0aaSbaaWqaaiabdQgaQbqabaaaleaacqGGOaakcqaIXaqmcqGGPaqkaaGccqGGOaakcqWG6bGEdaqhaaWcbaGaemyta00aaSbaaWqaaiabdUgaRbqabaaaleaacqGGOaakcqaIYaGmcqGGPaqkaaGccqGHRaWkcqWG6bGEdaqhaaWcbaGaemOray0aaSbaaWqaaiabdUgaRbqabaaaleaacqGGOaakcqaIYaGmcqGGPaqkaaGccqGGPaqkaeaacqGHRaWkdaaeqbqaaiabcIcaOiab=r7aKnaaDaaaleaacqWGQbGAaeaacqWGPbqAaaGccqaHZoWzdaqhaaWcbaGaemiBaWgabaGaem4AaSgaaOGaeiykaKcaleaacqWGPbqAcqGGSaalcqWGQbGAcqGGSaalcqWGRbWAcqGGSaalcqWGSbaBaeqaniabggHiLdGccqWG6bGEdaqhaaWcbaGaemyta00aaSbaaWqaaiabdMgaPbqabaaaleaacqGGOaakcqaIXaqmcqGGPaqkaaGccqWG6bGEdaqhaaWcbaGaemOray0aaSbaaWqaaiabdQgaQbqabaaaleaacqGGOaakcqaIXaqmcqGGPaqkaaGccqWG6bGEdaqhaaWcbaGaemyta00aaSbaaWqaaiabdUgaRbqabaaaleaacqGGOaakcqaIYaGmcqGGPaqkaaGccqWG6bGEdaqhaaWcbaGaemOray0aaSbaaWqaaiabdYgaSbqabaaaleaacqGGOaakcqaIYaGmcqGGPaqkaaGccqGGPaqkcaWLjaGaaCzcamaabmaabaGaeGOnaydacaGLOaGaayzkaaaaaaa@65AD@

Table 2 Partition of degrees of freedom for two loci with number of alleles n1 and n2 (a simplified case without distinguishing the paternal and maternal origins)

For the case of an arbitrary number of loci, the situation will become more complicated. In addition to the additive and dominance effects at each locus and two locus interactions (additive × additive, additive × dominance, dominance × additive, dominance × dominance, with a total number of 22 terms), there are 3 locus interactions (additive × additive × additive, additive × additive × dominance, ..., with a total number of 23 terms), 4 locus interactions (additive × additive × additive × additive, ..., with a total number of 24 terms), and so on. Though the extension is straightforward, the total number of terms will increase dramatically. We will show some models with multiple loci in later examples by ignoring trigenic and higher order epistasis.

Effects and variance components

Let pi, p j (i, j = 1, 2, ..., n1) be allelic frequencies of paternal and maternal gametes at locus A, respectively. Let also qk, q l (k, l = 1, 2, ..., n2) denote allelic frequencies of paternal and maternal gametes at locus B, respectively. In the analysis of variance for the model, it is convenient to use deviations of the indicator variables z M i ( 1 ) MathType@MTEF@5@5@+=feaafiart1ev1aaatCvAUfKttLearuWrP9MDH5MBPbIqV92AaeXatLxBI9gBaebbnrfifHhDYfgasaacH8akY=wiFfYdH8Gipec8Eeeu0xXdbba9frFj0=OqFfea0dXdd9vqai=hGuQ8kuc9pgc9s8qqaq=dirpe0xb9q8qiLsFr0=vr0=vr0dc8meaabaqaciaacaGaaeqabaqabeGadaaakeaacqWG6bGEdaqhaaWcbaGaemyta00aaSbaaWqaaiabdMgaPbqabaaaleaacqGGOaakcqaIXaqmcqGGPaqkaaaaaa@33AE@ , z F i ( 1 ) MathType@MTEF@5@5@+=feaafiart1ev1aaatCvAUfKttLearuWrP9MDH5MBPbIqV92AaeXatLxBI9gBaebbnrfifHhDYfgasaacH8akY=wiFfYdH8Gipec8Eeeu0xXdbba9frFj0=OqFfea0dXdd9vqai=hGuQ8kuc9pgc9s8qqaq=dirpe0xb9q8qiLsFr0=vr0=vr0dc8meaabaqaciaacaGaaeqabaqabeGadaaakeaacqWG6bGEdaqhaaWcbaGaemOray0aaSbaaWqaaiabdMgaPbqabaaaleaacqGGOaakcqaIXaqmcqGGPaqkaaaaaa@33A0@ , z M j ( 2 ) MathType@MTEF@5@5@+=feaafiart1ev1aaatCvAUfKttLearuWrP9MDH5MBPbIqV92AaeXatLxBI9gBaebbnrfifHhDYfgasaacH8akY=wiFfYdH8Gipec8Eeeu0xXdbba9frFj0=OqFfea0dXdd9vqai=hGuQ8kuc9pgc9s8qqaq=dirpe0xb9q8qiLsFr0=vr0=vr0dc8meaabaqaciaacaGaaeqabaqabeGadaaakeaacqWG6bGEdaqhaaWcbaGaemyta00aaSbaaWqaaiabdQgaQbqabaaaleaacqGGOaakcqaIYaGmcqGGPaqkaaaaaa@33B2@ and z F j ( 2 ) MathType@MTEF@5@5@+=feaafiart1ev1aaatCvAUfKttLearuWrP9MDH5MBPbIqV92AaeXatLxBI9gBaebbnrfifHhDYfgasaacH8akY=wiFfYdH8Gipec8Eeeu0xXdbba9frFj0=OqFfea0dXdd9vqai=hGuQ8kuc9pgc9s8qqaq=dirpe0xb9q8qiLsFr0=vr0=vr0dc8meaabaqaciaacaGaaeqabaqabeGadaaakeaacqWG6bGEdaqhaaWcbaGaemOray0aaSbaaWqaaiabdQgaQbqabaaaleaacqGGOaakcqaIYaGmcqGGPaqkaaaaaa@33A4@ from their expected values. That is

x M i ( 1 ) = z M i ( 1 ) E ( z M i ( 1 ) ) = z M i ( 1 ) p i = { 1 p i , for  A i  allele from paternal gamete p i , otherwise MathType@MTEF@5@5@+=feaafiart1ev1aaatCvAUfKttLearuWrP9MDH5MBPbIqV92AaeXatLxBI9gBaebbnrfifHhDYfgasaacH8akY=wiFfYdH8Gipec8Eeeu0xXdbba9frFj0=OqFfea0dXdd9vqai=hGuQ8kuc9pgc9s8qqaq=dirpe0xb9q8qiLsFr0=vr0=vr0dc8meaabaqaciaacaGaaeqabaqabeGadaaakqaabeqaaiabdIha4naaDaaaleaacqWGnbqtdaWgaaadbaGaemyAaKgabeaaaSqaaiabcIcaOiabigdaXiabcMcaPaaakiabg2da9iabdQha6naaDaaaleaacqWGnbqtdaWgaaadbaGaemyAaKgabeaaaSqaaiabcIcaOiabigdaXiabcMcaPaaakiabgkHiTiabdweafjabcIcaOiabdQha6naaDaaaleaacqWGnbqtdaWgaaadbaGaemyAaKgabeaaaSqaaiabcIcaOiabigdaXiabcMcaPaaakiabcMcaPiabg2da9iabdQha6naaDaaaleaacqWGnbqtdaWgaaadbaGaemyAaKgabeaaaSqaaiabcIcaOiabigdaXiabcMcaPaaakiabgkHiTiabdchaWnaaCaaaleqabaGaemyAaKgaaaGcbaGaeyypa0ZaaiqaaeaafaqaaeGacaaabaGaeGymaeJaeyOeI0IaemiCaa3aaWbaaSqabeaacqWGPbqAaaGccqGGSaalaeaacqqGMbGzcqqGVbWBcqqGYbGCcqqGGaaicqWGbbqqdaWgaaWcbaGaemyAaKgabeaakiabbccaGiabbggaHjabbYgaSjabbYgaSjabbwgaLjabbYgaSjabbwgaLjabbccaGiabbAgaMjabbkhaYjabb+gaVjabb2gaTjabbccaGiabbchaWjabbggaHjabbsha0jabbwgaLjabbkhaYjabb6gaUjabbggaHjabbYgaSjabbccaGiabbEgaNjabbggaHjabb2gaTjabbwgaLjabbsha0jabbwgaLbqaaiabgkHiTiabdchaWnaaCaaaleqabaGaemyAaKgaaOGaeiilaWcabaGaee4Ba8MaeeiDaqNaeeiAaGMaeeyzauMaeeOCaiNaee4DaCNaeeyAaKMaee4CamNaeeyzaugaaaGaay5Eaaaaaaa@96CB@

Similarly, define

x F j ( 1 ) = z F j ( 1 ) E ( z F j ( 1 ) ) = z F j ( 1 ) p j x M k ( 2 ) = z M k ( 2 ) E ( z M k ( 2 ) ) = z M k ( 2 ) q k x F l ( 2 ) = z F l ( 2 ) E ( z F l ( 2 ) ) = z F l ( 2 ) q l MathType@MTEF@5@5@+=feaafiart1ev1aaatCvAUfKttLearuWrP9MDH5MBPbIqV92AaeXatLxBI9gBaebbnrfifHhDYfgasaacH8akY=wiFfYdH8Gipec8Eeeu0xXdbba9frFj0=OqFfea0dXdd9vqai=hGuQ8kuc9pgc9s8qqaq=dirpe0xb9q8qiLsFr0=vr0=vr0dc8meaabaqaciaacaGaaeqabaqabeGadaaakqaabeqaaiabdIha4naaDaaaleaacqWGgbGrdaWgaaadbaGaemOAaOgabeaaaSqaaiabcIcaOiabigdaXiabcMcaPaaakiabg2da9iabdQha6naaDaaaleaacqWGgbGrdaWgaaadbaGaemOAaOgabeaaaSqaaiabcIcaOiabigdaXiabcMcaPaaakiabgkHiTiabdweafjabcIcaOiabdQha6naaDaaaleaacqWGgbGrdaWgaaadbaGaemOAaOgabeaaaSqaaiabcIcaOiabigdaXiabcMcaPaaakiabcMcaPiabg2da9iabdQha6naaDaaaleaacqWGgbGrdaWgaaadbaGaemOAaOgabeaaaSqaaiabcIcaOiabigdaXiabcMcaPaaakiabgkHiTiabdchaWnaaBaaaleaacqWGQbGAaeqaaaGcbaGaemiEaG3aa0baaSqaaiabd2eannaaBaaameaacqWGRbWAaeqaaaWcbaGaeiikaGIaeGOmaiJaeiykaKcaaOGaeyypa0JaemOEaO3aa0baaSqaaiabd2eannaaBaaameaacqWGRbWAaeqaaaWcbaGaeiikaGIaeGOmaiJaeiykaKcaaOGaeyOeI0IaemyrauKaeiikaGIaemOEaO3aa0baaSqaaiabd2eannaaBaaameaacqWGRbWAaeqaaaWcbaGaeiikaGIaeGOmaiJaeiykaKcaaOGaeiykaKIaeyypa0JaemOEaO3aa0baaSqaaiabd2eannaaBaaameaacqWGRbWAaeqaaaWcbaGaeiikaGIaeGOmaiJaeiykaKcaaOGaeyOeI0IaemyCae3aaWbaaSqabeaacqWGRbWAaaaakeaacqWG4baEdaqhaaWcbaGaemOray0aaSbaaWqaaiabdYgaSbqabaaaleaacqGGOaakcqaIYaGmcqGGPaqkaaGccqGH9aqpcqWG6bGEdaqhaaWcbaGaemOray0aaSbaaWqaaiabdYgaSbqabaaaleaacqGGOaakcqaIYaGmcqGGPaqkaaGccqGHsislcqWGfbqrcqGGOaakcqWG6bGEdaqhaaWcbaGaemOray0aaSbaaWqaaiabdYgaSbqabaaaleaacqGGOaakcqaIYaGmcqGGPaqkaaGccqGGPaqkcqGH9aqpcqWG6bGEdaqhaaWcbaGaemOray0aaSbaaWqaaiabdYgaSbqabaaaleaacqGGOaakcqaIYaGmcqGGPaqkaaGccqGHsislcqWGXbqCdaWgaaWcbaGaemiBaWgabeaaaaaa@9DFE@

Taking the constraint conditions on the genetic effects into account, we can show that,

i = 1 n 1 α i x M i ( 1 ) = i = 1 n 1 α i z M i ( 1 ) i , j δ j i x M i ( 1 ) x F j ( 1 ) = i , j δ j i z M i ( 1 ) z F j ( 1 ) i , k , l ( α i γ l k ) x M i ( 1 ) x M k ( 2 ) x F l ( 2 ) = i , k , l ( α i γ l k ) z M i ( 1 ) z M k ( 2 ) z F l ( 2 ) i , j , k , l ( δ j i γ l k ) x M i ( 1 ) x F j ( 1 ) x M k ( 2 ) x F l ( 2 ) = i , j , k , l ( δ j i γ l k ) z M i ( 1 ) z F j ( 1 ) z M k ( 2 ) z F l ( 2 ) MathType@MTEF@5@5@+=feaafiart1ev1aaatCvAUfKttLearuWrP9MDH5MBPbIqV92AaeXatLxBI9gBaebbnrfifHhDYfgasaacH8akY=wiFfYdH8Gipec8Eeeu0xXdbba9frFj0=OqFfea0dXdd9vqai=hGuQ8kuc9pgc9s8qqaq=dirpe0xb9q8qiLsFr0=vr0=vr0dc8meaabaqaciaacaGaaeqabaqabeGadaaakeaafaqabeabbaaaaeaadaaeWbqaaGGaciab=f7aHnaaCaaaleqabaGaemyAaKgaaOGaemiEaG3aa0baaSqaaiabd2eannaaBaaameaacqWGPbqAaeqaaaWcbaGaeiikaGIaeGymaeJaeiykaKcaaaqaaiabdMgaPjabg2da9iabigdaXaqaaiabd6gaUnaaBaaameaacqaIXaqmaeqaaaqdcqGHris5aOGaeyypa0ZaaabCaeaacqaHXoqydaahaaWcbeqaaiabdMgaPbaakiabdQha6naaDaaaleaacqWGnbqtdaWgaaadbaGaemyAaKgabeaaaSqaaiabcIcaOiabigdaXiabcMcaPaaaaeaacqWGPbqAcqGH9aqpcqaIXaqmaeaacqWGUbGBdaWgaaadbaGaeGymaedabeaaa0GaeyyeIuoaaOqaamaaqafabaGae8hTdq2aa0baaSqaaiabdQgaQbqaaiabdMgaPbaakiabdIha4naaDaaaleaacqWGnbqtdaWgaaadbaGaemyAaKgabeaaaSqaaiabcIcaOiabigdaXiabcMcaPaaakiabdIha4naaDaaaleaacqWGgbGrdaWgaaadbaGaemOAaOgabeaaaSqaaiabcIcaOiabigdaXiabcMcaPaaaaeaacqWGPbqAcqGGSaalcqWGQbGAaeqaniabggHiLdGccqGH9aqpdaaeqbqaaiab=r7aKnaaDaaaleaacqWGQbGAaeaacqWGPbqAaaGccqWG6bGEdaqhaaWcbaGaemyta00aaSbaaWqaaiabdMgaPbqabaaaleaacqGGOaakcqaIXaqmcqGGPaqkaaGccqWG6bGEdaqhaaWcbaGaemOray0aaSbaaWqaaiabdQgaQbqabaaaleaacqGGOaakcqaIXaqmcqGGPaqkaaaabaGaemyAaKMaeiilaWIaemOAaOgabeqdcqGHris5aaGcbaWaaabuaeaacqGGOaakcqWFXoqydaahaaWcbeqaaiabdMgaPbaakiabeo7aNnaaDaaaleaacqWGSbaBaeaacqWGRbWAaaGccqGGPaqkcqWG4baEdaqhaaWcbaGaemyta00aaSbaaWqaaiabdMgaPbqabaaaleaacqGGOaakcqaIXaqmcqGGPaqkaaGccqWG4baEdaqhaaWcbaGaemyta00aaSbaaWqaaiabdUgaRbqabaaaleaacqGGOaakcqaIYaGmcqGGPaqkaaGccqWG4baEdaqhaaWcbaGaemOray0aaSbaaWqaaiabdYgaSbqabaaaleaacqGGOaakcqaIYaGmcqGGPaqkaaaabaGaemyAaKMaeiilaWIaem4AaSMaeiilaWIaemiBaWgabeqdcqGHris5aOGaeyypa0ZaaabuaeaacqGGOaakcqWFXoqydaahaaWcbeqaaiabdMgaPbaakiabeo7aNnaaDaaaleaacqWGSbaBaeaacqWGRbWAaaGccqGGPaqkcqWG6bGEdaqhaaWcbaGaemyta00aaSbaaWqaaiabdMgaPbqabaaaleaacqGGOaakcqaIXaqmcqGGPaqkaaGccqWG6bGEdaqhaaWcbaGaemyta00aaSbaaWqaaiabdUgaRbqabaaaleaacqGGOaakcqaIYaGmcqGGPaqkaaGccqWG6bGEdaqhaaWcbaGaemOray0aaSbaaWqaaiabdYgaSbqabaaaleaacqGGOaakcqaIYaGmcqGGPaqkaaaabaGaemyAaKMaeiilaWIaem4AaSMaeiilaWIaemiBaWgabeqdcqGHris5aaGcbaWaaabuaeaacqGGOaakcqWF0oazdaqhaaWcbaGaemOAaOgabaGaemyAaKgaaOGaeq4SdC2aa0baaSqaaiabdYgaSbqaaiabdUgaRbaakiabcMcaPiabdIha4naaDaaaleaacqWGnbqtdaWgaaadbaGaemyAaKgabeaaaSqaaiabcIcaOiabigdaXiabcMcaPaaakiabdIha4naaDaaaleaacqWGgbGrdaWgaaadbaGaemOAaOgabeaaaSqaaiabcIcaOiabigdaXiabcMcaPaaakiabdIha4naaDaaaleaacqWGnbqtdaWgaaadbaGaem4AaSgabeaaaSqaaiabcIcaOiabikdaYiabcMcaPaaakiabdIha4naaDaaaleaacqWGgbGrdaWgaaadbaGaemiBaWgabeaaaSqaaiabcIcaOiabikdaYiabcMcaPaaaaeaacqWGPbqAcqGGSaalcqWGQbGAcqGGSaalcqWGRbWAcqGGSaalcqWGSbaBaeqaniabggHiLdGccqGH9aqpdaaeqbqaaiabcIcaOiab=r7aKnaaDaaaleaacqWGQbGAaeaacqWGPbqAaaGccqaHZoWzdaqhaaWcbaGaemiBaWgabaGaem4AaSgaaOGaeiykaKIaemOEaO3aa0baaSqaaiabd2eannaaBaaameaacqWGPbqAaeqaaaWcbaGaeiikaGIaeGymaeJaeiykaKcaaOGaemOEaO3aa0baaSqaaiabdAeagnaaBaaameaacqWGQbGAaeqaaaWcbaGaeiikaGIaeGymaeJaeiykaKcaaOGaemOEaO3aa0baaSqaaiabd2eannaaBaaameaacqWGRbWAaeqaaaWcbaGaeiikaGIaeGOmaiJaeiykaKcaaOGaemOEaO3aa0baaSqaaiabdAeagnaaBaaameaacqWGSbaBaeqaaaWcbaGaeiikaGIaeGOmaiJaeiykaKcaaaqaaiabdMgaPjabcYcaSiabdQgaQjabcYcaSiabdUgaRjabcYcaSiabdYgaSbqab0GaeyyeIuoaaaaaaa@355A@

and so on. For example,

i = 1 n 1 α i x M i ( 1 ) = i = 1 n 1 α i ( z M i ( 1 ) p i ) = i = 1 n 1 α i z M i ( 1 ) i = 1 n 1 α i p i = i = 1 n 1 α i z M i ( 1 ) MathType@MTEF@5@5@+=feaafiart1ev1aaatCvAUfKttLearuWrP9MDH5MBPbIqV92AaeXatLxBI9gBaebbnrfifHhDYfgasaacH8akY=wiFfYdH8Gipec8Eeeu0xXdbba9frFj0=OqFfea0dXdd9vqai=hGuQ8kuc9pgc9s8qqaq=dirpe0xb9q8qiLsFr0=vr0=vr0dc8meaabaqaciaacaGaaeqabaqabeGadaaakqaabeqaamaaqahabaacciGae8xSde2aaWbaaSqabeaacqWGPbqAaaGccqWG4baEdaqhaaWcbaGaemyta00aaSbaaWqaaiabdMgaPbqabaaaleaacqGGOaakcqaIXaqmcqGGPaqkaaaabaGaemyAaKMaeyypa0JaeGymaedabaGaemOBa42aaSbaaWqaaiabigdaXaqabaaaniabggHiLdGccqGH9aqpdaaeWbqaaiabeg7aHnaaCaaaleqabaGaemyAaKgaaOGaeiikaGIaemOEaO3aa0baaSqaaiabd2eannaaBaaameaacqWGPbqAaeqaaaWcbaGaeiikaGIaeGymaeJaeiykaKcaaOGaeyOeI0IaemiCaa3aaWbaaSqabeaacqWGPbqAaaGccqGGPaqkaSqaaiabdMgaPjabg2da9iabigdaXaqaaiabd6gaUnaaBaaameaacqaIXaqmaeqaaaqdcqGHris5aaGcbaGaeyypa0ZaaabCaeaacqWFXoqydaahaaWcbeqaaiabdMgaPbaakiabdQha6naaDaaaleaacqWGnbqtdaWgaaadbaGaemyAaKgabeaaaSqaaiabcIcaOiabigdaXiabcMcaPaaaaeaacqWGPbqAcqGH9aqpcqaIXaqmaeaacqWGUbGBdaWgaaadbaGaeGymaedabeaaa0GaeyyeIuoakiabgkHiTmaaqahabaGaeqySde2aaWbaaSqabeaacqWGPbqAaaGccqWGWbaCdaahaaWcbeqaaiabdMgaPbaakiabg2da9maaqahabaGaeqySde2aaWbaaSqabeaacqWGPbqAaaGccqWG6bGEdaqhaaWcbaGaemyta00aaSbaaWqaaiabdMgaPbqabaaaleaacqGGOaakcqaIXaqmcqGGPaqkaaaabaGaemyAaKMaeyypa0JaeGymaedabaGaemOBa42aaSbaaWqaaiabigdaXaqabaaaniabggHiLdaaleaacqWGPbqAcqGH9aqpcqaIXaqmaeaacqWGUbGBdaWgaaadbaGaeGymaedabeaaa0GaeyyeIuoaaaaa@8DB2@

as i = 1 n 1 α i p i = 0 MathType@MTEF@5@5@+=feaafiart1ev1aaatCvAUfKttLearuWrP9MDH5MBPbIqV92AaeXatLxBI9gBaebbnrfifHhDYfgasaacH8akY=wiFfYdH8Gipec8Eeeu0xXdbba9frFj0=OqFfea0dXdd9vqai=hGuQ8kuc9pgc9s8qqaq=dirpe0xb9q8qiLsFr0=vr0=vr0dc8meaabaqaciaacaGaaeqabaqabeGadaaakeaadaaeWaqaaGGaciab=f7aHnaaCaaaleqabaGaemyAaKgaaOGaemiCaa3aaWbaaSqabeaacqWGPbqAaaaabaGaemyAaKMaeyypa0JaeGymaedabaGaemOBa42aaSbaaWqaaiabigdaXaqabaaaniabggHiLdGccqGH9aqpcqaIWaamaaa@3C9D@ by the constrain condition (2). Therefore, model (5) can be rewritten as

G = μ + i = 1 n 1 α i x M i ( 1 ) + j = 1 n 1 α i x F j ( 1 ) + i , j δ j i x M i ( 1 ) x F j ( 1 ) + k = 1 n 2 β k x M k ( 2 ) + l = 1 n 2 β l x F l ( 2 ) + k , l γ l k x M k ( 2 ) x F l ( 2 ) + [ i , k ( α i β k ) x M i ( 1 ) x M k ( 2 ) + i , l ( α i β l ) x M i ( 1 ) x F l ( 2 ) + j , k ( α j β k ) x F j ( 1 ) x M k ( 2 ) + j , l ( α j β l ) x F j ( 1 ) x F l ( 2 ) ] + [ i , k , l ( α i γ l k ) x M i ( 1 ) x M k ( 2 ) x F l ( 2 ) + j , k , l ( α j γ l k ) x F j ( 1 ) x M k ( 2 ) x F l ( 2 ) ] + [ i , j , k ( δ j i β k ) x M i ( 1 ) x F j ( 1 ) x M k ( 2 ) + i , j , l ( δ j i β l ) x M i ( 1 ) x F j ( 1 ) x F l ( 2 ) ] + i , j , k , l ( δ j i γ l k ) x M i ( 1 ) x F j ( 1 ) x M k ( 2 ) x F l ( 2 ) ( 7 ) MathType@MTEF@5@5@+=feaafiart1ev1aaatCvAUfKttLearuWrP9MDH5MBPbIqV92AaeXatLxBI9gBaebbnrfifHhDYfgasaacH8akY=wiFfYdH8Gipec8Eeeu0xXdbba9frFj0=OqFfea0dXdd9vqai=hGuQ8kuc9pgc9s8qqaq=dirpe0xb9q8qiLsFr0=vr0=vr0dc8meaabaqaciaacaGaaeqabaqabeGadaaakqaabeqaaiabdEeahjabg2da9GGaciab=X7aTjabgUcaRmaaqahabaGae8xSde2aaWbaaSqabeaacqWGPbqAaaGccqWG4baEdaqhaaWcbaGaemyta00aaSbaaWqaaiabdMgaPbqabaaaleaacqGGOaakcqaIXaqmcqGGPaqkaaaabaGaemyAaKMaeyypa0JaeGymaedabaGaemOBa42aaSbaaWqaaiabigdaXaqabaaaniabggHiLdGccqGHRaWkdaaeWbqaaiab=f7aHnaaCaaaleqabaGaemyAaKgaaOGaemiEaG3aa0baaSqaaiabdAeagnaaBaaameaacqWGQbGAaeqaaaWcbaGaeiikaGIaeGymaeJaeiykaKcaaaqaaiabdQgaQjabg2da9iabigdaXaqaaiabd6gaUnaaBaaameaacqaIXaqmaeqaaaqdcqGHris5aOGaey4kaSYaaabuaeaacqWF0oazdaqhaaWcbaGaemOAaOgabaGaemyAaKgaaOGaemiEaG3aa0baaSqaaiabd2eannaaBaaameaacqWGPbqAaeqaaaWcbaGaeiikaGIaeGymaeJaeiykaKcaaOGaemiEaG3aa0baaSqaaiabdAeagnaaBaaameaacqWGQbGAaeqaaaWcbaGaeiikaGIaeGymaeJaeiykaKcaaaqaaiabdMgaPjabcYcaSiabdQgaQbqab0GaeyyeIuoaaOqaaiabgUcaRmaaqahabaGae8NSdi2aaWbaaSqabeaacqWGRbWAaaGccqWG4baEdaqhaaWcbaGaemyta00aaSbaaWqaaiabdUgaRbqabaaaleaacqGGOaakcqaIYaGmcqGGPaqkaaaabaGaem4AaSMaeyypa0JaeGymaedabaGaemOBa42aaSbaaWqaaiabikdaYaqabaaaniabggHiLdGccqGHRaWkdaaeWbqaaiab=j7aInaaBaaaleaaieGacqGFSbaBaeqaaOGaemiEaG3aa0baaSqaaiabdAeagnaaBaaameaacqWGSbaBaeqaaaWcbaGaeiikaGIaeGOmaiJaeiykaKcaaaqaaiabdYgaSjabg2da9iabigdaXaqaaiabd6gaUnaaBaaameaacqaIYaGmaeqaaaqdcqGHris5aOGaey4kaSYaaabuaeaacqaHZoWzdaqhaaWcbaGaemiBaWgabaGaem4AaSgaaOGaemiEaG3aa0baaSqaaiabd2eannaaBaaameaacqWGRbWAaeqaaaWcbaGaeiikaGIaeGOmaiJaeiykaKcaaOGaemiEaG3aa0baaSqaaiabdAeagnaaBaaameaacqWGSbaBaeqaaaWcbaGaeiikaGIaeGOmaiJaeiykaKcaaaqaaiabdUgaRjabcYcaSiabdYgaSbqab0GaeyyeIuoaaOqaaiabgUcaRiabcUfaBnaaqafabaGaeiikaGIae8xSde2aaWbaaSqabeaacqWGPbqAaaGccqWFYoGydaahaaWcbeqaaiabdUgaRbaakiabcMcaPiabdIha4naaDaaaleaacqWGnbqtdaWgaaadbaGaemyAaKgabeaaaSqaaiabcIcaOiabigdaXiabcMcaPaaakiabdIha4naaDaaaleaacqWGnbqtdaWgaaadbaGaem4AaSgabeaaaSqaaiabcIcaOiabikdaYiabcMcaPaaaaeaacqWGPbqAcqGGSaalcqWGRbWAaeqaniabggHiLdGccqGHRaWkdaaeqbqaaiabcIcaOiab=f7aHnaaCaaaleqabaGaemyAaKgaaOGae8NSdi2aaSbaaSqaaiab+XgaSbqabaGccqGGPaqkcqWG4baEdaqhaaWcbaGaemyta00aaSbaaWqaaiabdMgaPbqabaaaleaacqGGOaakcqaIXaqmcqGGPaqkaaGccqWG4baEdaqhaaWcbaGaemOray0aaSbaaWqaaiabdYgaSbqabaaaleaacqGGOaakcqaIYaGmcqGGPaqkaaaabaGaemyAaKMaeiilaWIaemiBaWgabeqdcqGHris5aaGcbaGaey4kaSYaaabuaeaacqGGOaakcqWFXoqydaWgaaWcbaWexLMBbXgBcf2CPn2qVrwzqf2zLnharyGvLjhzH5wyaGabciaa9PgaaeqaaOGae8NSdi2aaWbaaSqabeaacqWGRbWAaaGccqGGPaqkcqWG4baEdaqhaaWcbaGaemOray0aaSbaaWqaaiabdQgaQbqabaaaleaacqGGOaakcqaIXaqmcqGGPaqkaaGccqWG4baEdaqhaaWcbaGaemyta00aaSbaaWqaaiabdUgaRbqabaaaleaacqGGOaakcqaIYaGmcqGGPaqkaaaabaGaemOAaOMaeiilaWIaem4AaSgabeqdcqGHris5aOGaey4kaSYaaabuaeaacqGGOaakcqWFXoqydaWgaaWcbaGae4NAaOgabeaakiab=j7aInaaBaaaleaacqGFSbaBaeqaaOGaeiykaKIaemiEaG3aa0baaSqaaiabdAeagnaaBaaameaacqWGQbGAaeqaaaWcbaGaeiikaGIaeGymaeJaeiykaKcaaOGaemiEaG3aa0baaSqaaiabdAeagnaaBaaameaacqWGSbaBaeqaaaWcbaGaeiikaGIaeGOmaiJaeiykaKcaaOGaeiyxa0faleaacqWGQbGAcqGGSaalcqWGSbaBaeqaniabggHiLdaakeaacqGHRaWkcqGGBbWwdaaeqbqaaiabcIcaOiab=f7aHnaaCaaaleqabaGaemyAaKgaaOGaeq4SdC2aa0baaSqaaiabdYgaSbqaaiabdUgaRbaakiabcMcaPiabdIha4naaDaaaleaacqWGnbqtdaWgaaadbaGaemyAaKgabeaaaSqaaiabcIcaOiabigdaXiabcMcaPaaakiabdIha4naaDaaaleaacqWGnbqtdaWgaaadbaGaem4AaSgabeaaaSqaaiabcIcaOiabikdaYiabcMcaPaaaaeaacqWGPbqAcqGGSaalcqWGRbWAcqGGSaalcqWGSbaBaeqaniabggHiLdGccqWG4baEdaqhaaWcbaGaemOray0aaSbaaWqaaiabdYgaSbqabaaaleaacqGGOaakcqaIYaGmcqGGPaqkaaGccqGHRaWkdaaeqbqaaiabcIcaOiab=f7aHnaaBaaaleaacqGFQbGAaeqaaOGaeq4SdC2aa0baaSqaaiabdYgaSbqaaiabdUgaRbaakiabcMcaPiabdIha4naaDaaaleaacqWGgbGrdaWgaaadbaGaemOAaOgabeaaaSqaaiabcIcaOiabigdaXiabcMcaPaaakiabdIha4naaDaaaleaacqWGnbqtdaWgaaadbaGaem4AaSgabeaaaSqaaiabcIcaOiabikdaYiabcMcaPaaaaeaacqWGQbGAcqGGSaalcqWGRbWAcqGGSaalcqWGSbaBaeqaniabggHiLdGccqWG4baEdaqhaaWcbaGaemOray0aaSbaaWqaaiabdYgaSbqabaaaleaacqGGOaakcqaIYaGmcqGGPaqkaaGccqGGDbqxaeaacqGHRaWkcqGGBbWwdaaeqbqaaiabcIcaOiab=r7aKnaaDaaaleaacqWGQbGAaeaacqWGPbqAaaGccqWFYoGydaahaaWcbeqaaiabdUgaRbaakiabcMcaPiabdIha4naaDaaaleaacqWGnbqtdaWgaaadbaGaemyAaKgabeaaaSqaaiabcIcaOiabigdaXiabcMcaPaaakiabdIha4naaDaaaleaacqWGgbGrdaWgaaadbaGaemOAaOgabeaaaSqaaiabcIcaOiabigdaXiabcMcaPaaaaeaacqWGPbqAcqGGSaalcqWGQbGAcqGGSaalcqWGRbWAaeqaniabggHiLdGccqWG4baEdaqhaaWcbaGaemyta00aaSbaaWqaaiabdUgaRbqabaaaleaacqGGOaakcqaIYaGmcqGGPaqkaaGccqGHRaWkdaaeqbqaaiabcIcaOiab=r7aKnaaDaaaleaacqWGQbGAaeaacqWGPbqAaaGccqWFYoGydaWgaaWcbaGae4hBaWgabeaakiabcMcaPiabdIha4naaDaaaleaacqWGnbqtdaWgaaadbaGaemyAaKgabeaaaSqaaiabcIcaOiabigdaXiabcMcaPaaakiabdIha4naaDaaaleaacqWGgbGrdaWgaaadbaGaemOAaOgabeaaaSqaaiabcIcaOiabigdaXiabcMcaPaaaaeaacqWGPbqAcqGGSaalcqWGQbGAcqGGSaalcqWGSbaBaeqaniabggHiLdGccqWG4baEdaqhaaWcbaGaemOray0aaSbaaWqaaiabdYgaSbqabaaaleaacqGGOaakcqaIYaGmcqGGPaqkaaGccqGGDbqxaeaacqGHRaWkdaaeqbqaaiabcIcaOiab=r7aKnaaDaaaleaacqWGQbGAaeaacqWGPbqAaaGccqaHZoWzdaqhaaWcbaGaemiBaWgabaGaem4AaSgaaOGaeiykaKIaemiEaG3aa0baaSqaaiabd2eannaaBaaameaacqWGPbqAaeqaaaWcbaGaeiikaGIaeGymaeJaeiykaKcaaOGaemiEaG3aa0baaSqaaiabdAeagnaaBaaameaacqWGQbGAaeqaaaWcbaGaeiikaGIaeGymaeJaeiykaKcaaaqaaiabdMgaPjabcYcaSiabdQgaQjabcYcaSiabdUgaRjabcYcaSiabdYgaSbqab0GaeyyeIuoakiabdIha4naaDaaaleaacqWGnbqtdaWgaaadbaGaem4AaSgabeaaaSqaaiabcIcaOiabikdaYiabcMcaPaaakiabdIha4naaDaaaleaacqWGgbGrdaWgaaadbaGaemiBaWgabeaaaSqaaiabcIcaOiabikdaYiabcMcaPaaakiaaxMaacaWLjaWaaeWaaeaacqaI3aWnaiaawIcacaGLPaaaaaaa@0729@

When we deal with some reduced models in the next section, we will find that the model of this form is especially helpful as it makes the model parameter constraints built into regression variables which is suited for genetic interpretation. The form of model (7) can also facilitate the demonstration that under Hardy-Weinberg, linkage and genotypic equilibria, the regression coefficients (genetic effects) are Cockerham's least squares effects (3) (Appendix A), and the genotypic variance V G has the orthogonal partition (4) (Appendix B).

Now we discuss the properties of model in a disequilibrium situation. As stated in [14], there are three types of disequilibria

• Typel: between alleles on the same gametes but at different loci

• Type2: between alleles at the same locus but on different gametes

• Type3: between alleles on different gametes and at different loci.

If we denote P j l i k MathType@MTEF@5@5@+=feaafiart1ev1aaatCvAUfKttLearuWrP9MDH5MBPbIqV92AaeXatLxBI9gBaebbnrfifHhDYfgasaacH8akY=wiFfYdH8Gipec8Eeeu0xXdbba9frFj0=OqFfea0dXdd9vqai=hGuQ8kuc9pgc9s8qqaq=dirpe0xb9q8qiLsFr0=vr0=vr0dc8meaabaqaciaacaGaaeqabaqabeGadaaakeaacqWGqbaudaqhaaWcbaGaemOAaOMaemiBaWgabaGaemyAaKMaem4AaSgaaaaa@337A@ as the genotypic frequency of A i B k /A j B l , P j . i . MathType@MTEF@5@5@+=feaafiart1ev1aaatCvAUfKttLearuWrP9MDH5MBPbIqV92AaeXatLxBI9gBaebbnrfifHhDYfgasaacH8akY=wiFfYdH8Gipec8Eeeu0xXdbba9frFj0=OqFfea0dXdd9vqai=hGuQ8kuc9pgc9s8qqaq=dirpe0xb9q8qiLsFr0=vr0=vr0dc8meaabaqaciaacaGaaeqabaqabeGadaaakeaacqWGqbaudaqhaaWcbaGaemOAaOMaeiOla4cabaGaemyAaKMaeiOla4caaaaa@3282@ as the genotypic frequency of A i /A j , and so on, following [14], the digenic disequilibria can be written as

D .. i k = Cov ( z M i ( 1 ) , z M k ( 2 ) ) = E ( x M i ( 1 ) x M k ( 2 ) ) = P .. i k p i q k D j l .. = Cov ( z F j ( 1 ) , z F l ( 2 ) ) = E ( x F j ( 1 ) x F l ( 2 ) ) = P j l .. p j q l D j . i . = E ( x M i ( 1 ) x F j ( 1 ) ) = P j . i . p i p j D . l . k = E ( x M k ( 2 ) x F l ( 2 ) ) = P . l . k q k q l D . j i . = E ( x M i ( 1 ) x F l ( 2 ) ) = P . l i . p i q l D j . . k = E ( x F j ( 1 ) x M k ( 2 ) ) = P j . . k p j q k . MathType@MTEF@5@5@+=feaafiart1ev1aaatCvAUfKttLearuWrP9MDH5MBPbIqV92AaeXatLxBI9gBaebbnrfifHhDYfgasaacH8akY=wiFfYdH8Gipec8Eeeu0xXdbba9frFj0=OqFfea0dXdd9vqai=hGuQ8kuc9pgc9s8qqaq=dirpe0xb9q8qiLsFr0=vr0=vr0dc8meaabaqaciaacaGaaeqabaqabeGadaaakqaabeqaaiabdseaenaaDaaaleaacqGGUaGlcqGGUaGlaeaacqWGPbqAcqWGRbWAaaGccqGH9aqpcqqGdbWqcqqGVbWBcqqG2bGDcqGGOaakcqWG6bGEdaqhaaWcbaGaemyta00aaSbaaWqaaiabdMgaPbqabaaaleaacqGGOaakcqaIXaqmcqGGPaqkaaGccqGGSaalcqWG6bGEdaqhaaWcbaGaemyta00aaSbaaWqaaiabdUgaRbqabaaaleaacqGGOaakcqaIYaGmcqGGPaqkaaGccqGGPaqkcqGH9aqpcqWGfbqrcqGGOaakcqWG4baEdaqhaaWcbaGaemyta00aaSbaaWqaaiabdMgaPbqabaaaleaacqGGOaakcqaIXaqmcqGGPaqkaaGccqWG4baEdaqhaaWcbaGaemyta00aaSbaaWqaaiabdUgaRbqabaaaleaacqGGOaakcqaIYaGmcqGGPaqkaaGccqGGPaqkcqGH9aqpcqWGqbaudaqhaaWcbaGaeiOla4IaeiOla4cabaGaemyAaKMaem4AaSgaaOGaeyOeI0IaemiCaa3aaWbaaSqabeaacqWGPbqAaaGccqWGXbqCdaahaaWcbeqaaiabdUgaRbaaaOqaaiabdseaenaaDaaaleaacqWGQbGAcqWGSbaBaeaacqGGUaGlcqGGUaGlaaGccqGH9aqpcqqGdbWqcqqGVbWBcqqG2bGDcqGGOaakcqWG6bGEdaqhaaWcbaGaemOray0aaSbaaWqaaiabdQgaQbqabaaaleaacqGGOaakcqaIXaqmcqGGPaqkaaGccqGGSaalcqWG6bGEdaqhaaWcbaGaemOray0aaSbaaWqaaiabdYgaSbqabaaaleaacqGGOaakcqaIYaGmcqGGPaqkaaGccqGGPaqkcqGH9aqpcqWGfbqrcqGGOaakcqWG4baEdaqhaaWcbaGaemOray0aaSbaaWqaaiabdQgaQbqabaaaleaacqGGOaakcqaIXaqmcqGGPaqkaaGccqWG4baEdaqhaaWcbaGaemOray0aaSbaaWqaaiabdYgaSbqabaaaleaacqGGOaakcqaIYaGmcqGGPaqkaaGccqGGPaqkcqGH9aqpcqWGqbaudaqhaaWcbaGaemOAaOMaemiBaWgabaGaeiOla4IaeiOla4caaOGaeyOeI0IaemiCaa3aaSbaaSqaaiabdQgaQbqabaGccqWGXbqCdaWgaaWcbaGaemiBaWgabeaaaOqaaiabdseaenaaDaaaleaacqWGQbGAcqGGUaGlaeaacqWGPbqAcqGGUaGlaaGccqGH9aqpcqWGfbqrcqGGOaakcqWG4baEdaqhaaWcbaGaemyta00aaSbaaWqaaiabdMgaPbqabaaaleaacqGGOaakcqaIXaqmcqGGPaqkaaGccqWG4baEdaqhaaWcbaGaemOray0aaSbaaWqaaiabdQgaQbqabaaaleaacqGGOaakcqaIXaqmcqGGPaqkaaGccqGGPaqkcqGH9aqpcqWGqbaudaqhaaWcbaGaemOAaOMaeiOla4cabaGaemyAaKMaeiOla4caaOGaeyOeI0IaemiCaa3aaWbaaSqabeaacqWGPbqAaaGccqWGWbaCdaWgaaWcbaGaemOAaOgabeaaaOqaaiabdseaenaaDaaaleaacqGGUaGlcqWGSbaBaeaacqGGUaGlcqWGRbWAaaGccqGH9aqpcqWGfbqrcqGGOaakcqWG4baEdaqhaaWcbaGaemyta00aaSbaaWqaaiabdUgaRbqabaaaleaacqGGOaakcqaIYaGmcqGGPaqkaaGccqWG4baEdaqhaaWcbaGaemOray0aaSbaaWqaaiabdYgaSbqabaaaleaacqGGOaakcqaIYaGmcqGGPaqkaaGccqGGPaqkcqGH9aqpcqWGqbaudaqhaaWcbaGaeiOla4IaemiBaWgabaGaeiOla4Iaem4AaSgaaOGaeyOeI0IaemyCae3aaWbaaSqabeaacqWGRbWAaaGccqWGXbqCdaWgaaWcbaGaemiBaWgabeaaaOqaaiabdseaenaaDaaaleaacqGGUaGlcqWGQbGAaeaacqWGPbqAcqGGUaGlaaGccqGH9aqpcqWGfbqrcqGGOaakcqWG4baEdaqhaaWcbaGaemyta00aaSbaaWqaaiabdMgaPbqabaaaleaacqGGOaakcqaIXaqmcqGGPaqkaaGccqWG4baEdaqhaaWcbaGaemOray0aaSbaaWqaaiabdYgaSbqabaaaleaacqGGOaakcqaIYaGmcqGGPaqkaaGccqGGPaqkcqGH9aqpcqWGqbaudaqhaaWcbaGaeiOla4IaemiBaWgabaGaemyAaKMaeiOla4caaOGaeyOeI0IaemiCaa3aaWbaaSqabeaacqWGPbqAaaGccqWGXbqCdaWgaaWcbaGaemiBaWgabeaaaOqaaiabdseaenaaDaaaleaacqWGQbGAcqGGUaGlaeaacqGGUaGlcqWGRbWAaaGccqGH9aqpcqWGfbqrcqGGOaakcqWG4baEdaqhaaWcbaGaemOray0aaSbaaWqaaiabdQgaQbqabaaaleaacqGGOaakcqaIXaqmcqGGPaqkaaGccqWG4baEdaqhaaWcbaGaemyta00aaSbaaWqaaiabdUgaRbqabaaaleaacqGGOaakcqaIYaGmcqGGPaqkaaGccqGGPaqkcqGH9aqpcqWGqbaudaqhaaWcbaGaemOAaOMaeiOla4cabaGaeiOla4Iaem4AaSgaaOGaeyOeI0IaemiCaa3aaSbaaSqaaiabdQgaQbqabaGccqWGXbqCdaahaaWcbeqaaiabdUgaRbaakiabc6caUaaaaa@3973@

And the trigenic disequilibria

D j . i k = E ( x M i ( 1 ) x F j ( 1 ) x M k ( 2 ) ) = P j . i k p i P j . . k q k P j . i . p j P .. i k + 2 p i p j q k D . l i k = E ( x M i ( 1 ) x M k ( 2 ) x F l ( 2 ) ) = P . l i k p i P . l . k q k P . l i . q l P .. i k + 2 p i q k q l D j l i . = E ( x M i ( 1 ) x F j ( 1 ) x F l ( 2 ) ) = P j l i . p i P j l .. p j P .. i . q l P j . i . + 2 p i p j q l D j l . k = E ( x F j ( 1 ) x M k ( 2 ) x F l ( 2 ) ) = P j l . k p j P . l . k q k P j . . l q l P j . . k + 2 p j q k q l MathType@MTEF@5@5@+=feaafiart1ev1aaatCvAUfKttLearuWrP9MDH5MBPbIqV92AaeXatLxBI9gBaebbnrfifHhDYfgasaacH8akY=wiFfYdH8Gipec8Eeeu0xXdbba9frFj0=OqFfea0dXdd9vqai=hGuQ8kuc9pgc9s8qqaq=dirpe0xb9q8qiLsFr0=vr0=vr0dc8meaabaqaciaacaGaaeqabaqabeGadaaakeaafaqadeacbaaaaaqaaiabdseaenaaDaaaleaacqWGQbGAcqGGUaGlaeaacqWGPbqAcqWGRbWAaaGccqGH9aqpcqWGfbqrcqGGOaakcqWG4baEdaqhaaWcbaGaemyta00aaSbaaWqaaiabdMgaPbqabaaaleaacqGGOaakcqaIXaqmcqGGPaqkaaGccqWG4baEdaqhaaWcbaGaemOray0aaSbaaWqaaiabdQgaQbqabaaaleaacqGGOaakcqaIXaqmcqGGPaqkaaGccqWG4baEdaqhaaWcbaGaemyta00aaSbaaWqaaiabdUgaRbqabaaaleaacqGGOaakcqaIYaGmcqGGPaqkaaGccqGGPaqkaeaacqGH9aqpcqWGqbaudaqhaaWcbaGaemOAaOMaeiOla4cabaGaemyAaKMaem4AaSgaaOGaeyOeI0IaemiCaa3aaWbaaSqabeaacqWGPbqAaaGccqWGqbaudaqhaaWcbaGaemOAaOMaeiOla4cabaGaeiOla4Iaem4AaSgaaOGaeyOeI0IaemyCae3aaWbaaSqabeaacqWGRbWAaaGccqWGqbaudaqhaaWcbaGaemOAaOMaeiOla4cabaGaemyAaKMaeiOla4caaOGaeyOeI0IaemiCaa3aaSbaaSqaaiabdQgaQbqabaGccqWGqbaudaqhaaWcbaGaeiOla4IaeiOla4cabaGaemyAaKMaem4AaSgaaOGaey4kaSIaeGOmaiJaemiCaa3aaWbaaSqabeaacqWGPbqAaaGccqWGWbaCdaWgaaWcbaGaemOAaOgabeaakiabdghaXnaaCaaaleqabaGaem4AaSgaaaGcbaGaemiraq0aa0baaSqaaiabc6caUiabdYgaSbqaaiabdMgaPjabdUgaRbaakiabg2da9iabdweafjabcIcaOiabdIha4naaDaaaleaacqWGnbqtdaWgaaadbaGaemyAaKgabeaaaSqaaiabcIcaOiabigdaXiabcMcaPaaakiabdIha4naaDaaaleaacqWGnbqtdaWgaaadbaGaem4AaSgabeaaaSqaaiabcIcaOiabikdaYiabcMcaPaaakiabdIha4naaDaaaleaacqWGgbGrdaWgaaadbaGaemiBaWgabeaaaSqaaiabcIcaOiabikdaYiabcMcaPaaakiabcMcaPaqaaiabg2da9iabdcfaqnaaDaaaleaacqGGUaGlcqWGSbaBaeaacqWGPbqAcqWGRbWAaaGccqGHsislcqWGWbaCdaahaaWcbeqaaiabdMgaPbaakiabdcfaqnaaDaaaleaacqGGUaGlcqWGSbaBaeaacqGGUaGlcqWGRbWAaaGccqGHsislcqWGXbqCdaahaaWcbeqaaiabdUgaRbaakiabdcfaqnaaDaaaleaacqGGUaGlcqWGSbaBaeaacqWGPbqAcqGGUaGlaaGccqGHsislcqWGXbqCdaWgaaWcbaGaemiBaWgabeaakiabdcfaqnaaDaaaleaacqGGUaGlcqGGUaGlaeaacqWGPbqAcqWGRbWAaaGccqGHRaWkcqaIYaGmcqWGWbaCdaahaaWcbeqaaiabdMgaPbaakiabdghaXnaaCaaaleqabaGaem4AaSgaaOGaemyCae3aaSbaaSqaaiabdYgaSbqabaaakeaacqWGebardaqhaaWcbaGaemOAaOMaemiBaWgabaGaemyAaKMaeiOla4caaOGaeyypa0JaemyrauKaeiikaGIaemiEaG3aa0baaSqaaiabd2eannaaBaaameaacqWGPbqAaeqaaaWcbaGaeiikaGIaeGymaeJaeiykaKcaaOGaemiEaG3aa0baaSqaaiabdAeagnaaBaaameaacqWGQbGAaeqaaaWcbaGaeiikaGIaeGymaeJaeiykaKcaaOGaemiEaG3aa0baaSqaaiabdAeagnaaBaaameaacqWGSbaBaeqaaaWcbaGaeiikaGIaeGOmaiJaeiykaKcaaOGaeiykaKcabaGaeyypa0Jaemiuaa1aa0baaSqaaiabdQgaQjabdYgaSbqaaiabdMgaPjabc6caUaaakiabgkHiTiabdchaWnaaCaaaleqabaGaemyAaKgaaOGaemiuaa1aa0baaSqaaiabdQgaQjabdYgaSbqaaiabc6caUiabc6caUaaakiabgkHiTiabdchaWnaaBaaaleaacqWGQbGAaeqaaOGaemiuaa1aa0baaSqaaiabc6caUiabc6caUaqaaiabdMgaPjabc6caUaaakiabgkHiTiabdghaXnaaBaaaleaacqWGSbaBaeqaaOGaemiuaa1aa0baaSqaaiabdQgaQjabc6caUaqaaiabdMgaPjabc6caUaaakiabgUcaRiabikdaYiabdchaWnaaCaaaleqabaGaemyAaKgaaOGaemiCaa3aaSbaaSqaaiabdQgaQbqabaGccqWGXbqCdaWgaaWcbaGaemiBaWgabeaaaOqaaiabdseaenaaDaaaleaacqWGQbGAcqWGSbaBaeaacqGGUaGlcqWGRbWAaaGccqGH9aqpcqWGfbqrcqGGOaakcqWG4baEdaqhaaWcbaGaemOray0aaSbaaWqaaiabdQgaQbqabaaaleaacqGGOaakcqaIXaqmcqGGPaqkaaGccqWG4baEdaqhaaWcbaGaemyta00aaSbaaWqaaiabdUgaRbqabaaaleaacqGGOaakcqaIYaGmcqGGPaqkaaGccqWG4baEdaqhaaWcbaGaemOray0aaSbaaWqaaiabdYgaSbqabaaaleaacqGGOaakcqaIYaGmcqGGPaqkaaGccqGGPaqkaeaacqGH9aqpcqWGqbaudaqhaaWcbaGaemOAaOMaemiBaWgabaGaeiOla4Iaem4AaSgaaOGaeyOeI0IaemiCaa3aaSbaaSqaaiabdQgaQbqabaGccqWGqbaudaqhaaWcbaGaeiOla4IaemiBaWgabaGaeiOla4Iaem4AaSgaaOGaeyOeI0IaemyCae3aaWbaaSqabeaacqWGRbWAaaGccqWGqbaudaqhaaWcbaGaemOAaOMaeiOla4cabaGaeiOla4IaemiBaWgaaOGaeyOeI0IaemyCae3aaSbaaSqaaiabdYgaSbqabaGccqWGqbaudaqhaaWcbaGaemOAaOMaeiOla4cabaGaeiOla4Iaem4AaSgaaOGaey4kaSIaeGOmaiJaemiCaa3aaSbaaSqaaiabdQgaQbqabaGccqWGXbqCdaahaaWcbeqaaiabdUgaRbaakiabdghaXnaaBaaaleaacqWGSbaBaeqaaaaaaaa@6748@

Similarly for the quadrigenic disequilibrium, we may define

D j l i k = E ( x M i ( 1 ) x F j ( 1 ) x M k ( 2 ) x F l ( 2 ) ) = P j l i k p i P j l . k p j P . l i k q k P j l i . q l P j . i k + p i p j P . l . k p i q k P j l .. + p i q l P j . . k + p j q k P . l i . + p j q l P .. i k + q k q l P j . i . 3 p i p j q k q l . MathType@MTEF@5@5@+=feaafiart1ev1aaatCvAUfKttLearuWrP9MDH5MBPbIqV92AaeXatLxBI9gBaebbnrfifHhDYfgasaacH8akY=wiFfYdH8Gipec8Eeeu0xXdbba9frFj0=OqFfea0dXdd9vqai=hGuQ8kuc9pgc9s8qqaq=dirpe0xb9q8qiLsFr0=vr0=vr0dc8meaabaqaciaacaGaaeqabaqabeGadaaakeaafaqadeabbaaaaeaacqWGebardaqhaaWcbaGaemOAaOMaemiBaWgabaGaemyAaKMaem4AaSgaaOGaeyypa0JaemyrauKaeiikaGIaemiEaG3aa0baaSqaaiabd2eannaaBaaameaacqWGPbqAaeqaaaWcbaGaeiikaGIaeGymaeJaeiykaKcaaOGaemiEaG3aa0baaSqaaiabdAeagnaaBaaameaacqWGQbGAaeqaaaWcbaGaeiikaGIaeGymaeJaeiykaKcaaOGaemiEaG3aa0baaSqaaiabd2eannaaBaaameaacqWGRbWAaeqaaaWcbaGaeiikaGIaeGOmaiJaeiykaKcaaOGaemiEaG3aa0baaSqaaiabdAeagnaaBaaameaacqWGSbaBaeqaaaWcbaGaeiikaGIaeGOmaiJaeiykaKcaaOGaeiykaKcabaGaeyypa0Jaemiuaa1aa0baaSqaaiabdQgaQjabdYgaSbqaaiabdMgaPjabdUgaRbaakiabgkHiTiabdchaWnaaCaaaleqabaGaemyAaKgaaOGaemiuaa1aa0baaSqaaiabdQgaQjabdYgaSbqaaiabc6caUiabdUgaRbaakiabgkHiTiabdchaWnaaBaaaleaacqWGQbGAaeqaaOGaemiuaa1aa0baaSqaaiabc6caUiabdYgaSbqaaiabdMgaPjabdUgaRbaakiabgkHiTiabdghaXnaaCaaaleqabaGaem4AaSgaaOGaemiuaa1aa0baaSqaaiabdQgaQjabdYgaSbqaaiabdMgaPjabc6caUaaakiabgkHiTiabdghaXnaaBaaaleaacqWGSbaBaeqaaOGaemiuaa1aa0baaSqaaiabdQgaQjabc6caUaqaaiabdMgaPjabdUgaRbaaaOqaaiabgUcaRiabdchaWnaaCaaaleqabaGaemyAaKgaaOGaemiCaa3aaSbaaSqaaiabdQgaQbqabaGccqWGqbaudaqhaaWcbaGaeiOla4IaemiBaWgabaGaeiOla4Iaem4AaSgaaOGaeyOeI0IaemiCaa3aaWbaaSqabeaacqWGPbqAaaGccqWGXbqCdaahaaWcbeqaaiabdUgaRbaakiabdcfaqnaaDaaaleaacqWGQbGAcqWGSbaBaeaacqGGUaGlcqGGUaGlaaGccqGHRaWkcqWGWbaCdaahaaWcbeqaaiabdMgaPbaakiabdghaXnaaBaaaleaacqWGSbaBaeqaaOGaemiuaa1aa0baaSqaaiabdQgaQjabc6caUaqaaiabc6caUiabdUgaRbaakiabgUcaRiabdchaWnaaBaaaleaacqWGQbGAaeqaaOGaemyCae3aaWbaaSqabeaacqWGRbWAaaGccqWGqbaudaqhaaWcbaGaeiOla4IaemiBaWgabaGaemyAaKMaeiOla4caaaGcbaGaey4kaSIaemiCaa3aaSbaaSqaaiabdQgaQbqabaGccqWGXbqCdaWgaaWcbaGaemiBaWgabeaakiabdcfaqnaaDaaaleaacqGGUaGlcqGGUaGlaeaacqWGPbqAcqWGRbWAaaGccqGHRaWkcqWGXbqCdaahaaWcbeqaaiabdUgaRbaakiabdghaXnaaBaaaleaacqWGSbaBaeqaaOGaemiuaa1aa0baaSqaaiabdQgaQjabc6caUaqaaiabdMgaPjabc6caUaaakiabgkHiTiabiodaZiabdchaWnaaCaaaleqabaGaemyAaKgaaOGaemiCaa3aaSbaaSqaaiabdQgaQbqabaGccqWGXbqCdaahaaWcbeqaaiabdUgaRbaakiabdghaXnaaBaaaleaacqWGSbaBaeqaaOGaeiOla4caaaaa@DFBE@

If we express D j l i k MathType@MTEF@5@5@+=feaafiart1ev1aaatCvAUfKttLearuWrP9MDH5MBPbIqV92AaeXatLxBI9gBaebbnrfifHhDYfgasaacH8akY=wiFfYdH8Gipec8Eeeu0xXdbba9frFj0=OqFfea0dXdd9vqai=hGuQ8kuc9pgc9s8qqaq=dirpe0xb9q8qiLsFr0=vr0=vr0dc8meaabaqaciaacaGaaeqabaqabeGadaaakeaacqWGebardaqhaaWcbaGaemOAaOMaemiBaWgabaGaemyAaKMaem4AaSgaaaaa@3362@ as a function of lower-order linkage disequilibria, we have

D j l i k = P j l i k p i D j l . k p j D . l i k q k D j l i . q l D j . i k p i p j D . l . k p i q k D j l .. p i q l D j . . k p j q k D . l i . p j q l D .. i k q k q l D j . i . p i p j q k q l . MathType@MTEF@5@5@+=feaafiart1ev1aaatCvAUfKttLearuWrP9MDH5MBPbIqV92AaeXatLxBI9gBaebbnrfifHhDYfgasaacH8akY=wiFfYdH8Gipec8Eeeu0xXdbba9frFj0=OqFfea0dXdd9vqai=hGuQ8kuc9pgc9s8qqaq=dirpe0xb9q8qiLsFr0=vr0=vr0dc8meaabaqaciaacaGaaeqabaqabeGadaaakeaafaqadeWabaaabaGaemiraq0aa0baaSqaaiabdQgaQjabdYgaSbqaaiabdMgaPjabdUgaRbaakiabg2da9iabdcfaqnaaDaaaleaacqWGQbGAcqWGSbaBaeaacqWGPbqAcqWGRbWAaaGccqGHsislcqWGWbaCdaahaaWcbeqaaiabdMgaPbaakiabdseaenaaDaaaleaacqWGQbGAcqWGSbaBaeaacqGGUaGlcqWGRbWAaaGccqGHsislcqWGWbaCdaWgaaWcbaGaemOAaOgabeaakiabdseaenaaDaaaleaacqGGUaGlcqWGSbaBaeaacqWGPbqAcqWGRbWAaaGccqGHsislcqWGXbqCdaahaaWcbeqaaiabdUgaRbaakiabdseaenaaDaaaleaacqWGQbGAcqWGSbaBaeaacqWGPbqAcqGGUaGlaaGccqGHsislcqWGXbqCdaWgaaWcbaGaemiBaWgabeaakiabdseaenaaDaaaleaacqWGQbGAcqGGUaGlaeaacqWGPbqAcqWGRbWAaaaakeaacqGHsislcqWGWbaCdaahaaWcbeqaaiabdMgaPbaakiabdchaWnaaBaaaleaacqWGQbGAaeqaaOGaemiraq0aa0baaSqaaiabc6caUiabdYgaSbqaaiabc6caUiabdUgaRbaakiabgkHiTiabdchaWnaaCaaaleqabaGaemyAaKgaaOGaemyCae3aaWbaaSqabeaacqWGRbWAaaGccqWGebardaqhaaWcbaGaemOAaOMaemiBaWgabaGaeiOla4IaeiOla4caaOGaeyOeI0IaemiCaa3aaWbaaSqabeaacqWGPbqAaaGccqWGXbqCdaWgaaWcbaGaemiBaWgabeaakiabdseaenaaDaaaleaacqWGQbGAcqGGUaGlaeaacqGGUaGlcqWGRbWAaaGccqGHsislcqWGWbaCdaWgaaWcbaGaemOAaOgabeaakiabdghaXnaaCaaaleqabaGaem4AaSgaaOGaemiraq0aa0baaSqaaiabc6caUiabdYgaSbqaaiabdMgaPjabc6caUaaaaOqaaiabgkHiTiabdchaWnaaBaaaleaacqWGQbGAaeqaaOGaemyCae3aaSbaaSqaaiabdYgaSbqabaGccqWGebardaqhaaWcbaGaeiOla4IaeiOla4cabaGaemyAaKMaem4AaSgaaOGaeyOeI0IaemyCae3aaWbaaSqabeaacqWGRbWAaaGccqWGXbqCdaWgaaWcbaGaemiBaWgabeaakiabdseaenaaDaaaleaacqWGQbGAcqGGUaGlaeaacqWGPbqAcqGGUaGlaaGccqGHsislcqWGWbaCdaahaaWcbeqaaiabdMgaPbaakiabdchaWnaaBaaaleaacqWGQbGAaeqaaOGaemyCae3aaWbaaSqabeaacqWGRbWAaaGccqWGXbqCdaWgaaWcbaGaemiBaWgabeaakiabc6caUaaaaaa@BE30@

This definition is the same as that given by [15, 16]. Note that i z M i ( 1 ) = 1 MathType@MTEF@5@5@+=feaafiart1ev1aaatCvAUfKttLearuWrP9MDH5MBPbIqV92AaeXatLxBI9gBaebbnrfifHhDYfgasaacH8akY=wiFfYdH8Gipec8Eeeu0xXdbba9frFj0=OqFfea0dXdd9vqai=hGuQ8kuc9pgc9s8qqaq=dirpe0xb9q8qiLsFr0=vr0=vr0dc8meaabaqaciaacaGaaeqabaqabeGadaaakeaadaaeqaqaaiabdQha6naaDaaaleaacqWGnbqtdaWgaaadbaGaemyAaKgabeaaaSqaaiabcIcaOiabigdaXiabcMcaPaaaaeaacqWGPbqAaeqaniabggHiLdGccqGH9aqpcqaIXaqmaaa@38E1@ . Then, we have

i D j l i k = E [ ( i x M i ( 1 ) ) x F j ( 1 ) x M k ( 2 ) x F l ( 2 ) ] = E [ i ( z M i ( 1 ) p i ) x F j ( 1 ) x M k ( 2 ) x F l ( 2 ) = 0 MathType@MTEF@5@5@+=feaafiart1ev1aaatCvAUfKttLearuWrP9MDH5MBPbIqV92AaeXatLxBI9gBaebbnrfifHhDYfgasaacH8akY=wiFfYdH8Gipec8Eeeu0xXdbba9frFj0=OqFfea0dXdd9vqai=hGuQ8kuc9pgc9s8qqaq=dirpe0xb9q8qiLsFr0=vr0=vr0dc8meaabaqaciaacaGaaeqabaqabeGadaaakqaabeqaamaaqafabaGaemiraq0aa0baaSqaaiabdQgaQjabdYgaSbqaaiabdMgaPjabdUgaRbaaaeaacqWGPbqAaeqaniabggHiLdGccqGH9aqpcqWGfbqrcqGGBbWwcqGGOaakdaaeqbqaaiabdIha4naaDaaaleaacqWGnbqtdaWgaaadbaGaemyAaKgabeaaaSqaaiabcIcaOiabigdaXiabcMcaPaaakiabcMcaPiabdIha4naaDaaaleaacqWGgbGrdaWgaaadbaGaemOAaOgabeaaaSqaaiabcIcaOiabigdaXiabcMcaPaaaaeaacqWGPbqAaeqaniabggHiLdGccqWG4baEdaqhaaWcbaGaemyta00aaSbaaWqaaiabdUgaRbqabaaaleaacqGGOaakcqaIYaGmcqGGPaqkaaGccqWG4baEdaqhaaWcbaGaemOray0aaSbaaWqaaiabdYgaSbqabaaaleaacqGGOaakcqaIYaGmcqGGPaqkaaGccqGGDbqxaeaacqGH9aqpcqWGfbqrcqGGBbWwdaaeqbqaaiabcIcaOiabdQha6naaDaaaleaacqWGnbqtdaWgaaadbaGaemyAaKgabeaaaSqaaiabcIcaOiabigdaXiabcMcaPaaakiabgkHiTiabdchaWnaaCaaaleqabaGaemyAaKgaaOGaeiykaKIaemiEaG3aa0baaSqaaiabdAeagnaaBaaameaacqWGQbGAaeqaaaWcbaGaeiikaGIaeGymaeJaeiykaKcaaaqaaiabdMgaPbqab0GaeyyeIuoakiabdIha4naaDaaaleaacqWGnbqtdaWgaaadbaGaem4AaSgabeaaaSqaaiabcIcaOiabikdaYiabcMcaPaaakiabdIha4naaDaaaleaacqWGgbGrdaWgaaadbaGaemiBaWgabeaaaSqaaiabcIcaOiabikdaYiabcMcaPaaakiabg2da9iabicdaWaaaaa@8728@

In general, D j l i k MathType@MTEF@5@5@+=feaafiart1ev1aaatCvAUfKttLearuWrP9MDH5MBPbIqV92AaeXatLxBI9gBaebbnrfifHhDYfgasaacH8akY=wiFfYdH8Gipec8Eeeu0xXdbba9frFj0=OqFfea0dXdd9vqai=hGuQ8kuc9pgc9s8qqaq=dirpe0xb9q8qiLsFr0=vr0=vr0dc8meaabaqaciaacaGaaeqabaqabeGadaaakeaacqWGebardaqhaaWcbaGaemOAaOMaemiBaWgabaGaemyAaKMaem4AaSgaaaaa@3362@ is summed to zero over any allele involved, so are D j . i k MathType@MTEF@5@5@+=feaafiart1ev1aaatCvAUfKttLearuWrP9MDH5MBPbIqV92AaeXatLxBI9gBaebbnrfifHhDYfgasaacH8akY=wiFfYdH8Gipec8Eeeu0xXdbba9frFj0=OqFfea0dXdd9vqai=hGuQ8kuc9pgc9s8qqaq=dirpe0xb9q8qiLsFr0=vr0=vr0dc8meaabaqaciaacaGaaeqabaqabeGadaaakeaacqWGebardaqhaaWcbaGaemOAaOMaeiOla4cabaGaemyAaKMaem4AaSgaaaaa@32E5@ and other disequilibrium measurements.

With Hardy-Weinberg and genotypic equilibria but linkage disequilibrium, model (7) leads to the following expression for the overall mean

E ( G ) = μ + i , k ( α i β k ) D .. i k + j , l ( α j β l ) D j l .. + i , j , k , l ( δ j i γ l k ) D i k D j l MathType@MTEF@5@5@+=feaafiart1ev1aaatCvAUfKttLearuWrP9MDH5MBPbIqV92AaeXatLxBI9gBaebbnrfifHhDYfgasaacH8akY=wiFfYdH8Gipec8Eeeu0xXdbba9frFj0=OqFfea0dXdd9vqai=hGuQ8kuc9pgc9s8qqaq=dirpe0xb9q8qiLsFr0=vr0=vr0dc8meaabaqaciaacaGaaeqabaqabeGadaaakeaafaqadeGabaaabaGaemyrauKaeiikaGIaem4raCKaeiykaKIaeyypa0dcciGae8hVd0Maey4kaSYaaabuaeaacqGGOaakcqWFXoqydaahaaWcbeqaaiabdMgaPbaakiab=j7aInaaCaaaleqabaGaem4AaSgaaOGaeiykaKIaemiraq0aa0baaSqaaiabc6caUiabc6caUaqaaiabdMgaPjabdUgaRbaaaeaacqWGPbqAcqGGSaalcqWGRbWAaeqaniabggHiLdGccqGHRaWkdaaeqbqaaiabcIcaOiab=f7aHnaaBaaaleaacqWGQbGAaeqaaOGae8NSdi2aaSbaaSqaaiabdYgaSbqabaGccqGGPaqkcqWGebardaqhaaWcbaGaemOAaOMaemiBaWgabaGaeiOla4IaeiOla4caaaqaaiabdQgaQjabcYcaSiabdYgaSbqab0GaeyyeIuoaaOqaaiabgUcaRmaaqafabaGaeiikaGIae8hTdq2aa0baaSqaaiabdQgaQbqaaiabdMgaPbaakiabeo7aNnaaDaaaleaacqWGSbaBaeaacqWGRbWAaaGccqGGPaqkcqWGebardaahaaWcbeqaaiabdMgaPjabdUgaRbaakiabdseaenaaBaaaleaacqWGQbGAcqWGSbaBaeqaaaqaaiabdMgaPjabcYcaSiabdQgaQjabcYcaSiabdUgaRjabcYcaSiabdYgaSbqab0GaeyyeIuoaaaaaaa@7A2E@

where μ is the mean genotypic value under linkage equilibrium, and Δ μ = i , k ( α i β k ) D .. i k + j , l ( α j β l ) D j l .. + i , j , k , l ( δ j i γ l k ) D .. i k D j l .. MathType@MTEF@5@5@+=feaafiart1ev1aaatCvAUfKttLearuWrP9MDH5MBPbIqV92AaeXatLxBI9gBaebbnrfifHhDYfgasaacH8akY=wiFfYdH8Gipec8Eeeu0xXdbba9frFj0=OqFfea0dXdd9vqai=hGuQ8kuc9pgc9s8qqaq=dirpe0xb9q8qiLsFr0=vr0=vr0dc8meaabaqaciaacaGaaeqabaqabeGadaaakeaacqqHuoardaWgaaWcbaacciGae8hVd0gabeaakiabg2da9maaqababaGaeiikaGIae8xSde2aaWbaaSqabeaaieGacqGFPbqAaaGccqWFYoGydaahaaWcbeqaaiabdUgaRbaakiabcMcaPaWcbaGaemyAaKMaeiilaWIaem4AaSgabeqdcqGHris5aOGaemiraq0aa0baaSqaaiabc6caUiabc6caUaqaaiabdMgaPjabdUgaRbaakiabgUcaRmaaqababaGaeiikaGIae8xSde2aaSbaaSqaaiab+PgaQbqabaGccqWFYoGydaWgaaWcbaGae4hBaWgabeaakiabcMcaPaWcbaGaemOAaOMaeiilaWIaemiBaWgabeqdcqGHris5aOGaemiraq0aa0baaSqaaiabdQgaQjabdYgaSbqaaiabc6caUiabc6caUaaakiabgUcaRmaaqababaGaeiikaGIae8hTdq2aa0baaSqaaiabdQgaQbqaaiabdMgaPbaakiab=n7aNnaaDaaaleaacqWGSbaBaeaacqWGRbWAaaGccqGGPaqkaSqaaiabdMgaPjabcYcaSiabdQgaQjabcYcaSiabdUgaRjabcYcaSiabdYgaSbqab0GaeyyeIuoakiabdseaenaaDaaaleaacqGGUaGlcqGGUaGlaeaacqWGPbqAcqWGRbWAaaGccqWGebardaqhaaWcbaGaemOAaOMaemiBaWgabaGaeiOla4IaeiOla4caaaaa@7A04@ represents the departure from μ due to linkage disequilibrium and epistasis. If there is no epistasis, linkage disequilibrium does not affect the mean genotypic value. Similar results were given by [17]. Note that for marginal means of the genotypic values, we have

G .. .. = i , j , k , l P .. i k P j l .. G j l i k , G .. i . = 1 p i j , k , l P .. i k P j l .. G j l i k , G .. i k = j , l P j l .. G j l i k , G j . i . = 1 p i p j k , l P j l .. P .. i k G j l i k , G j . i k = 1 p j l P j l .. G j l i k , ... MathType@MTEF@5@5@+=feaafiart1ev1aaatCvAUfKttLearuWrP9MDH5MBPbIqV92AaeXatLxBI9gBaebbfv3ySLgzGueE0jxyaibaieYdOi=BH8vipeYdI8qiW7rqqrFfpeea0xe9Lq=Jc9vqaqpepm0xbbG8FasPYRqj0=yi0lXdbba9pGe9qqFf0dXdHuk9fr=xfr=xfrpiWZqaaeaabiGaaiaacaqabeaabeqacmaaaOabaeqabaGaem4raC0aa0baaSqaaiabc6caUiabc6caUaqaaiabc6caUiabc6caUaaakiabg2da9maaqafabaGaemiuaa1aa0baaSqaaiabc6caUiabc6caUaqaaiabdMgaPjabdUgaRbaakiabdcfaqnaaDaaaleaacqWGQbGAcqWGSbaBaeaacqGGUaGlcqGGUaGlaaGccqWGhbWrdaqhaaWcbaGaemOAaOMaemiBaWgabaGaemyAaKMaem4AaSgaaOGaeiilaWIaeeiiaaIaem4raC0aa0baaSqaaiabc6caUiabc6caUaqaaiabdMgaPjabc6caUaaakiabg2da9maalaaabaGaeGymaedabaGaemiCaa3aaWbaaSqabeaacqWGPbqAaaaaaOWaaabuaeaacqWGqbaudaqhaaWcbaGaeiOla4IaeiOla4cabaGaemyAaKMaem4AaSgaaOGaemiuaa1aa0baaSqaaiabdQgaQjabdYgaSbqaaiabc6caUiabc6caUaaakiabdEeahnaaDaaaleaacqWGQbGAcqWGSbaBaeaacqWGPbqAcqWGRbWAaaaabaGaemOAaOMaeiilaWIaem4AaSMaeiilaWIaemiBaWgabeqdcqGHris5aaWcbaGaemyAaKMaeiilaWIaemOAaOMaeiilaWIaem4AaSMaeiilaWIaemiBaWgabeqdcqGHris5aOGaeiilaWcabaGaem4raC0aa0baaSqaaiabc6caUiabc6caUaqaaiabdMgaPjabdUgaRbaakiabg2da9maaqafabaGaemiuaa1aa0baaSqaaiabdQgaQjabdYgaSbqaaiabc6caUiabc6caUaaakiabdEeahnaaDaaaleaacqWGQbGAcqWGSbaBaeaacqWGPbqAcqWGRbWAaaGccqGGSaalcqqGGaaicqWGhbWrdaqhaaWcbaGaemOAaOMaeiOla4cabaGaemyAaKMaeiOla4caaOGaeyypa0ZaaSaaaeaacqaIXaqmaeaacqWGWbaCdaahaaWcbeqaaiabdMgaPbaakiabdchaWnaaBaaaleaacqWGQbGAaeqaaaaakmaaqafabaGaemiuaa1aa0baaSqaaiabdQgaQjabdYgaSbqaaiabc6caUiabc6caUaaakiabdcfaqnaaDaaaleaacqGGUaGlcqGGUaGlaeaacqWGPbqAcqWGRbWAaaGccqWGhbWrdaqhaaWcbaGaemOAaOMaemiBaWgabaGaemyAaKMaem4AaSgaaOGaeiilaWcaleaacqWGRbWAcqGGSaalcqWGSbaBaeqaniabggHiLdaaleaacqWGQbGAcqGGSaalcqWGSbaBaeqaniabggHiLdaakeaacqWGhbWrdaqhaaWcbaGaemOAaOMaeiOla4cabaGaemyAaKMaem4AaSgaaOGaeyypa0ZaaSaaaeaacqaIXaqmaeaacqWGWbaCdaWgaaWcbaGaemOAaOgabeaaaaGcdaaeqbqaaiabdcfaqnaaDaaaleaacqWGQbGAcqWGSbaBaeaacqGGUaGlcqGGUaGlaaGccqWGhbWrdaqhaaWcbaGaemOAaOMaemiBaWgabaGaemyAaKMaem4AaSgaaOGaeiilaWIaeeiiaaIaeiOla4IaeiOla4IaeiOla4caleaacqWGSbaBaeqaniabggHiLdaaaaa@DA34@

and so on.

Then the question is what the genetic effects are in a disequilibrium population. Do Hardy-Weinberg and linkage disequilibria change the definition and values of genetic effects? The short answer to this question is "no" in a fully characterized model, but "yes" in a model that ignores some QTL or genetic effects. This is proved and discussed in [10]. With Hardy-Weinberg and linkage disequilibria, the genetic effects no longer correspond to the deviations from marginal means of genotypic values in a disequilibrium population. In a multiple regression model (7), the genetic effects are partial regression coefficients. These partial regression coefficients correspond to the simple regression coefficients, or deviations from marginal means of genotypic values, only in an equilibrium population. In a disequilibrium population, a direct analysis on the partial regression coefficients can be very complex (see the appendix of [10] for a relatively simple example). However, in a full model which includes all relevant loci and genetic effects, the model parameters depend only on how the regressors, i.e. x variables in (7), are defined and are independent of correlations between x variables, i.e. Hardy-Weinberg and linkage disequilibria. So, the genetic effects are still the same as those defined in the equilibrium population, although the population mean and marginal means of genotypic values are changed in a disequilibrium population.

Hardy-Weinberg and linkage disequilibria introduce correlation between x variables, thus covariances between different genetic effect components. Define

A 1 = i = 1 n 1 α i x M i ( 1 ) + j = 1 n 1 α j x F j ( 1 ) D 1 = i , j δ j i x M i ( 1 ) x F j ( 1 ) A 2 = k = 1 n 2 β k x M k ( 2 ) + l = 1 n 2 β l x F l ( 2 ) D 2 = k , l γ l k x M k ( 2 ) x F l ( 2 ) A 1 A 2 = i , k ( α i β k ) x M i ( 1 ) x M k ( 2 ) + i , l ( α i β l ) x M i ( 1 ) x F l ( 2 ) + j , k ( α j β k ) x F j ( 1 ) x M k ( 2 ) + j , l ( α j β l ) x F j ( 1 ) x F l ( 2 ) A 1 D 2 = i , k , l ( α i γ l k ) x M i ( 1 ) x M k ( 2 ) x F l ( 2 ) + j , k , l ( α j γ l k ) x F j ( 1 ) x M k ( 2 ) x F l ( 2 ) A 2 D 1 = i , j , k ( δ j i β k ) x M i ( 1 ) x F j ( 1 ) x M k ( 2 ) + i , j , l ( δ j i β l ) x M i ( 1 ) x F j ( 1 ) x F l ( 2 ) D 1 D 2 = i , j , k , l ( δ j i γ l k ) x M i ( 1 ) x F j ( 1 ) x M k ( 2 ) x F l ( 2 ) MathType@MTEF@5@5@+=feaafiart1ev1aaatCvAUfKttLearuWrP9MDH5MBPbIqV92AaeXatLxBI9gBaebbfv3ySLgzGueE0jxyaibaieYdOi=BH8vipeYdI8qiW7rqqrFfpeea0xe9Lq=Jc9vqaqpepm0xbbG8FasPYRqj0=yi0lXdbba9pGe9qqFf0dXdHuk9fr=xfr=xfrpiWZqaaeaabiGaaiaacaqabeaabeqacmaaaOabaeqabaGaemyqae0aaSbaaSqaaiabigdaXaqabaGccqGH9aqpdaaeWbqaaGGaciab=f7aHnaaCaaaleqabaGaemyAaKgaaOGaemiEaG3aa0baaSqaaiabd2eannaaBaaameaacqWGPbqAaeqaaaWcbaGaeiikaGIaeGymaeJaeiykaKcaaaqaaiabdMgaPjabg2da9iabigdaXaqaaiabd6gaUnaaBaaameaacqaIXaqmaeqaaaqdcqGHris5aOGaey4kaSYaaabCaeaacqWFXoqydaWgaaWcbaGaemOAaOgabeaakiabdIha4naaDaaaleaacqWGgbGrdaWgaaadbaGaemOAaOgabeaaaSqaaiabcIcaOiabigdaXiabcMcaPaaaaeaacqWGQbGAcqGH9aqpcqaIXaqmaeaacqWGUbGBdaWgaaadbaGaeGymaedabeaaa0GaeyyeIuoaaOqaaiabdseaenaaBaaaleaacqaIXaqmaeqaaOGaeyypa0ZaaabuaeaacqWF0oazdaqhaaWcbaGaemOAaOgabaGaemyAaKgaaOGaemiEaG3aa0baaSqaaiabd2eannaaBaaameaacqWGPbqAaeqaaaWcbaGaeiikaGIaeGymaeJaeiykaKcaaOGaemiEaG3aa0baaSqaaiabdAeagnaaBaaameaacqWGQbGAaeqaaaWcbaGaeiikaGIaeGymaeJaeiykaKcaaaqaaiabdMgaPjabcYcaSiabdQgaQbqab0GaeyyeIuoaaOqaaiabdgeabnaaBaaaleaacqaIYaGmaeqaaOGaeyypa0ZaaabCaeaacqWFYoGydaahaaWcbeqaaiabdUgaRbaakiabdIha4naaDaaaleaacqWGnbqtdaWgaaadbaGaem4AaSgabeaaaSqaaiabcIcaOiabikdaYiabcMcaPaaaaeaacqWGRbWAcqGH9aqpcqaIXaqmaeaacqWGUbGBdaWgaaadbaGaeGOmaidabeaaa0GaeyyeIuoakiabgUcaRmaaqahabaGae8NSdi2aaSbaaSqaaiabdYgaSbqabaGccqWG4baEdaqhaaWcbaGaemOray0aaSbaaWqaaiabdYgaSbqabaaaleaacqGGOaakcqaIYaGmcqGGPaqkaaaabaGaemiBaWMaeyypa0JaeGymaedabaGaemOBa42aaSbaaWqaaiabikdaYaqabaaaniabggHiLdaakeaacqWGebardaWgaaWcbaGaeGOmaidabeaakiabg2da9maaqafabaGae83SdC2aa0baaSqaaiabdYgaSbqaaiabdUgaRbaakiabdIha4naaDaaaleaacqWGnbqtdaWgaaadbaGaem4AaSgabeaaaSqaaiabcIcaOiabikdaYiabcMcaPaaakiabdIha4naaDaaaleaacqWGgbGrdaWgaaadbaGaemiBaWgabeaaaSqaaiabcIcaOiabikdaYiabcMcaPaaaaeaacqWGRbWAcqGGSaalcqWGSbaBaeqaniabggHiLdaakeaacqWGbbqqdaWgaaWcbaGaeGymaedabeaakiabdgeabnaaBaaaleaacqaIYaGmaeqaaOGaeyypa0ZaaabuaeaacqGGOaakcqaHXoqydaahaaWcbeqaaiabdMgaPbaakiab=j7aInaaCaaaleqabaGaem4AaSgaaOGaeiykaKIaemiEaG3aa0baaSqaaiabd2eannaaBaaameaacqWGPbqAaeqaaaWcbaGaeiikaGIaeGymaeJaeiykaKcaaOGaemiEaG3aa0baaSqaaiabd2eannaaBaaameaacqWGRbWAaeqaaaWcbaGaeiikaGIaeGOmaiJaeiykaKcaaaqaaiabdMgaPjabcYcaSiabdUgaRbqab0GaeyyeIuoakiabgUcaRmaaqafabaGaeiikaGIae8xSde2aaWbaaSqabeaacqWGPbqAaaGccqWFYoGydaWgaaWcbaGaemiBaWgabeaakiabcMcaPiabdIha4naaDaaaleaacqWGnbqtdaWgaaadbaGaemyAaKgabeaaaSqaaiabcIcaOiabigdaXiabcMcaPaaakiabdIha4naaDaaaleaacqWGgbGrdaWgaaadbaGaemiBaWgabeaaaSqaaiabcIcaOiabikdaYiabcMcaPaaaaeaacqWGPbqAcqGGSaalcqWGSbaBaeqaniabggHiLdaakeaacaWLjaGaey4kaSYaaabuaeaacqGGOaakaSqaaiabdQgaQjabcYcaSiabdUgaRbqab0GaeyyeIuoakiab=f7aHnaaBaaaleaacqWGQbGAaeqaaOGae8NSdi2aaWbaaSqabeaacqWGRbWAaaGccqGGPaqkcqWG4baEdaqhaaWcbaGaemOray0aaSbaaWqaaiabdQgaQbqabaaaleaacqGGOaakcqaIXaqmcqGGPaqkaaGccqWG4baEdaqhaaWcbaGaemyta00aaSbaaWqaaiabdUgaRbqabaaaleaacqGGOaakcqaIYaGmcqGGPaqkaaGccqGHRaWkdaaeqbqaaiabcIcaOaWcbaGaemOAaOMaeiilaWIaemiBaWgabeqdcqGHris5aOGae8xSde2aaSbaaSqaaiabdQgaQbqabaGccqWFYoGydaWgaaWcbaGaemiBaWgabeaakiabcMcaPiabdIha4naaDaaaleaacqWGgbGrdaWgaaadbaGaemOAaOgabeaaaSqaaiabcIcaOiabigdaXiabcMcaPaaakiabdIha4naaDaaaleaacqWGgbGrdaWgaaadbaGaemiBaWgabeaaaSqaaiabcIcaOiabikdaYiabcMcaPaaaaOqaaiabdgeabnaaBaaaleaacqaIXaqmaeqaaOGaemiraq0aaSbaaSqaaiabikdaYaqabaGccqGH9aqpdaaeqbqaaiabcIcaOiab=f7aHnaaCaaaleqabaGaemyAaKgaaOGae83SdC2aa0baaSqaaiabdYgaSbqaaiabdUgaRbaaaeaacqWGPbqAcqGGSaalcqWGRbWAcqGGSaalcqWGSbaBaeqaniabggHiLdGccqGGPaqkcqWG4baEdaqhaaWcbaGaemyta00aaSbaaWqaaiabdMgaPbqabaaaleaacqGGOaakcqaIXaqmcqGGPaqkaaGccqWG4baEdaqhaaWcbaGaemyta00aaSbaaWqaaiabdUgaRbqabaaaleaacqGGOaakcqaIYaGmcqGGPaqkaaGccqWG4baEdaqhaaWcbaGaemOray0aaSbaaWqaaiabdYgaSbqabaaaleaacqGGOaakcqaIYaGmcqGGPaqkaaaakeaacaWLjaGaey4kaSYaaabuaeaacqGGOaakcqWFXoqydaWgaaWcbaGaemOAaOgabeaakiab=n7aNnaaDaaaleaacqWGSbaBaeaacqWGRbWAaaaabaGaemOAaOMaeiilaWIaem4AaSMaeiilaWIaemiBaWgabeqdcqGHris5aOGaeiykaKIaemiEaG3aa0baaSqaaiabdAeagnaaBaaameaacqWGQbGAaeqaaaWcbaGaeiikaGIaeGymaeJaeiykaKcaaOGaemiEaG3aa0baaSqaaiabd2eannaaBaaameaacqWGRbWAaeqaaaWcbaGaeiikaGIaeGOmaiJaeiykaKcaaOGaemiEaG3aa0baaSqaaiabdAeagnaaBaaameaacqWGSbaBaeqaaaWcbaGaeiikaGIaeGOmaiJaeiykaKcaaaGcbaGaemyqae0aaSbaaSqaaiabikdaYaqabaGccqWGebardaWgaaWcbaGaeGymaedabeaakiabg2da9maaqafabaGaeiikaGIae8hTdq2aa0baaSqaaiabdQgaQbqaaiabdMgaPbaakiab=j7aInaaCaaaleqabaGaem4AaSgaaaqaaiabdMgaPjabcYcaSiabdQgaQjabcYcaSiabdUgaRbqab0GaeyyeIuoakiabcMcaPiabdIha4naaDaaaleaacqWGnbqtdaWgaaadbaGaemyAaKgabeaaaSqaaiabcIcaOiabigdaXiabcMcaPaaakiabdIha4naaDaaaleaacqWGgbGrdaWgaaadbaGaemOAaOgabeaaaSqaaiabcIcaOiabigdaXiabcMcaPaaakiabdIha4naaDaaaleaacqWGnbqtdaWgaaadbaGaem4AaSgabeaaaSqaaiabcIcaOiabikdaYiabcMcaPaaaaOqaaiaaxMaacqGHRaWkdaaeqbqaaiabcIcaOiab=r7aKnaaDaaaleaacqWGQbGAaeaacqWGPbqAaaGccqWFYoGydaWgaaWcbaGaemiBaWgabeaaaeaacqWGPbqAcqGGSaalcqWGQbGAcqGGSaalcqWGSbaBaeqaniabggHiLdGccqGGPaqkcqWG4baEdaqhaaWcbaGaemyta00aaSbaaWqaaiabdMgaPbqabaaaleaacqGGOaakcqaIXaqmcqGGPaqkaaGccqWG4baEdaqhaaWcbaGaemOray0aaSbaaWqaaiabdQgaQbqabaaaleaacqGGOaakcqaIXaqmcqGGPaqkaaGccqWG4baEdaqhaaWcbaGaemOray0aaSbaaWqaaiabdYgaSbqabaaaleaacqGGOaakcqaIYaGmcqGGPaqkaaaakeaacqWGebardaWgaaWcbaGaeGymaedabeaakiabdseaenaaBaaaleaacqaIYaGmaeqaaOGaeyypa0ZaaabuaeaacqGGOaakcqWF0oazdaqhaaWcbaGaemOAaOgabaGaemyAaKgaaOGae83SdC2aa0baaSqaaiabdYgaSbqaaiabdUgaRbaaaeaacqWGPbqAcqGGSaalcqWGQbGAcqGGSaalcqWGRbWAcqGGSaalcqWGSbaBaeqaniabggHiLdGccqGGPaqkcqWG4baEdaqhaaWcbaGaemyta00aaSbaaWqaaiabdMgaPbqabaaaleaacqGGOaakcqaIXaqmcqGGPaqkaaGccqWG4baEdaqhaaWcbaGaemOray0aaSbaaWqaaiabdQgaQbqabaaaleaacqGGOaakcqaIXaqmcqGGPaqkaaGccqWG4baEdaqhaaWcbaGaemyta00aaSbaaWqaaiabdUgaRbqabaaaleaacqGGOaakcqaIYaGmcqGGPaqkaaGccqWG4baEdaqhaaWcbaGaemOray0aaSbaaWqaaiabdYgaSbqabaaaleaacqGGOaakcqaIYaGmcqGGPaqkaaaaaaa@0D44@

Then we can write

G = μ + A1 + A2 + D1 + D2 + A1A2 + A1D2 + A2D1 + D1D2

In a disequilibrium population, the partition of the genotypic variance becomes

V G = i = 1 8 j = 1 8 V i j = 1 T V 1 MathType@MTEF@5@5@+=feaafiart1ev1aaatCvAUfKttLearuWrP9MDH5MBPbIqV92AaeXatLxBI9gBaebbfv3ySLgzGueE0jxyaibaieYdOi=BH8vipeYdI8qiW7rqqrFfpeea0xe9Lq=Jc9vqaqpepm0xbbG8FasPYRqj0=yi0lXdbba9pGe9qqFf0dXdHuk9fr=xfr=xfrpiWZqaaeaabiGaaiaacaqabeaabeqacmaaaOqaaiabdAfawnaaBaaaleaacqWGhbWraeqaaOGaeyypa0ZaaabCaeaadaaeWbqaaiabdAfawnaaBaaaleaacqWGPbqAcqWGQbGAaeqaaaqaaiabdQgaQjabg2da9iabigdaXaqaaiabiIda4aqdcqGHris5aaWcbaGaemyAaKMaeyypa0JaeGymaedabaGaeGioaGdaniabggHiLdGccqGH9aqpieqacqWFXaqmdaahaaWcbeqaaiab=rfaubaakiab=zfawjab=fdaXaaa@4898@

where

V = (V ij )8 × 8

It is a symmetric matrix. In Appendix C, we give the detailed result for each component of the matrix with linkage disequilibrium, but assuming Hardy-Weinberg equilibrium.

For the rest of paper, when we discuss disequilibrium, we mainly discuss linkage disequilibrium and assume Hardy-Weinberg and genotypic equilibria which can be achieved by random mating in one generation. Hardy-Weinberg disequilibrium can be taken into account which will make results more complex and is thus omitted.

Reduced models

In many genetic applications, experimental population has some regular genetic structure by design. In these cases, the genetic model can be further simplified to reflect the experimental design structure. Also sometimes we may want to simplify the genetic model by imposing certain constrains or assumptions, such as the number of alleles, to increase the feasibility of analysis. In this section, we give a few reduced genetic models that are relevant to many genetic applications.

1. Backcross population or recombinant inbred population (haploid model)

Backcross population or recombinant inbred population is a common experimental design for QTL mapping study. By crossing two inbred lines, we can create a F1 population. If we randomly backcross F1 to one of the inbred lines, we have a backcross population. Let us assume that the cross is AA (paternal) × Aa (maternal). In a random-mating backcross population, there are only two possible genotypes at each segregating locus A r A r or A r a r , for r = 1, 2, ..., m, where m is the number of QTL. Since for the paternal gametes,

z M 1 ( r ) = { 1 , for  A r  allele from paternal gamete 0 , otherwise  = 1 , MathType@MTEF@5@5@+=feaafiart1ev1aaatCvAUfKttLearuWrP9MDH5MBPbIqV92AaeXatLxBI9gBaebbfv3ySLgzGueE0jxyaibaieYdOi=BH8vipeYdI8qiW7rqqrFfpeea0xe9Lq=Jc9vqaqpepm0xbbG8FasPYRqj0=yi0lXdbba9pGe9qqFf0dXdHuk9fr=xfr=xfrpiWZqaaeaabiGaaiaacaqabeaabeqacmaaaOqaaiabdQha6naaDaaaleaacqWGnbqtdaWgaaadbaGaeGymaedabeaaaSqaaiabcIcaOiabdkhaYjabcMcaPaaakiabg2da9maaceaabaqbaeaabiGaaaqaaiabigdaXiabcYcaSaqaaiabbAgaMjabb+gaVjabbkhaYjabbccaGiabdgeabnaaBaaaleaacqWGYbGCaeqaaOGaeeiiaaIaeeyyaeMaeeiBaWMaeeiBaWMaeeyzauMaeeiBaWMaeeyzauMaeeiiaaIaeeOzayMaeeOCaiNaee4Ba8MaeeyBa0MaeeiiaaIaeeiCaaNaeeyyaeMaeeiDaqNaeeyzauMaeeOCaiNaeeOBa4MaeeyyaeMaeeiBaWMaeeiiaaIaee4zaCMaeeyyaeMaeeyBa0MaeeyzauMaeeiDaqNaeeyzaugabaGaeGimaaJaeiilaWcabaGaee4Ba8MaeeiDaqNaeeiAaGMaeeyzauMaeeOCaiNaee4DaCNaeeyAaKMaee4CamNaeeyzauMaeeiiaacaaaGaay5EaaGaeyypa0JaeGymaeJaeiilaWcaaa@7692@

and

z M 2 ( r ) = { 1 , for  a r  allele from paternal gamete 0 , otherwise  = 0 , MathType@MTEF@5@5@+=feaafiart1ev1aaatCvAUfKttLearuWrP9MDH5MBPbIqV92AaeXatLxBI9gBaebbfv3ySLgzGueE0jxyaibaieYdOi=BH8vipeYdI8qiW7rqqrFfpeea0xe9Lq=Jc9vqaqpepm0xbbG8FasPYRqj0=yi0lXdbba9pGe9qqFf0dXdHuk9fr=xfr=xfrpiWZqaaeaabiGaaiaacaqabeaabeqacmaaaOqaaiabdQha6naaDaaaleaacqWGnbqtdaWgaaadbaGaeGOmaidabeaaaSqaaiabcIcaOiabdkhaYjabcMcaPaaakiabg2da9maaceaabaqbaeaabiGaaaqaaiabigdaXiabcYcaSaqaaiabbAgaMjabb+gaVjabbkhaYjabbccaGGqaciab=fgaHnaaBaaaleaacqWGYbGCaeqaaOGaeeiiaaIaeeyyaeMaeeiBaWMaeeiBaWMaeeyzauMaeeiBaWMaeeyzauMaeeiiaaIaeeOzayMaeeOCaiNaee4Ba8MaeeyBa0MaeeiiaaIaeeiCaaNaeeyyaeMaeeiDaqNaeeyzauMaeeOCaiNaeeOBa4MaeeyyaeMaeeiBaWMaeeiiaaIaee4zaCMaeeyyaeMaeeyBa0MaeeyzauMaeeiDaqNaeeyzaugabaGaeGimaaJaeiilaWcabaGaee4Ba8MaeeiDaqNaeeiAaGMaeeyzauMaeeOCaiNaee4DaCNaeeyAaKMaee4CamNaeeyzauMaeeiiaacaaaGaay5EaaGaeyypa0JaeGimaaJaeiilaWcaaa@76D9@

thus x M 1 ( r ) = z M 1 ( r ) 1 = 0 MathType@MTEF@5@5@+=feaafiart1ev1aaatCvAUfKttLearuWrP9MDH5MBPbIqV92AaeXatLxBI9gBaebbfv3ySLgzGueE0jxyaibaieYdOi=BH8vipeYdI8qiW7rqqrFfpeea0xe9Lq=Jc9vqaqpepm0xbbG8FasPYRqj0=yi0lXdbba9pGe9qqFf0dXdHuk9fr=xfr=xfrpiWZqaaeaabiGaaiaacaqabeaabeqacmaaaOqaaiabdIha4naaDaaaleaacqWGnbqtdaWgaaadbaGaeGymaedabeaaaSqaaiabcIcaOiabdkhaYjabcMcaPaaakiabg2da9iabdQha6naaDaaaleaacqWGnbqtdaWgaaadbaGaeGymaedabeaaaSqaaiabcIcaOiabdkhaYjabcMcaPaaakiabgkHiTiabigdaXiabg2da9iabicdaWaaa@4170@ and x M 2 ( r ) = z M 2 ( r ) = 0 MathType@MTEF@5@5@+=feaafiart1ev1aaatCvAUfKttLearuWrP9MDH5MBPbIqV92AaeXatLxBI9gBaebbfv3ySLgzGueE0jxyaibaieYdOi=BH8vipeYdI8qiW7rqqrFfpeea0xe9Lq=Jc9vqaqpepm0xbbG8FasPYRqj0=yi0lXdbba9pGe9qqFf0dXdHuk9fr=xfr=xfrpiWZqaaeaabiGaaiaacaqabeaabeqacmaaaOqaaiabdIha4naaDaaaleaacqWGnbqtdaWgaaadbaGaeGOmaidabeaaaSqaaiabcIcaOiabdkhaYjabcMcaPaaakiabg2da9iabdQha6naaDaaaleaacqWGnbqtdaWgaaadbaGaeGOmaidabeaaaSqaaiabcIcaOiabdkhaYjabcMcaPaaakiabg2da9iabicdaWaaa@3F97@ for r = 1, 2, ..., m. For maternal gametes however,

x F 1 ( r ) = { 1 / 2 ,  for  A r  from maternal gamete 1 / 2 ,  otherwise = x F 2 ( r ) ,  for  r = 1 , 2 , , m . MathType@MTEF@5@5@+=feaafiart1ev1aaatCvAUfKttLearuWrP9MDH5MBPbIqV92AaeXatLxBI9gBaebbnrfifHhDYfgasaacH8akY=wiFfYdH8Gipec8Eeeu0xXdbba9frFj0=OqFfea0dXdd9vqai=hGuQ8kuc9pgc9s8qqaq=dirpe0xb9q8qiLsFr0=vr0=vr0dc8meaabaqaciaacaGaaeqabaqabeGadaaakeaafaqadeGabaaabaGaemiEaG3aa0baaSqaaiabdAeagnaaBaaameaacqaIXaqmaeqaaaWcbaGaeiikaGIaemOCaiNaeiykaKcaaOGaeyypa0ZaaiqaaeaafaqaaeGabaaabaGaeGymaeJaei4la8IaeGOmaiJaeiilaWIaeeiiaaIaeeOzayMaee4Ba8MaeeOCaiNaeeiiaaccbiGae8xqae0aaSbaaSqaaiabdkhaYbqabaGccqqGGaaicqqGMbGzcqqGYbGCcqqGVbWBcqqGTbqBcqqGGaaicqqGTbqBcqqGHbqycqqG0baDcqqGLbqzcqqGYbGCcqqGUbGBcqqGHbqycqqGSbaBcqqGGaaicqqGNbWzcqqGHbqycqqGTbqBcqqGLbqzcqqG0baDcqqGLbqzaeaacqGHsislcqaIXaqmcqGGVaWlcqaIYaGmcqGGSaalcqqGGaaicqqGVbWBcqqG0baDcqqGObaAcqqGLbqzcqqGYbGCcqqG3bWDcqqGPbqAcqqGZbWCcqqGLbqzaaaacaGL7baaaeaacqGH9aqpcqGHsislcqWG4baEdaqhaaWcbaGaemOray0aaSbaaWqaaiabikdaYaqabaaaleaacqGGOaakcqWGYbGCcqGGPaqkaaGccqGGSaalcqqGGaaicqqGMbGzcqqGVbWBcqqGYbGCcqqGGaaicqWFYbGCcqWF9aqpieaacqGFXaqmcqGFSaalcqGFGaaicqGFYaGmcqGFSaalcqGHflY1cqGHflY1cqGHflY1cqWFSaalcqWFGaaicqWFTbqBcqWFUaGlaaaaaa@8FA6@

Thus the model becomes

G = μ + r = 1 m a r x F 1 ( r ) + r < s b r s ( x F 1 ( r ) x F 1 ( s ) ) + r < s < t c r s t ( x F 1 ( r ) x F 1 ( s ) x F 1 ( t ) ) + ( 8 ) MathType@MTEF@5@5@+=feaafiart1ev1aaatCvAUfKttLearuWrP9MDH5MBPbIqV92AaeXatLxBI9gBaebbnrfifHhDYfgasaacH8akY=wiFfYdH8Gipec8Eeeu0xXdbba9frFj0=OqFfea0dXdd9vqai=hGuQ8kuc9pgc9s8qqaq=dirpe0xb9q8qiLsFr0=vr0=vr0dc8meaabaqaciaacaGaaeqabaqabeGadaaakeaafaqabeGabaaabaGaem4raCKaeyypa0dcciGae8hVd0Maey4kaSYaaabCaeaacqWGHbqydaWgaaWcbaGaemOCaihabeaakiabdIha4naaDaaaleaacqWGgbGrdaWgaaadbaGaeGymaedabeaaaSqaaiabcIcaOiabdkhaYjabcMcaPaaakiabgUcaRmaaqafabaGaemOyai2aaSbaaSqaaiabdkhaYjabdohaZbqabaGccqGGOaakcqWG4baEdaqhaaWcbaGaemOray0aaSbaaWqaaiabigdaXaqabaaaleaacqGGOaakcqWGYbGCcqGGPaqkaaGccqWG4baEdaqhaaWcbaGaemOray0aaSbaaWqaaiabigdaXaqabaaaleaacqGGOaakcqWGZbWCcqGGPaqkaaGccqGGPaqkaSqaaiabdkhaYjabgYda8iabdohaZbqab0GaeyyeIuoaaSqaaiabdkhaYjabg2da9iabigdaXaqaaiabd2gaTbqdcqGHris5aaGcbaGaey4kaSYaaabuaeaacqWGJbWydaWgaaWcbaGaemOCaiNaem4CamNaemiDaqhabeaakiabcIcaOiabdIha4naaDaaaleaacqWGgbGrdaWgaaadbaGaeGymaedabeaaaSqaaiabcIcaOiabdkhaYjabcMcaPaaakiabdIha4naaDaaaleaacqWGgbGrdaWgaaadbaGaeGymaedabeaaaSqaaiabcIcaOiabdohaZjabcMcaPaaakiabdIha4naaDaaaleaacqWGgbGrdaWgaaadbaGaeGymaedabeaaaSqaaiabcIcaOiabdsha0jabcMcaPaaakiabcMcaPiabgUcaRiabl+UimbWcbaGaemOCaiNaeyipaWJaem4CamNaeyipaWJaemiDaqhabeqdcqGHris5aaaakiaaxMaacaWLjaWaaeWaaeaacqaI4aaoaiaawIcacaGLPaaaaaa@8A3E@

where a r = α 1 ( r ) α 2 ( r ) MathType@MTEF@5@5@+=feaafiart1ev1aaatCvAUfKttLearuWrP9MDH5MBPbIqV92AaeXatLxBI9gBaebbfv3ySLgzGueE0jxyaibaieYdOi=BH8vipeYdI8qiW7rqqrFfpeea0xe9Lq=Jc9vqaqpepm0xbbG8FasPYRqj0=yi0lXdbba9pGe9qqFf0dXdHuk9fr=xfr=xfrpiWZqaaeaabiGaaiaacaqabeaabeqacmaaaOqaaiabdggaHnaaBaaaleaacqWGYbGCaeqaaOGaeyypa0dcciGae8xSde2aa0baaSqaaiabigdaXaqaaiabcIcaOiabdkhaYjabcMcaPaaakiabgkHiTiab=f7aHnaaDaaaleaacqaIYaGmaeaacqGGOaakcqWGYbGCcqGGPaqkaaaaaa@3F06@ is the substitution effect between homozygote genotype A r A r and heterozygote genotype A r a r , b r s = ( α 1 ( r ) α 1 ( s ) ) ( α 1 ( r ) α 2 ( s ) ) ( α 2 ( r ) α 1 ( s ) ) + ( α 2 ( r ) α 2 ( s ) ) MathType@MTEF@5@5@+=feaafiart1ev1aaatCvAUfKttLearuWrP9MDH5MBPbIqV92AaeXatLxBI9gBaebbfv3ySLgzGueE0jxyaibaieYdOi=BH8vipeYdI8qiW7rqqrFfpeea0xe9Lq=Jc9vqaqpepm0xbbG8FasPYRqj0=yi0lXdbba9pGe9qqFf0dXdHuk9fr=xfr=xfrpiWZqaaeaabiGaaiaacaqabeaabeqacmaaaOqaaiabdgeabnaaBaaaleaacqWGYbGCaeqaaOGaemyyae2aaSbaaSqaaiabdkhaYbqabaGccqGGSaalcqWGIbGydaWgaaWcbaGaemOCaiNaem4Camhabeaakiabg2da9iabcIcaOGGaciab=f7aHnaaDaaaleaacqaIXaqmaeaacqGGOaakcqWGYbGCcqGGPaqkaaGccqWFXoqydaqhaaWcbaGaeGymaedabaGaeiikaGIaem4CamNaeiykaKcaaOGaeiykaKIaeyOeI0IaeiikaGIae8xSde2aa0baaSqaaiabigdaXaqaaiabcIcaOiabdkhaYjabcMcaPaaakiab=f7aHnaaDaaaleaacqaIYaGmaeaacqGGOaakcqWGZbWCcqGGPaqkaaGccqGGPaqkcqGHsislcqGGOaakcqWFXoqydaqhaaWcbaGaeGOmaidabaGaeiikaGIaemOCaiNaeiykaKcaaOGae8xSde2aa0baaSqaaiabigdaXaqaaiabcIcaOiabdohaZjabcMcaPaaakiabcMcaPiabgUcaRiabcIcaOiab=f7aHnaaDaaaleaacqaIYaGmaeaacqGGOaakcqWGYbGCcqGGPaqkaaGccqWFXoqydaqhaaWcbaGaeGOmaidabaGaeiikaGIaem4CamNaeiykaKcaaOGaeiykaKcaaa@72E2@ is the interaction effect between loci r and s , c r s t = ( α 1 ( r ) α 1 ( s ) α 1 ( t ) ) ( α 1 ( r ) α 1 ( s ) α 2 ( t ) ) ( α 1 ( r ) α 2 ( s ) α 1 ( t ) ) + ( α 1 ( r ) α 2 ( s ) α 2 ( t ) ) ( α 2 ( r ) α 1 ( s ) α 1 ( t ) ) + ( α 2 ( r ) α 1 ( s ) α 2 ( t ) ) + ( α 2 ( r ) α 2 ( s ) α 1 ( t ) ) ( α 2 ( r ) α 2 ( s ) α 2 ( t ) ) MathType@MTEF@5@5@+=feaafiart1ev1aaatCvAUfKttLearuWrP9MDH5MBPbIqV92AaeXatLxBI9gBaebbfv3ySLgzGueE0jxyaibaieYdOi=BH8vipeYdI8qiW7rqqrFfpeea0xe9Lq=Jc9vqaqpepm0xbbG8FasPYRqj0=yi0lXdbba9pGe9qqFf0dXdHuk9fr=xfr=xfrpiWZqaaeaabiGaaiaacaqabeaabeqacmaaaOqaaiabdohaZjabcYcaSiabdogaJnaaBaaaleaacqWGYbGCcqWGZbWCcqWG0baDaeqaaOGaeyypa0JaeiikaGccciGae8xSde2aa0baaSqaaiabigdaXaqaaiabcIcaOiabdkhaYjabcMcaPaaakiab=f7aHnaaDaaaleaacqaIXaqmaeaacqGGOaakcqWGZbWCcqGGPaqkaaGccqWFXoqydaqhaaWcbaGaeGymaedabaGaeiikaGIaemiDaqNaeiykaKcaaOGaeiykaKIaeyOeI0IaeiikaGIae8xSde2aa0baaSqaaiabigdaXaqaaiabcIcaOiabdkhaYjabcMcaPaaakiab=f7aHnaaDaaaleaacqaIXaqmaeaacqGGOaakcqWGZbWCcqGGPaqkaaGccqWFXoqydaqhaaWcbaGaeGOmaidabaGaeiikaGIaemiDaqNaeiykaKcaaOGaeiykaKIaeyOeI0IaeiikaGIae8xSde2aa0baaSqaaiabigdaXaqaaiabcIcaOiabdkhaYjabcMcaPaaakiab=f7aHnaaDaaaleaacqaIYaGmaeaacqGGOaakcqWGZbWCcqGGPaqkaaGccqWFXoqydaqhaaWcbaGaeGymaedabaGaeiikaGIaemiDaqNaeiykaKcaaOGaeiykaKIaey4kaSIaeiikaGIae8xSde2aa0baaSqaaiabigdaXaqaaiabcIcaOiabdkhaYjabcMcaPaaakiab=f7aHnaaDaaaleaacqaIYaGmaeaacqGGOaakcqWGZbWCcqGGPaqkaaGccqWFXoqydaqhaaWcbaGaeGOmaidabaGaeiikaGIaemiDaqNaeiykaKcaaOGaeiykaKIaeyOeI0IaeiikaGIae8xSde2aa0baaSqaaiabikdaYaqaaiabcIcaOiabdkhaYjabcMcaPaaakiab=f7aHnaaDaaaleaacqaIXaqmaeaacqGGOaakcqWGZbWCcqGGPaqkaaGccqWFXoqydaqhaaWcbaGaeGymaedabaGaeiikaGIaemiDaqNaeiykaKcaaOGaeiykaKIaey4kaSIaeiikaGIae8xSde2aa0baaSqaaiabikdaYaqaaiabcIcaOiabdkhaYjabcMcaPaaakiab=f7aHnaaDaaaleaacqaIXaqmaeaacqGGOaakcqWGZbWCcqGGPaqkaaGccqWFXoqydaqhaaWcbaGaeGOmaidabaGaeiikaGIaemiDaqNaeiykaKcaaOGaeiykaKIaey4kaSIaeiikaGIae8xSde2aa0baaSqaaiabikdaYaqaaiabcIcaOiabdkhaYjabcMcaPaaakiab=f7aHnaaDaaaleaacqaIYaGmaeaacqGGOaakcqWGZbWCcqGGPaqkaaGccqWFXoqydaqhaaWcbaGaeGymaedabaGaeiikaGIaemiDaqNaeiykaKcaaOGaeiykaKIaeyOeI0IaeiikaGIae8xSde2aa0baaSqaaiabikdaYaqaaiabcIcaOiabdkhaYjabcMcaPaaakiab=f7aHnaaDaaaleaacqaIYaGmaeaacqGGOaakcqWGZbWCcqGGPaqkaaGccqWFXoqydaqhaaWcbaGaeGOmaidabaGaeiikaGIaemiDaqNaeiykaKcaaOGaeiykaKcaaa@D8C6@ , ..., and so on. Taking constraint conditions into account, we have α1 = -α2, β1 = -β2, and so on. Then, a r = 2 α 1 ( r ) MathType@MTEF@5@5@+=feaafiart1ev1aaatCvAUfKttLearuWrP9MDH5MBPbIqV92AaeXatLxBI9gBaebbfv3ySLgzGueE0jxyaibaieYdOi=BH8vipeYdI8qiW7rqqrFfpeea0xe9Lq=Jc9vqaqpepm0xbbG8FasPYRqj0=yi0lXdbba9pGe9qqFf0dXdHuk9fr=xfr=xfrpiWZqaaeaabiGaaiaacaqabeaabeqacmaaaOqaaiabikdaYGGaciab=f7aHnaaDaaaleaacqaIXaqmaeaacqGGOaakcqWGYbGCcqGGPaqkaaaaaa@3535@ , b rs = 4( α 1 ( r ) α 1 ( s ) MathType@MTEF@5@5@+=feaafiart1ev1aaatCvAUfKttLearuWrP9MDH5MBPbIqV92AaeXatLxBI9gBaebbfv3ySLgzGueE0jxyaibaieYdOi=BH8vipeYdI8qiW7rqqrFfpeea0xe9Lq=Jc9vqaqpepm0xbbG8FasPYRqj0=yi0lXdbba9pGe9qqFf0dXdHuk9fr=xfr=xfrpiWZqaaeaabiGaaiaacaqabeaabeqacmaaaOqaaGGaciab=f7aHnaaDaaaleaacqaIXaqmaeaacqGGOaakcqWGYbGCcqGGPaqkaaGccqWFXoqydaqhaaWcbaGaeGymaedabaGaeiikaGIaem4CamNaeiykaKcaaaaa@3A25@ ), and c rst = 8( α 1 ( r ) α 1 ( s ) α 1 ( t ) MathType@MTEF@5@5@+=feaafiart1ev1aaatCvAUfKttLearuWrP9MDH5MBPbIqV92AaeXatLxBI9gBaebbfv3ySLgzGueE0jxyaibaieYdOi=BH8vipeYdI8qiW7rqqrFfpeea0xe9Lq=Jc9vqaqpepm0xbbG8FasPYRqj0=yi0lXdbba9pGe9qqFf0dXdHuk9fr=xfr=xfrpiWZqaaeaabiGaaiaacaqabeaabeqacmaaaOqaaGGaciab=f7aHnaaDaaaleaacqaIXaqmaeaacqGGOaakcqWGYbGCcqGGPaqkaaGccqWFXoqydaqhaaWcbaGaeGymaedabaGaeiikaGIaem4CamNaeiykaKcaaOGae8xSde2aa0baaSqaaiabigdaXaqaaiabcIcaOiabdsha0jabcMcaPaaaaaa@4009@ ), and so on. With linkage equilibrium, the genetic effects as the partial regression coefficients of the model correspond to the simple regression coefficients. For example, for the substitution effect of locus r, a r , it is the covariance between genotypic value G and substitution effect design variable x F 1 ( r ) MathType@MTEF@5@5@+=feaafiart1ev1aaatCvAUfKttLearuWrP9MDH5MBPbIqV92AaeXatLxBI9gBaebbnrfifHhDYfgasaacH8akY=wiFfYdH8Gipec8Eeeu0xXdbba9frFj0=OqFfea0dXdd9vqai=hGuQ8kuc9pgc9s8qqaq=dirpe0xb9q8qiLsFr0=vr0=vr0dc8meaabaqaciaacaGaaeqabaqabeGadaaakeaacqWG4baEdaqhaaWcbaGaemOray0aaSbaaWqaaiabigdaXaqabaaaleaacqGGOaakcqWGYbGCcqGGPaqkaaaaaa@33AE@ divided by the variance of x F 1 ( r ) MathType@MTEF@5@5@+=feaafiart1ev1aaatCvAUfKttLearuWrP9MDH5MBPbIqV92AaeXatLxBI9gBaebbnrfifHhDYfgasaacH8akY=wiFfYdH8Gipec8Eeeu0xXdbba9frFj0=OqFfea0dXdd9vqai=hGuQ8kuc9pgc9s8qqaq=dirpe0xb9q8qiLsFr0=vr0=vr0dc8meaabaqaciaacaGaaeqabaqabeGadaaakeaacqWG4baEdaqhaaWcbaGaemOray0aaSbaaWqaaiabigdaXaqabaaaleaacqGGOaakcqWGYbGCcqGGPaqkaaaaaa@33AE@ . So in general, we have

a r = E [ ( G μ ) x F 1 ( r ) ] / E ( x F 1 ( r ) 2 ) = E [ G ( z F 1 ( r ) 1 / 2 ) ] / ( 1 / 4 ) = 2 [ E ( G | z F 1 ( r ) = 1 ) E ( G ) ] b r s = E [ ( G μ ) x F 1 ( r ) x F 1 ( s ) ] / [ E ( x F 1 ( r ) 2 ) E ( x F 1 ( s ) 2 ) ] = 4 [ E ( G | z F 1 ( r ) = z F 1 ( s ) = 1 ) E ( G | z F 1 ( r ) = 1 ) E ( G | z F 1 ( s ) = 1 ) + E ( G ) ] c r s t = E [ ( G μ ) x F 1 ( r ) x F 1 ( s ) x F 1 ( t ) ] / [ E ( x F 1 ( r ) 2 ) E ( x F 1 ( s ) 2 ) E ( x F 1 ( t ) 2 ) ] = 8 [ E ( G | z F 1 ( r ) = z F 1 ( s ) = z F 1 ( t ) = 1 ) E ( G | z F 1 ( r ) = z F 1 ( s ) = 1 ) E ( G | z F 1 ( r ) = z F 1 ( t ) = 1 ) E ( G | z F 1 ( s ) = z F 1 ( t ) = 1 ) + E ( G | z F 1 ( r ) = 1 ) + E ( G | z F 1 ( s ) = 1 ) + E ( G | z F 1 ( t ) = 1 ) E ( G ) ] MathType@MTEF@5@5@+=feaafiart1ev1aaatCvAUfKttLearuWrP9MDH5MBPbIqV92AaeXatLxBI9gBaebbnrfifHhDYfgasaacH8akY=wiFfYdH8Gipec8Eeeu0xXdbba9frFj0=OqFfea0dXdd9vqai=hGuQ8kuc9pgc9s8qqaq=dirpe0xb9q8qiLsFr0=vr0=vr0dc8meaabaqaciaacaGaaeqabaqabeGadaaakeaafaqadeacbaaaaaqaaiabdggaHnaaBaaaleaacqWGYbGCaeqaaOGaeyypa0JaemyrauKaei4waSLaeiikaGIaem4raCKaeyOeI0ccciGae8hVd0MaeiykaKIaemiEaG3aa0baaSqaaiabdAeagnaaBaaameaacqaIXaqmaeqaaaWcbaGaeiikaGIaemOCaiNaeiykaKcaaOGaeiyxa0Laei4la8IaemyrauKaeiikaGIaemiEaG3aa0baaSqaaiabdAeagnaaBaaameaacqaIXaqmaeqaaaWcbaGaeiikaGIaemOCaiNaeiykaKIaeGOmaidaaOGaeiykaKcabaGaeyypa0JaemyrauKaei4waSLaem4raCKaeiikaGIaemOEaO3aa0baaSqaaiabdAeagnaaBaaameaacqaIXaqmaeqaaaWcbaGaeiikaGIaemOCaiNaeiykaKcaaOGaeyOeI0IaeGymaeJaei4la8IaeGOmaiJaeiykaKIaeiyxa0Laei4la8IaeiikaGIaeGymaeJaei4la8IaeGinaqJaeiykaKcabaGaeyypa0JaeGOmaiJaei4waSLaemyrauKaeiikaGIaem4raCKaeiiFaWNaemOEaO3aa0baaSqaaiabdAeagnaaBaaameaacqaIXaqmaeqaaaWcbaGaeiikaGIaemOCaiNaeiykaKcaaOGaeyypa0JaeGymaeJaeiykaKIaeyOeI0IaemyrauKaeiikaGIaem4raCKaeiykaKIaeiyxa0fabaGaemOyai2aaSbaaSqaaiabdkhaYjabdohaZbqabaGccqGH9aqpcqWGfbqrcqGGBbWwcqGGOaakcqWGhbWrcqGHsislcqWF8oqBcqGGPaqkcqWG4baEdaqhaaWcbaGaemOray0aaSbaaWqaaiabigdaXaqabaaaleaacqGGOaakcqWGYbGCcqGGPaqkaaGccqWG4baEdaqhaaWcbaGaemOray0aaSbaaWqaaiabigdaXaqabaaaleaacqGGOaakcqWGZbWCcqGGPaqkaaGccqGGDbqxcqGGVaWlcqGGBbWwcqWGfbqrcqGGOaakcqWG4baEdaqhaaWcbaGaemOray0aaSbaaWqaaiabigdaXaqabaaaleaacqGGOaakcqWGYbGCcqGGPaqkcqaIYaGmaaGccqGGPaqkcqWGfbqrcqGGOaakcqWG4baEdaqhaaWcbaGaemOray0aaSbaaWqaaiabigdaXaqabaaaleaacqGGOaakcqWGZbWCcqGGPaqkcqaIYaGmaaGccqGGPaqkcqGGDbqxaqGabeqaaCpabaGaeyypa0JaeGinaqJaei4waSLaemyrauKaeiikaGIaem4raCKaeiiFaWNaemOEaO3aa0baaSqaaiabdAeagnaaBaaameaacqaIXaqmaeqaaaWcbaGaeiikaGIaemOCaiNaeiykaKcaaOGaeyypa0JaemOEaO3aa0baaSqaaiabdAeagnaaBaaameaacqaIXaqmaeqaaaWcbaGaeiikaGIaem4CamNaeiykaKcaaOGaeyypa0JaeGymaeJaeiykaKIaeyOeI0IaemyrauKaeiikaGIaem4raCKaeiiFaWNaemOEaO3aa0baaSqaaiabdAeagnaaBaaameaacqaIXaqmaeqaaaWcbaGaeiikaGIaemOCaiNaeiykaKcaaOGaeyypa0JaeGymaeJaeiykaKcabaGaaCzcaiabgkHiTiabdweafjabcIcaOiabdEeahjabcYha8jabdQha6naaDaaaleaacqWGgbGrdaWgaaadbaGaeGymaedabeaaaSqaaiabcIcaOiabdohaZjabcMcaPaaakiabg2da9iabigdaXiabcMcaPiabgUcaRiabdweafjabcIcaOiabdEeahjabcMcaPiabc2faDbaabaGaem4yam2aaSbaaSqaaiabdkhaYjabdohaZjabdsha0bqabaGccqGH9aqpcqWGfbqrcqGGBbWwcqGGOaakcqWGhbWrcqGHsislcqWF8oqBcqGGPaqkcqWG4baEdaqhaaWcbaGaemOray0aaSbaaWqaaiabigdaXaqabaaaleaacqGGOaakcqWGYbGCcqGGPaqkaaGccqWG4baEdaqhaaWcbaGaemOray0aaSbaaWqaaiabigdaXaqabaaaleaacqGGOaakcqWGZbWCcqGGPaqkaaGccqWG4baEdaqhaaWcbaGaemOray0aaSbaaWqaaiabigdaXaqabaaaleaacqGGOaakcqWG0baDcqGGPaqkaaGccqGGDbqxcqGGVaWlaeGabaWnbiaaxMaacqGGBbWwcqWGfbqrcqGGOaakcqWG4baEdaqhaaWcbaGaemOray0aaSbaaWqaaiabigdaXaqabaaaleaacqGGOaakcqWGYbGCcqGGPaqkcqaIYaGmaaGccqGGPaqkcqWGfbqrcqGGOaakcqWG4baEdaqhaaWcbaGaemOray0aaSbaaWqaaiabigdaXaqabaaaleaacqGGOaakcqWGZbWCcqGGPaqkcqaIYaGmaaGccqGGPaqkcqWGfbqrcqGGOaakcqWG4baEdaqhaaWcbaGaemOray0aaSbaaWqaaiabigdaXaqabaaaleaacqGGOaakcqWG0baDcqGGPaqkcqaIYaGmaaGccqGGPaqkcqGGDbqxaqGabeqaa8qabaGaeyypa0JaeGioaGJaei4waSLaemyrauKaeiikaGIaem4raCKaeiiFaWNaemOEaO3aa0baaSqaaiabdAeagnaaBaaameaacqaIXaqmaeqaaaWcbaGaeiikaGIaemOCaiNaeiykaKcaaOGaeyypa0JaemOEaO3aa0baaSqaaiabdAeagnaaBaaameaacqaIXaqmaeqaaaWcbaGaeiikaGIaem4CamNaeiykaKcaaOGaeyypa0JaemOEaO3aa0baaSqaaiabdAeagnaaBaaameaacqaIXaqmaeqaaaWcbaGaeiikaGIaemiDaqNaeiykaKcaaOGaeyypa0JaeGymaeJaeiykaKcabaGaaCzcaiabgkHiTiabdweafjabcIcaOiabdEeahjabcYha8jabdQha6naaDaaaleaacqWGgbGrdaWgaaadbaGaeGymaedabeaaaSqaaiabcIcaOiabdkhaYjabcMcaPaaakiabg2da9iabdQha6naaDaaaleaacqWGgbGrdaWgaaadbaGaeGymaedabeaaaSqaaiabcIcaOiabdohaZjabcMcaPaaakiabg2da9iabigdaXiabcMcaPaqaaiaaxMaacqGHsislcqWGfbqrcqGGOaakcqWGhbWrcqGG8baFcqWG6bGEdaqhaaWcbaGaemOray0aaSbaaWqaaiabigdaXaqabaaaleaacqGGOaakcqWGYbGCcqGGPaqkaaGccqGH9aqpcqWG6bGEdaqhaaWcbaGaemOray0aaSbaaWqaaiabigdaXaqabaaaleaacqGGOaakcqWG0baDcqGGPaqkaaGccqGH9aqpcqaIXaqmcqGGPaqkaeaacaWLjaGaeyOeI0IaemyrauKaeiikaGIaem4raCKaeiiFaWNaemOEaO3aa0baaSqaaiabdAeagnaaBaaameaacqaIXaqmaeqaaaWcbaGaeiikaGIaem4CamNaeiykaKcaaOGaeyypa0JaemOEaO3aa0baaSqaaiabdAeagnaaBaaameaacqaIXaqmaeqaaaWcbaGaeiikaGIaemiDaqNaeiykaKcaaOGaeyypa0JaeGymaeJaeiykaKcabaGaaCzcaiabgUcaRiabdweafjabcIcaOiabdEeahjabcYha8jabdQha6naaDaaaleaacqWGgbGrdaWgaaadbaGaeGymaedabeaaaSqaaiabcIcaOiabdkhaYjabcMcaPaaakiabg2da9iabigdaXiabcMcaPiabgUcaRiabdweafjabcIcaOiabdEeahjabcYha8jabdQha6naaDaaaleaacqWGgbGrdaWgaaadbaGaeGymaedabeaaaSqaaiabcIcaOiabdohaZjabcMcaPaaakiabg2da9iabigdaXiabcMcaPaqaaiaaxMaacqGHRaWkcqWGfbqrcqGGOaakcqWGhbWrcqGG8baFcqWG6bGEdaqhaaWcbaGaemOray0aaSbaaWqaaiabigdaXaqabaaaleaacqGGOaakcqWG0baDcqGGPaqkaaGccqGH9aqpcqaIXaqmcqGGPaqkcqGHsislcqWGfbqrcqGGOaakcqWGhbWrcqGGPaqkcqGGDbqxaaaaaaa@D9C6@

The orthogonal partition of the genotypic variance in an equilibrium population is

V G = 1 4 r = 1 l a r 2 + 1 4 2 r < s b r s 2 + 1 4 3 r < s < t c r s t 2 + ( 9 ) MathType@MTEF@5@5@+=feaafiart1ev1aaatCvAUfKttLearuWrP9MDH5MBPbIqV92AaeXatLxBI9gBaebbnrfifHhDYfgasaacH8akY=wiFfYdH8Gipec8Eeeu0xXdbba9frFj0=OqFfea0dXdd9vqai=hGuQ8kuc9pgc9s8qqaq=dirpe0xb9q8qiLsFr0=vr0=vr0dc8meaabaqaciaacaGaaeqabaqabeGadaaakeaacqWGwbGvdaWgaaWcbaGaem4raCeabeaakiabg2da9maalaaabaGaeGymaedabaGaeGinaqdaamaaqahabaGaemyyae2aa0baaSqaaiabdkhaYbqaaiabikdaYaaaaeaacqWGYbGCcqGH9aqpcqaIXaqmaeaacqWGSbaBa0GaeyyeIuoakiabgUcaRmaalaaabaGaeGymaedabaGaeGinaqZaaWbaaSqabeaacqaIYaGmaaaaaOWaaabuaeaacqWGIbGydaqhaaWcbaGaemOCaiNaem4CamhabaGaeGOmaidaaaqaaiabdkhaYjabgYda8iabdohaZbqab0GaeyyeIuoakiabgUcaRmaalaaabaGaeGymaedabaGaeGinaqZaaWbaaSqabeaacqaIZaWmaaaaaOWaaabuaeaacqWGJbWydaqhaaWcbaGaemOCaiNaem4CamNaemiDaqhabaGaeGOmaidaaaqaaiabdkhaYjabgYda8iabdohaZjabgYda8iabdsha0bqab0GaeyyeIuoakiabgUcaRiabl+UimjaaxMaacaWLjaWaaeWaaeaacqaI5aqoaiaawIcacaGLPaaaaaa@6623@

As noted above, linkage disequilibrium does not change the values of genetic effects in a full model. The model parameters are still the same as those defined in the equilibrium population. However, in this case there is a simple relationship between the substitution effects at multiple loci and marginal means of genotypic values in a disequilibrium population [18]. This is noted here. Let P r s = P { z F 1 ( r ) = z F 1 ( s ) = 1 } MathType@MTEF@5@5@+=feaafiart1ev1aaatCvAUfKttLearuWrP9MDH5MBPbIqV92AaeXatLxBI9gBaebbnrfifHhDYfgasaacH8akY=wiFfYdH8Gipec8Eeeu0xXdbba9frFj0=OqFfea0dXdd9vqai=hGuQ8kuc9pgc9s8qqaq=dirpe0xb9q8qiLsFr0=vr0=vr0dc8meaabaqaciaacaGaaeqabaqabeGadaaakeaacqWGqbaudaWgaaWcbaGaemOCaiNaem4Camhabeaakiabg2da9iabdcfaqjabcUha7jabdQha6naaDaaaleaacqWGgbGrdaWgaaadbaGaeGymaedabeaaaSqaaiabcIcaOiabdkhaYjabcMcaPaaakiabg2da9iabdQha6naaDaaaleaacqWGgbGrdaWgaaadbaGaeGymaedabeaaaSqaaiabcIcaOiabdohaZjabcMcaPaaakiabg2da9iabigdaXiabc2ha9baa@4734@ , and the digenic linkage disequilibrium be defined as

D r s = Cov( z F 1 ( r ) , z F 1 ( s ) ) = E ( x F 1 ( r ) x F 1 ( s ) ) MathType@MTEF@5@5@+=feaafiart1ev1aaatCvAUfKttLearuWrP9MDH5MBPbIqV92AaeXatLxBI9gBaebbnrfifHhDYfgasaacH8akY=wiFfYdH8Gipec8Eeeu0xXdbba9frFj0=OqFfea0dXdd9vqai=hGuQ8kuc9pgc9s8qqaq=dirpe0xb9q8qiLsFr0=vr0=vr0dc8meaabaqaciaacaGaaeqabaqabeGadaaakeaacqWGebardaWgaaWcbaGaemOCaiNaem4Camhabeaakiabg2da9iabboeadjabb+gaVjabbAha2jabbIcaOiabdQha6naaDaaaleaacqWGgbGrdaWgaaadbaGaeGymaedabeaaaSqaaiabcIcaOiabdkhaYjabcMcaPaaakiabcYcaSiabdQha6naaDaaaleaacqWGgbGrdaWgaaadbaGaeGymaedabeaaaSqaaiabcIcaOiabdohaZjabcMcaPaaakiabcMcaPiabg2da9iabdweafjabcIcaOiabdIha4naaDaaaleaacqWGgbGrdaWgaaadbaGaeGymaedabeaaaSqaaiabcIcaOiabdkhaYjabcMcaPaaakiabdIha4naaDaaaleaacqWGgbGrdaWgaaadbaGaeGymaedabeaaaSqaaiabcIcaOiabdohaZjabcMcaPaaakiabcMcaPaaa@5852@

Ignoring trigenic and higher order linkage disequilibria, we have

E [ ( G μ ) x F 1 ( r ) ] = 1 4 a r + r ' r D r r ' a r ' MathType@MTEF@5@5@+=feaafiart1ev1aaatCvAUfKttLearuWrP9MDH5MBPbIqV92AaeXatLxBI9gBaebbnrfifHhDYfgasaacH8akY=wiFfYdH8Gipec8Eeeu0xXdbba9frFj0=OqFfea0dXdd9vqai=hGuQ8kuc9pgc9s8qqaq=dirpe0xb9q8qiLsFr0=vr0=vr0dc8meaabaqaciaacaGaaeqabaqabeGadaaakeaacqWGfbqrdaWadaqaaiabcIcaOiabdEeahjabgkHiTGGaciab=X7aTjabcMcaPiabdIha4naaDaaaleaacqWGgbGrdaWgaaadbaGaeGymaedabeaaaSqaaiabcIcaOiabdkhaYjabcMcaPaaaaOGaay5waiaaw2faaiabg2da9maalaaabaGaeGymaedabaGaeGinaqdaaiabdggaHnaaBaaaleaacqWGYbGCaeqaaOGaey4kaSYaaabuaeaacqWGebardaWgaaWcbaGaemOCaiNaemOCaiNaei4jaCcabeaakiabdggaHnaaBaaaleaacqWGYbGCcqGGNaWjaeqaaaqaaiabdkhaYjabcEcaNiabgcMi5kabdkhaYbqab0GaeyyeIuoaaaa@533C@

E [ ( G μ ) x F 1 ( r ) x F 1 ( s ) ] = 1 4 2 b r s MathType@MTEF@5@5@+=feaafiart1ev1aaatCvAUfKttLearuWrP9MDH5MBPbIqV92AaeXatLxBI9gBaebbnrfifHhDYfgasaacH8akY=wiFfYdH8Gipec8Eeeu0xXdbba9frFj0=OqFfea0dXdd9vqai=hGuQ8kuc9pgc9s8qqaq=dirpe0xb9q8qiLsFr0=vr0=vr0dc8meaabaqaciaacaGaaeqabaqabeGadaaakeaacqWGfbqrcqGGBbWwcqGGOaakcqWGhbWrcqGHsisliiGacqWF8oqBcqGGPaqkcqWG4baEdaqhaaWcbaGaemOray0aaSbaaWqaaiabigdaXaqabaaaleaacqGGOaakcqWGYbGCcqGGPaqkaaGccqWG4baEdaqhaaWcbaGaemOray0aaSbaaWqaaiabigdaXaqabaaaleaacqGGOaakcqWGZbWCcqGGPaqkaaGccqGGDbqxcqGH9aqpdaWcaaqaaiabigdaXaqaaiabisda0maaCaaaleqabaGaeGOmaidaaaaakiabdkgaInaaBaaaleaacqWGYbGCcqWGZbWCaeqaaaaa@4C46@

Therefore, the digenic interaction effects can be expressed as

b r s = 4 2 [ P r s E ( G | z F 1 ( r ) = z F 1 ( s ) = 1 ) D r s μ ] 4 [ E ( G | z F 1 ( r ) = 1 ) + E ( G | z F 1 ( s ) = 1 ) E ( G ) ] MathType@MTEF@5@5@+=feaafiart1ev1aaatCvAUfKttLearuWrP9MDH5MBPbIqV92AaeXatLxBI9gBaebbnrfifHhDYfgasaacH8akY=wiFfYdH8Gipec8Eeeu0xXdbba9frFj0=OqFfea0dXdd9vqai=hGuQ8kuc9pgc9s8qqaq=dirpe0xb9q8qiLsFr0=vr0=vr0dc8meaabaqaciaacaGaaeqabaqabeGadaaakqGabeqaaaWabaGaemOyai2aaSbaaSqaaiabdkhaYjabdohaZbqabaGccqGH9aqpcqaI0aandaahaaWcbeqaaiabikdaYaaakiabcUfaBjabdcfaqnaaBaaaleaacqWGYbGCcqWGZbWCaeqaaOGaemyrauKaeiikaGIaem4raCKaeiiFaWNaemOEaO3aa0baaSqaaiabdAeagnaaBaaameaacqaIXaqmaeqaaaWcbaGaeiikaGIaemOCaiNaeiykaKcaaOGaeyypa0JaemOEaO3aa0baaSqaaiabdAeagnaaBaaameaacqaIXaqmaeqaaaWcbaGaeiikaGIaem4CamNaeiykaKcaaOGaeyypa0JaeGymaeJaeiykaKIaeyOeI0Iaemiraq0aaSbaaSqaaiabdkhaYjabdohaZbqabaacciGccqWF8oqBcqGGDbqxaeaacaWLjaGaeyOeI0IaeGinaqJaei4waSLaemyrauKaeiikaGIaem4raCKaeiiFaWNaemOEaO3aa0baaSqaaiabdAeagnaaBaaameaacqaIXaqmaeqaaaWcbaGaeiikaGIaemOCaiNaeiykaKcaaOGaeyypa0JaeGymaeJaeiykaKIaey4kaSIaemyrauKaeiikaGIaem4raCKaeiiFaWNaemOEaO3aa0baaSqaaiabdAeagnaaBaaameaacqaIXaqmaeqaaaWcbaGaeiikaGIaem4CamNaeiykaKcaaOGaeyypa0JaeGymaeJaeiykaKIaeyOeI0IaemyrauKaeiikaGIaem4raCKaeiykaKIaeiyxa0faaaa@7FB5@

Then the substitution effects can be expressed as a function of marginal means in the disequilibrium population as

( a 1 a 2 a l ) = ( I + 4 D ) 1 ( 2 q ) MathType@MTEF@5@5@+=feaafiart1ev1aaatCvAUfKttLearuWrP9MDH5MBPbIqV92AaeXatLxBI9gBaebbnrfifHhDYfgasaacH8akY=wiFfYdH8Gipec8Eeeu0xXdbba9frFj0=OqFfea0dXdd9vqai=hGuQ8kuc9pgc9s8qqaq=dirpe0xb9q8qiLsFr0=vr0=vr0dc8meaabaqaciaacaGaaeqabaqabeGadaaakeaadaqadaqaauaabeqaeeaaaaqaaiabdggaHnaaBaaaleaacqaIXaqmaeqaaaGcbaGaemyyae2aaSbaaSqaaiabikdaYaqabaaakeaacqWIUlstaeaacqWGHbqydaWgaaWcbaGaemiBaWgabeaaaaaakiaawIcacaGLPaaacqGH9aqpcqGGOaakcqWGjbqscqGHRaWkcqaI0aancqWGebarcqGGPaqkdaahaaWcbeqaaiabgkHiTiabigdaXaaakiabcIcaOiabikdaYmXvP5wqSXMqHnxAJn0BKvguHDwzZbqegyvzYrwyUfgaiqqacaWFXbaceaGaa4xkaaaa@4EC7@

where I is a m × m identity matrix, D = (D ij )m × mwith all diagonal elements being zeros;

q = (q1, q2, ..., q m ,)T, with q i = E(G| z F 1 ( i ) MathType@MTEF@5@5@+=feaafiart1ev1aaatCvAUfKttLearuWrP9MDH5MBPbIqV92AaeXatLxBI9gBaebbnrfifHhDYfgasaacH8akY=wiFfYdH8Gipec8Eeeu0xXdbba9frFj0=OqFfea0dXdd9vqai=hGuQ8kuc9pgc9s8qqaq=dirpe0xb9q8qiLsFr0=vr0=vr0dc8meaabaqaciaacaGaaeqabaqabeGadaaakeaacqWG6bGEdaqhaaWcbaGaemOray0aaSbaaWqaaiabigdaXaqabaaaleaacqGGOaakcqWGPbqAcqGGPaqkaaaaaa@33A0@ = 1) - E(G), for i = 1, 2, ..., m.

The partition of genetic variance with linkage disequilibrium is complex. Here we give details of the partition of genotypic variance for the following model

G = μ + r = 1 m a r x F 1 ( r ) + r < s b r s ( x F 1 ( r ) x F 1 ( s ) ) ( 10 ) MathType@MTEF@5@5@+=feaafiart1ev1aaatCvAUfKttLearuWrP9MDH5MBPbIqV92AaeXatLxBI9gBaebbnrfifHhDYfgasaacH8akY=wiFfYdH8Gipec8Eeeu0xXdbba9frFj0=OqFfea0dXdd9vqai=hGuQ8kuc9pgc9s8qqaq=dirpe0xb9q8qiLsFr0=vr0=vr0dc8meaabaqaciaacaGaaeqabaqabeGadaaakeaacqWGhbWrcqGH9aqpiiGacqWF8oqBcqGHRaWkdaaeWbqaaiabdggaHnaaBaaaleaacqWGYbGCaeqaaOGaemiEaG3aa0baaSqaaiabdAeagnaaBaaameaacqaIXaqmaeqaaaWcbaGaeiikaGIaemOCaiNaeiykaKcaaaqaaiabdkhaYjabg2da9iabigdaXaqaaiabd2gaTbqdcqGHris5aOGaey4kaSYaaabuaeaacqWGIbGydaWgaaWcbaGaemOCaiNaem4CamhabeaaaeaacqWGYbGCcqGH8aapcqWGZbWCaeqaniabggHiLdGccqGGOaakcqWG4baEdaqhaaWcbaGaemOray0aaSbaaWqaaiabigdaXaqabaaaleaacqGGOaakcqWGYbGCcqGGPaqkaaGccqWG4baEdaqhaaWcbaGaemOray0aaSbaaWqaaiabigdaXaqabaaaleaacqGGOaakcqWGZbWCcqGGPaqkaaGccqGGPaqkcaWLjaGaaCzcamaabmaabaGaeGymaeJaeGimaadacaGLOaGaayzkaaaaaa@620F@

Let x r = x F 1 ( r ) MathType@MTEF@5@5@+=feaafiart1ev1aaatCvAUfKttLearuWrP9MDH5MBPbIqV92AaeXatLxBI9gBaebbnrfifHhDYfgasaacH8akY=wiFfYdH8Gipec8Eeeu0xXdbba9frFj0=OqFfea0dXdd9vqai=hGuQ8kuc9pgc9s8qqaq=dirpe0xb9q8qiLsFr0=vr0=vr0dc8meaabaqaciaacaGaaeqabaqabeGadaaakeaacqWG4baEdaqhaaWcbaGaemOray0aaSbaaWqaaiabigdaXaqabaaaleaacqGGOaakcqWGYbGCcqGGPaqkaaaaaa@33AE@ and x s = x F 1 ( s ) MathType@MTEF@5@5@+=feaafiart1ev1aaatCvAUfKttLearuWrP9MDH5MBPbIqV92AaeXatLxBI9gBaebbnrfifHhDYfgasaacH8akY=wiFfYdH8Gipec8Eeeu0xXdbba9frFj0=OqFfea0dXdd9vqai=hGuQ8kuc9pgc9s8qqaq=dirpe0xb9q8qiLsFr0=vr0=vr0dc8meaabaqaciaacaGaaeqabaqabeGadaaakeaacqWG4baEdaqhaaWcbaGaemOray0aaSbaaWqaaiabigdaXaqabaaaleaacqGGOaakcqWGZbWCcqGGPaqkaaaaaa@33B0@ to simplify the notation here. The genotypic variance is

V G = V ( r a r x r ) + 2 Cov( r a r x r , r < s b r s x r x s ) + V ( r < s b r s x r x s ) = r a r 2 p r ( 1 p r ) + 2 r < s a r a s D r s + 2 r < s [ a r b r s ( 1 2 p r ) D r s + a s b r s ( 1 2 p s ) D r s ] + 2 r < s < t ( a r b s t + a s b r t + a t b r s ) D r s t + r < s b r s 2 [ ( 1 2 p r ) ( 1 2 p s ) D r s + p r ( 1 p r ) p s ( 1 p s ) D r s 2 ] + 2 r < s < t { b r s b r t [ ( 1 2 p r ) D r s t p r ( 1 p r ) D s t D r s D r t ] + b r s b s t [ ( 1 2 p s ) D r s t + p s ( 1 p s ) D r t D r s D s t ] + b r t b s t [ ( 1 2 p t ) D r s t + p t ( 1 p t ) D r s D r t D s t ] } + 2 r < s < t < u [ b r t b s u ( D r s t u D r t D s u ) + b r u b s t ( D r s t u D r u D s t ) + b r s b t u ( D r s t u D r s D t u ) ] ( 11 ) MathType@MTEF@5@5@+=feaafiart1ev1aaatCvAUfKttLearuWrP9MDH5MBPbIqV92AaeXatLxBI9gBaebbnrfifHhDYfgasaacH8akY=wiFfYdH8Gipec8Eeeu0xXdbba9frFj0=OqFfea0dXdd9vqai=hGuQ8kuc9pgc9s8qqaq=dirpe0xb9q8qiLsFr0=vr0=vr0dc8meaabaqaciaacaGaaeqabaqabeGadaaakqaabeqaaiabdAfawnaaBaaaleaacqWGhbWraeqaaOGaeyypa0JaemOvayLaeiikaGYaaabuaeaacqWGHbqydaWgaaWcbaGaemOCaihabeaaaeaacqWGYbGCaeqaniabggHiLdGccqWG4baEdaWgaaWcbaGaemOCaihabeaakiabcMcaPiabgUcaRiabikdaYiabboeadjabb+gaVjabbAha2jabbIcaOmaaqafabaGaemyyae2aaSbaaSqaaiabdkhaYbqabaGccqWG4baEdaWgaaWcbaGaemOCaihabeaakiabcYcaSmaaqafabaGaemOyai2aaSbaaSqaaiabdkhaYjabdohaZbqabaGccqWG4baEdaWgaaWcbaGaemOCaihabeaakiabdIha4naaBaaaleaacqWGZbWCaeqaaOGaeiykaKcaleaacqWGYbGCcqGH8aapcqWGZbWCaeqaniabggHiLdaaleaacqWGYbGCaeqaniabggHiLdaakeaacqGHRaWkcqqGwbGvcqGGOaakdaaeqbqaaiabdkgaInaaBaaaleaacqWGYbGCcqWGZbWCaeqaaOGaemiEaG3aaSbaaSqaaiabdkhaYbqabaGccqWG4baEdaWgaaWcbaGaem4CamhabeaakiabcMcaPaWcbaGaemOCaiNaeyipaWJaem4CamhabeqdcqGHris5aaGcbaGaeyypa0ZaaabuaeaacqWGHbqydaqhaaWcbaGaemOCaihabaGaeGOmaidaaOGaemiCaa3aaSbaaSqaaiabdkhaYbqabaGccqGGOaakcqaIXaqmcqGHsislcqWGWbaCdaWgaaWcbaGaemOCaihabeaakiabcMcaPaWcbaGaemOCaihabeqdcqGHris5aOGaey4kaSIaeGOmaiZaaabuaeaacqWGHbqydaWgaaWcbaGaemOCaihabeaakiabdggaHnaaBaaaleaacqWGZbWCaeqaaOGaemiraq0aaSbaaSqaaiabdkhaYjabdohaZbqabaaabaGaemOCaiNaeyipaWJaem4CamhabeqdcqGHris5aaGcbaGaey4kaSIaeGOmaiZaaabuaeaacqGGBbWwcqWGHbqydaWgaaWcbaGaemOCaihabeaakiabdkgaInaaBaaaleaacqWGYbGCcqWGZbWCaeqaaOGaeiikaGIaeGymaeJaeyOeI0IaeGOmaiJaemiCaa3aaSbaaSqaaiabdkhaYbqabaGccqGGPaqkcqWGebardaWgaaWcbaGaemOCaiNaem4CamhabeaakiabgUcaRiabdggaHnaaBaaaleaacqWGZbWCaeqaaOGaemOyai2aaSbaaSqaaiabdkhaYjabdohaZbqabaGccqGGOaakcqaIXaqmcqGHsislcqaIYaGmcqWGWbaCdaWgaaWcbaGaem4CamhabeaakiabcMcaPiabdseaenaaBaaaleaacqWGYbGCcqWGZbWCaeqaaOGaeiyxa0faleaacqWGYbGCcqGH8aapcqWGZbWCaeqaniabggHiLdaakeaacqGHRaWkcqaIYaGmdaaeqbqaaiabcIcaOiabdggaHnaaBaaaleaacqWGYbGCaeqaaOGaemOyai2aaSbaaSqaaiabdohaZjabdsha0bqabaGccqGHRaWkcqWGHbqydaWgaaWcbaGaem4CamhabeaakiabdkgaInaaBaaaleaacqWGYbGCcqWG0baDaeqaaOGaey4kaSIaemyyae2aaSbaaSqaaiabdsha0bqabaGccqWGIbGydaWgaaWcbaGaemOCaiNaem4CamhabeaakiabcMcaPiabdseaenaaBaaaleaacqWGYbGCcqWGZbWCcqWG0baDaeqaaaqaaiabdkhaYjabgYda8iabdohaZjabgYda8iabdsha0bqab0GaeyyeIuoaaOqaaiabgUcaRmaaqafabaGaemOyai2aa0baaSqaaiabdkhaYjabdohaZbqaaiabikdaYaaaaeaacqWGYbGCcqGH8aapcqWGZbWCaeqaniabggHiLdGcdaWabaqaaiabcIcaOiabigdaXiabgkHiTiabikdaYiabdchaWnaaBaaaleaacqWGYbGCaeqaaOGaeiykaKIaeiikaGIaeGymaeJaeyOeI0IaeGOmaiJaemiCaa3aaSbaaSqaaiabdohaZbqabaGccqGGPaqkcqWGebardaWgaaWcbaGaemOCaiNaem4CamhabeaaaOGaay5waaaabaWaamGaaeaacqGHRaWkcqWGWbaCdaWgaaWcbaGaemOCaihabeaakiabcIcaOiabigdaXiabgkHiTiabdchaWnaaBaaaleaacqWGYbGCaeqaaOGaeiykaKIaemiCaa3aaSbaaSqaaiabdohaZbqabaGccqGGOaakcqaIXaqmcqGHsislcqWGWbaCdaWgaaWcbaGaem4CamhabeaakiabcMcaPiabgkHiTiabdseaenaaDaaaleaacqWGYbGCcqWGZbWCaeaacqaIYaGmaaaakiaaw2faaaqaaiabgUcaRiabikdaYmaaqafabaWaaiqaaeaacqWGIbGydaWgaaWcbaGaemOCaiNaem4CamhabeaakiabdkgaInaaBaaaleaacqWGYbGCcqWG0baDaeqaaOGaei4waSLaeiikaGIaeGymaeJaeyOeI0IaeGOmaiJaemiCaa3aaSbaaSqaaiabdkhaYbqabaGccqGGPaqkcqWGebardaWgaaWcbaGaemOCaiNaem4CamNaemiDaqhabeaaaOGaay5EaaaaleaacqWGYbGCcqGH8aapcqWGZbWCcqGH8aapcqWG0baDaeqaniabggHiLdaakeaacqGHsislcqWGWbaCdaWgaaWcbaGaemOCaihabeaakiabcIcaOiabigdaXiabgkHiTiabdchaWnaaBaaaleaacqWGYbGCaeqaaOGaeiykaKIaemiraq0aaSbaaSqaaiabdohaZjabdsha0bqabaGccqGHsislcqWGebardaWgaaWcbaGaemOCaiNaem4CamhabeaakiabdseaenaaBaaaleaacqWGYbGCcqWG0baDaeqaaOGaeiyxa0fabaGaey4kaSIaemOyai2aaSbaaSqaaiabdkhaYjabdohaZbqabaGccqWGIbGydaWgaaWcbaGaem4CamNaemiDaqhabeaakiabcUfaBjabcIcaOiabigdaXiabgkHiTiabikdaYiabdchaWnaaBaaaleaacqWGZbWCaeqaaOGaeiykaKIaemiraq0aaSbaaSqaaiabdkhaYjabdohaZjabdsha0bqabaGccqGHRaWkcqWGWbaCdaWgaaWcbaGaem4CamhabeaakiabcIcaOiabigdaXiabgkHiTiabdchaWnaaBaaaleaacqWGZbWCaeqaaOGaeiykaKIaemiraq0aaSbaaSqaaiabdkhaYjabdsha0bqabaGccqGHsislcqWGebardaWgaaWcbaGaemOCaiNaem4CamhabeaakiabdseaenaaBaaaleaacqWGZbWCcqWG0baDaeqaaOGaeiyxa0fabaGaey4kaSIaemOyai2aaSbaaSqaaiabdkhaYjabdsha0bqabaGccqWGIbGydaWgaaWcbaGaem4CamNaemiDaqhabeaakiabcUfaBjabcIcaOiabigdaXiabgkHiTiabikdaYiabdchaWnaaBaaaleaacqWG0baDaeqaaOGaeiykaKIaemiraq0aaSbaaSqaaiabdkhaYjabdohaZjabdsha0bqabaaakeaadaGacaqaaiabgUcaRiabdchaWnaaBaaaleaacqWG0baDaeqaaOGaeiikaGIaeGymaeJaeyOeI0IaemiCaa3aaSbaaSqaaiabdsha0bqabaGccqGGPaqkcqWGebardaWgaaWcbaGaemOCaiNaem4CamhabeaakiabgkHiTiabdseaenaaBaaaleaacqWGYbGCcqWG0baDaeqaaOGaemiraq0aaSbaaSqaaiabdohaZjabdsha0bqabaGccqGGDbqxaiaaw2haaaqaaiabgUcaRiabikdaYmaaqafabaGaei4waSLaemOyai2aaSbaaSqaaiabdkhaYjabdsha0bqabaGccqWGIbGydaWgaaWcbaGaem4CamNaemyDauhabeaakiabcIcaOiabdseaenaaBaaaleaacqWGYbGCcqWGZbWCcqWG0baDcqWG1bqDaeqaaOGaeyOeI0Iaemiraq0aaSbaaSqaaiabdkhaYjabdsha0bqabaaabaGaemOCaiNaeyipaWJaem4CamNaeyipaWJaemiDaqNaeyipaWJaemyDauhabeqdcqGHris5aOGaemiraq0aaSbaaSqaaiabdohaZjabdwha1bqabaGccqGGPaqkaeaacqGHRaWkcqWGIbGydaWgaaWcbaGaemOCaiNaemyDauhabeaakiabdkgaInaaBaaaleaacqWGZbWCcqWG0baDaeqaaOGaeiikaGIaemiraq0aaSbaaSqaaiabdkhaYjabdohaZjabdsha0jabdwha1bqabaGccqGHsislcqWGebardaWgaaWcbaGaemOCaiNaemyDauhabeaakiabdseaenaaBaaaleaacqWGZbWCcqWG0baDaeqaaOGaeiykaKcabaGaey4kaSIaemOyai2aaSbaaSqaaiabdkhaYjabdohaZbqabaGccqWGIbGydaWgaaWcbaGaemiDaqNaemyDauhabeaakiabcIcaOiabdseaenaaBaaaleaacqWGYbGCcqWGZbWCcqWG0baDcqWG1bqDaeqaaOGaeyOeI0Iaemiraq0aaSbaaSqaaiabdkhaYjabdohaZbqabaGccqWGebardaWgaaWcbaGaemiDaqNaemyDauhabeaakiabcMcaPiabc2faDjaaxMaacaWLjaWaaeWaaeaacqaIXaqmcqaIXaqmaiaawIcacaGLPaaaaaaa@32E1@

where

D rst = E(x r x s x t ) and D rstu = E(x r x s x t x u )

are three locus and four locus linkage disequilibria. This is a general partition of genetic variance for a haploid model.

For the backcross population, it can be shown that D rst = 0 (see Appendix D for both backcross and F2 populations) and D rstu = D rs D tu for loci r, s, t and u in this order under the assumption of no crossing-over interference. Also with this assumption, D rt = 4D rs D st and D rs = (1 - 2λ rs )/4, where λ rs is the recombination frequency between loci r and s. Since, p r = p s = 1/2, the variance becomes

V G = 1 4 r a r 2 + 2 r < s a r a s D r s + 1 16 r < s b r s 2 ( 1 16 D r s 2 ) + 1 2 r < s < t [ b r s b r t ( 1 16 D r s 2 ) D s t + b r t b s t ( 1 16 D s t 2 ) D r s ] + 2 r < s < t < u ( b r t b s u + b r u b s t ) ( 1 16 D s t 2 ) D r s D t u ( 12 ) MathType@MTEF@5@5@+=feaafiart1ev1aaatCvAUfKttLearuWrP9MDH5MBPbIqV92AaeXatLxBI9gBaebbnrfifHhDYfgasaacH8akY=wiFfYdH8Gipec8Eeeu0xXdbba9frFj0=OqFfea0dXdd9vqai=hGuQ8kuc9pgc9s8qqaq=dirpe0xb9q8qiLsFr0=vr0=vr0dc8meaabaqaciaacaGaaeqabaqabeGadaaakeaafaqaaeGbdaaaaeaacqWGwbGvdaWgaaWcbaGaem4raCeabeaakiabg2da9aqaamaalaaabaGaeGymaedabaGaeGinaqdaamaaqafabaGaemyyae2aa0baaSqaaiabdkhaYbqaaiabikdaYaaakiabgUcaRiabikdaYmaaqafabaGaemyyae2aaSbaaSqaaiabdkhaYbqabaGccqWGHbqydaWgaaWcbaGaem4CamhabeaakiabdseaenaaBaaaleaacqWGYbGCcqWGZbWCaeqaaOGaey4kaScaleaacqWGYbGCcqGH8aapcqWGZbWCaeqaniabggHiLdaaleaacqWGYbGCaeqaniabggHiLdaakeaaaeaaaeaadaWcaaqaaiabigdaXaqaaiabigdaXiabiAda2aaadaaeqbqaaiabdkgaInaaDaaaleaacqWGYbGCcqWGZbWCaeaacqaIYaGmaaGccqGGOaakcqaIXaqmcqGHsislcqaIXaqmcqaI2aGncqWGebardaqhaaWcbaGaemOCaiNaem4CamhabaGaeGOmaidaaOGaeiykaKcaleaacqWGYbGCcqGH8aapcqWGZbWCaeqaniabggHiLdaakeaaaeaaaeaacqGHRaWkdaWcaaqaaiabigdaXaqaaiabikdaYaaadaaeqbqaamaadeaabaGaemOyai2aaSbaaSqaaiabdkhaYjabdohaZbqabaGccqWGIbGydaWgaaWcbaGaemOCaiNaemiDaqhabeaakiabcIcaOiabigdaXiabgkHiTiabigdaXiabiAda2iabdseaenaaDaaaleaacqWGYbGCcqWGZbWCaeaacqaIYaGmaaGccqGGPaqkcqWGebardaWgaaWcbaGaem4CamNaemiDaqhabeaaaOGaay5waaaaleaacqWGYbGCcqGH8aapcqWGZbWCcqGH8aapcqWG0baDaeqaniabggHiLdaakeaaaeaaaeaadaWacaqaaiabgUcaRiabdkgaInaaBaaaleaacqWGYbGCcqWG0baDaeqaaOGaemOyai2aaSbaaSqaaiabdohaZjabdsha0bqabaGccqGGOaakcqaIXaqmcqGHsislcqaIXaqmcqaI2aGncqWGebardaqhaaWcbaGaem4CamNaemiDaqhabaGaeGOmaidaaOGaeiykaKIaemiraq0aaSbaaSqaaiabdkhaYjabdohaZbqabaaakiaaw2faaaqaaaqaaaqaaiabgUcaRiabikdaYmaaqafabaGaeiikaGIaemOyai2aaSbaaSqaaiabdkhaYjabdsha0bqabaGccqWGIbGydaWgaaWcbaGaem4CamNaemyDauhabeaakiabgUcaRiabdkgaInaaBaaaleaacqWGYbGCcqWG1bqDaeqaaOGaemOyai2aaSbaaSqaaiabdohaZjabdsha0bqabaGccqGGPaqkaSqaaiabdkhaYjabgYda8iabdohaZjabgYda8iabdsha0jabgYda8iabdwha1bqab0GaeyyeIuoaaOqaaaqaaaqaaiabcIcaOiabigdaXiabgkHiTiabigdaXiabiAda2iabdseaenaaDaaaleaacqWGZbWCcqWG0baDaeaacqaIYaGmaaGccqGGPaqkcqWGebardaWgaaWcbaGaemOCaiNaem4CamhabeaakiabdseaenaaBaaaleaacqWG0baDcqWG1bqDaeqaaaGcbaGaaCzcaiaaxMaadaqadaqaaiabigdaXiabikdaYaGaayjkaiaawMcaaaaaaaa@DAF7@

In this partition of variance, the first summation term is the genetic variance due to the substitution effect of each QTL, the second summation term is the covariance between substitution effects of QTL pairs due to linkage disequilibrium, the third summation term is the genetic variance due to epistatic effects of QTL, and the fourth and fifth summation terms are the covariance between different epistatic effects of QTL due to linkage disequilibrium. There is no covariance between the main substitution effects and epistatic effects (see also [19]).

For a backcross population, the genetic interpretation of the substitution effect a r depends on which parental line is backcrossed. In one backcross AA × Aa, the substitution effect is traditionally defined as the difference between the additive effect and dominance effects, and in the other backcross Aa × aa, it is the sum of the additive and dominance effects. Only with both backcrosses, can one estimate both additive and dominance effects separately (for example [20]).

The same model also applies to a recombinant inbred population which is another very popular experimental design for QTL mapping study. For a recombinant inbred population, the substitution effects of QTL are the additive effects and the epistatic effects are the additive × additive interaction effects. Statistical methods to map QTL and to estimate various components of the genetic variance due to QTL including epistasis has been developed through the maximum likelihood approach [19, 21]. In a few cases where the method was applied, we estimated, for the first time, how the quantitative genetic variance was partitioned into various components in designed experimental populations. For example, Weber et al. [22] reported the result of QTL mapping for wing shape on the third chromosome of Drosophila melanogaster from a cross of divergent selection lines. From 519 recombinant inbred lines, 11 QTL were mapped on the third chromosome. Nine QTL pairs showed significant epistatic effects. The total genetic variance amounts to 95.5% of the phenotypic variance in the recombinant inbred lines with phenotypes measured and averaged over 50 male flies for each recombinant inbred line. The partition of the genetic variance is as follows (see Table 6 and 7 of [22]): 27.4% due to the variances of additive effects (equivalent to the first summation term of (12)); 67.3% due to the covariances between additive effects (the second summation term); 7.2% due to the variances of epistatic effects (the third summation term); and -6.0% due to the covariances between epistatic effects (the fourth and fifth summation terms). The covariances between additive and epistatic effects, expected to be 0, account for -0.4% due to sampling. Similar kind of partition of the genetic variance is also observed in a group of 701 second chromosome recombinant inbred lines from a cross of the same divergent selection lines (see Table 4 and 5 of [23]). See also [20] for another example.

2. F2 population

F2 is created from a cross between pairs of F1 individuals. It is also a very popular experimental design for QTL mapping study. The advantage of this design is that both additive and dominance effects of a QTL can be estimated as well as various epistatic effects. The design also has more statistical power for QTL detection as compared to a backcross population. In a random-mating F2 population, there are only two alleles at each segregating locus and allelic frequencies are expected to be one half if there is no segregation distortion.

Let us consider only two loci first. Let A and a denote the two alleles at locus 1, and B and b at locus 2. In this case, x M 1 ( 1 ) = x M 2 ( 1 ) MathType@MTEF@5@5@+=feaafiart1ev1aaatCvAUfKttLearuWrP9MDH5MBPbIqV92AaeXatLxBI9gBaebbnrfifHhDYfgasaacH8akY=wiFfYdH8Gipec8Eeeu0xXdbba9frFj0=OqFfea0dXdd9vqai=hGuQ8kuc9pgc9s8qqaq=dirpe0xb9q8qiLsFr0=vr0=vr0dc8meaabaqaciaacaGaaeqabaqabeGadaaakeaacqWG4baEdaqhaaWcbaGaemyta00aaSbaaWqaaiabigdaXaqabaaaleaacqGGOaakcqaIXaqmcqGGPaqkaaGccqGH9aqpcqGHsislcqWG4baEdaqhaaWcbaGaemyta00aaSbaaWqaaiabikdaYaqabaaaleaacqGGOaakcqaIXaqmcqGGPaqkaaaaaa@3BD1@ and x F 1 ( 1 ) = x F 2 ( 1 ) MathType@MTEF@5@5@+=feaafiart1ev1aaatCvAUfKttLearuWrP9MDH5MBPbIqV92AaeXatLxBI9gBaebbnrfifHhDYfgasaacH8akY=wiFfYdH8Gipec8Eeeu0xXdbba9frFj0=OqFfea0dXdd9vqai=hGuQ8kuc9pgc9s8qqaq=dirpe0xb9q8qiLsFr0=vr0=vr0dc8meaabaqaciaacaGaaeqabaqabeGadaaakeaacqWG4baEdaqhaaWcbaGaemOray0aaSbaaWqaaiabigdaXaqabaaaleaacqGGOaakcqaIXaqmcqGGPaqkaaGccqGH9aqpcqGHsislcqWG4baEdaqhaaWcbaGaemOray0aaSbaaWqaaiabikdaYaqabaaaleaacqGGOaakcqaIXaqmcqGGPaqkaaaaaa@3BB5@ . Assuming G j l i j = G i k j l = G j k i l = G i l j k MathType@MTEF@5@5@+=feaafiart1ev1aaatCvAUfKttLearuWrP9MDH5MBPbIqV92AaeXatLxBI9gBaebbnrfifHhDYfgasaacH8akY=wiFfYdH8Gipec8Eeeu0xXdbba9frFj0=OqFfea0dXdd9vqai=hGuQ8kuc9pgc9s8qqaq=dirpe0xb9q8qiLsFr0=vr0=vr0dc8meaabaqaciaacaGaaeqabaqabeGadaaakeaacqWGhbWrdaqhaaWcbaGaemOAaOMaemiBaWgabaGaemyAaKMaemOAaOgaaOGaeyypa0Jaem4raC0aa0baaSqaaiabdMgaPjabdUgaRbqaaiabdQgaQjabdYgaSbaakiabg2da9iabdEeahnaaDaaaleaacqWGQbGAcqWGRbWAaeaacqWGPbqAcqWGSbaBaaGccqGH9aqpcqWGhbWrdaqhaaWcbaGaemyAaKMaemiBaWgabaGaemOAaOMaem4AaSgaaaaa@4ACA@ , it also holds that α1 = α1 = -α2 = -α2, δ 1 1 = δ 2 2 = δ 1 2 MathType@MTEF@5@5@+=feaafiart1ev1aaatCvAUfKttLearuWrP9MDH5MBPbIqV92AaeXatLxBI9gBaebbnrfifHhDYfgasaacH8akY=wiFfYdH8Gipec8Eeeu0xXdbba9frFj0=OqFfea0dXdd9vqai=hGuQ8kuc9pgc9s8qqaq=dirpe0xb9q8qiLsFr0=vr0=vr0dc8meaabaqaciaacaGaaeqabaqabeGadaaakeaaiiGacqWF0oazdaqhaaWcbaGaeGymaedabaGaeGymaedaaOGaeyypa0Jae8hTdq2aa0baaSqaaiabikdaYaqaaiabikdaYaaakiabg2da9iabgkHiTiab=r7aKnaaDaaaleaacqaIXaqmaeaacqaIYaGmaaaaaa@3AD2@ , and so on. The additive term for locus 1 then becomes

A 1 = α 1 ( x M 1 ( 1 ) x M 2 ( 1 ) ) + α 1 ( x F 1 ( 1 ) x F 2 ( 1 ) ) = 2 α 1 w 1 MathType@MTEF@5@5@+=feaafiart1ev1aaatCvAUfKttLearuWrP9MDH5MBPbIqV92AaeXatLxBI9gBaebbnrfifHhDYfgasaacH8akY=wiFfYdH8Gipec8Eeeu0xXdbba9frFj0=OqFfea0dXdd9vqai=hGuQ8kuc9pgc9s8qqaq=dirpe0xb9q8qiLsFr0=vr0=vr0dc8meaabaqaciaacaGaaeqabaqabeGadaaakeaacqWGbbqqdaWgaaWcbaGaeGymaedabeaakiabg2da9GGaciab=f7aHnaaCaaaleqabaGaeGymaedaaOGaeiikaGIaemiEaG3aa0baaSqaaiabd2eannaaBaaameaacqaIXaqmaeqaaaWcbaGaeiikaGIaeGymaeJaeiykaKcaaOGaeyOeI0IaemiEaG3aa0baaSqaaiabd2eannaaBaaameaacqaIYaGmaeqaaaWcbaGaeiikaGIaeGymaeJaeiykaKcaaOGaeiykaKIaey4kaSIae8xSde2aaSbaaSqaaiabigdaXaqabaGccqGGOaakcqWG4baEdaqhaaWcbaGaemOray0aaSbaaWqaaiabigdaXaqabaaaleaacqGGOaakcqaIXaqmcqGGPaqkaaGccqGHsislcqWG4baEdaqhaaWcbaGaemOray0aaSbaaWqaaiabikdaYaqabaaaleaacqGGOaakcqaIXaqmcqGGPaqkaaGccqGGPaqkcqGH9aqpcqaIYaGmcqWFXoqydaWgaaWcbaGaeGymaedabeaakiabbccaGiabdEha3naaBaaaleaacqaIXaqmaeqaaaaa@5DFE@

with

w 1 = x M 1 ( 1 ) + x F 1 ( 1 ) = { 1 ,  for  A A  at locus 1 0, for  A a  at locus 1 1 ,  for  a a  at locus 1 ( 13 ) MathType@MTEF@5@5@+=feaafiart1ev1aaatCvAUfKttLearuWrP9MDH5MBPbIqV92AaeXatLxBI9gBaebbnrfifHhDYfgasaacH8akY=wiFfYdH8Gipec8Eeeu0xXdbba9frFj0=OqFfea0dXdd9vqai=hGuQ8kuc9pgc9s8qqaq=dirpe0xb9q8qiLsFr0=vr0=vr0dc8meaabaqaciaacaGaaeqabaqabeGadaaakeaacqWG3bWDdaWgaaWcbaGaeGymaedabeaakiabg2da9iabdIha4naaDaaaleaacqWGnbqtdaWgaaadbaGaeGymaedabeaaaSqaaiabcIcaOiabigdaXiabcMcaPaaakiabgUcaRiabdIha4naaDaaaleaacqWGgbGrdaWgaaadbaGaeGymaedabeaaaSqaaiabcIcaOiabigdaXiabcMcaPaaakiabg2da9maaceaabaqbaeaabmqaaaqaaiabigdaXiabcYcaSiabbccaGiabbAgaMjabb+gaVjabbkhaYjabbccaGiabdgeabjabdgeabjabbccaGiabbggaHjabbsha0jabbccaGiabbYgaSjabb+gaVjabbogaJjabbwha1jabbohaZjabbccaGiabbgdaXaqaaiabbcdaWiabbYcaSiabbccaGiabbAgaMjabb+gaVjabbkhaYjabbccaGiabdgeabjabdggaHjabbccaGiabbggaHjabbsha0jabbccaGiabbYgaSjabb+gaVjabbogaJjabbwha1jabbohaZjabbccaGiabbgdaXaqaaiabgkHiTiabigdaXiabcYcaSiabbccaGiabbAgaMjabb+gaVjabbkhaYjabbccaGiabdggaHjabdggaHjabbccaGiabbggaHjabbsha0jabbccaGiabbYgaSjabb+gaVjabbogaJjabbwha1jabbohaZjabbccaGiabbgdaXaaaaiaawUhaaiaaxMaacaWLjaWaaeWaaeaacqaIXaqmcqaIZaWmaiaawIcacaGLPaaaaaa@8A53@

and the dominance term is

D 1 = 2 ( δ 1 1 ) ( x M 1 ( 1 ) x F 1 ( 1 ) + x M 1 ( 1 ) x F 1 ( 1 ) ) = ( 2 ) ( δ 1 1 ) v 1 MathType@MTEF@5@5@+=feaafiart1ev1aaatCvAUfKttLearuWrP9MDH5MBPbIqV92AaeXatLxBI9gBaebbnrfifHhDYfgasaacH8akY=wiFfYdH8Gipec8Eeeu0xXdbba9frFj0=OqFfea0dXdd9vqai=hGuQ8kuc9pgc9s8qqaq=dirpe0xb9q8qiLsFr0=vr0=vr0dc8meaabaqaciaacaGaaeqabaqabeGadaaakeaacqWGebardaWgaaWcbaGaeGymaedabeaakiabg2da9iabikdaYiabcIcaOGGaciab=r7aKnaaDaaaleaacqaIXaqmaeaacqaIXaqmaaGccqGGPaqkcqGGOaakcqWG4baEdaqhaaWcbaGaemyta00aaSbaaWqaaiabigdaXaqabaaaleaacqGGOaakcqaIXaqmcqGGPaqkaaGccqWG4baEdaqhaaWcbaGaemOray0aaSbaaWqaaiabigdaXaqabaaaleaacqGGOaakcqaIXaqmcqGGPaqkaaGccqGHRaWkcqWG4baEdaqhaaWcbaGaemyta00aaSbaaWqaaiabigdaXaqabaaaleaacqGGOaakcqaIXaqmcqGGPaqkaaGccqWG4baEdaqhaaWcbaGaemOray0aaSbaaWqaaiabigdaXaqabaaaleaacqGGOaakcqaIXaqmcqGGPaqkaaGccqGGPaqkcqGH9aqpcqGGOaakcqGHsislcqaIYaGmcqGGPaqkcqGGOaakcqWF0oazdaqhaaWcbaGaeGymaedabaGaeGymaedaaOGaeiykaKIaemODay3aaSbaaSqaaiabigdaXaqabaaaaa@5FCD@

with

v 1 = ( 2 ) x M 1 ( 1 ) x F 1 ( 1 ) = { 1 / 2 ,  for  A A  at locus 1 1 / 2 ,  for  A a  at locus 1 1 / 2 ,  for  a a  at locus 1 ( 14 ) MathType@MTEF@5@5@+=feaafiart1ev1aaatCvAUfKttLearuWrP9MDH5MBPbIqV92AaeXatLxBI9gBaebbnrfifHhDYfgasaacH8akY=wiFfYdH8Gipec8Eeeu0xXdbba9frFj0=OqFfea0dXdd9vqai=hGuQ8kuc9pgc9s8qqaq=dirpe0xb9q8qiLsFr0=vr0=vr0dc8meaabaqaciaacaGaaeqabaqabeGadaaakeaacqWG2bGDdaWgaaWcbaGaeGymaedabeaakiabg2da9iabcIcaOiabgkHiTiabikdaYiabcMcaPiabdIha4naaDaaaleaacqWGnbqtdaWgaaadbaGaeGymaedabeaaaSqaaiabcIcaOiabigdaXiabcMcaPaaakiabdIha4naaDaaaleaacqWGgbGrdaWgaaadbaGaeGymaedabeaaaSqaaiabcIcaOiabigdaXiabcMcaPaaakiabg2da9maaceaabaqbaeqabmqaaaqaaiabgkHiTiabigdaXiabc+caViabikdaYiabcYcaSiabbccaGiabbAgaMjabb+gaVjabbkhaYjabbccaGiabdgeabjabdgeabjabbccaGiabbggaHjabbsha0jabbccaGiabbYgaSjabb+gaVjabbogaJjabbwha1jabbohaZjabbccaGiabbgdaXaqaaiabigdaXiabc+caViabikdaYiabcYcaSiabbccaGiabbAgaMjabb+gaVjabbkhaYjabbccaGiabdgeabjabdggaHjabbccaGiabbggaHjabbsha0jabbccaGiabbYgaSjabb+gaVjabbogaJjabbwha1jabbohaZjabbccaGiabbgdaXaqaaiabgkHiTiabigdaXiabc+caViabikdaYiabcYcaSiabbccaGiabbAgaMjabb+gaVjabbkhaYjabbccaGiabdggaHjabdggaHjabbccaGiabbggaHjabbsha0jabbccaGiabbYgaSjabb+gaVjabbogaJjabbwha1jabbohaZjabbccaGiabbgdaXaaaaiaawUhaaiaaxMaacaWLjaWaaeWaaeaacqaIXaqmcqaI0aanaiaawIcacaGLPaaaaaa@9382@

Note that the v variable in this section for F2 differ, by a factor -2, from the v variable in the next section for a general two-allele model to conform to the usual definition for the F2 model. Similarly, for locus 2

A2 = 2β1w2 and D2 = (-2)( γ 1 2 MathType@MTEF@5@5@+=feaafiart1ev1aaatCvAUfKttLearuWrP9MDH5MBPbIqV92AaeXatLxBI9gBaebbnrfifHhDYfgasaacH8akY=wiFfYdH8Gipec8Eeeu0xXdbba9frFj0=OqFfea0dXdd9vqai=hGuQ8kuc9pgc9s8qqaq=dirpe0xb9q8qiLsFr0=vr0=vr0dc8meaabaqaciaacaGaaeqabaqabeGadaaakeaaiiGacqWFZoWzdaqhaaWcbaGaeeymaedabaGaeeOmaidaaaaa@305B@ )v2

with

w 2 = { 1 ,  for  B B  at locus 2 0 ,  for  B b  at locus 2 1 ,  for  b b  at locus 2 MathType@MTEF@5@5@+=feaafiart1ev1aaatCvAUfKttLearuWrP9MDH5MBPbIqV92AaeXatLxBI9gBaebbnrfifHhDYfgasaacH8akY=wiFfYdH8Gipec8Eeeu0xXdbba9frFj0=OqFfea0dXdd9vqai=hGuQ8kuc9pgc9s8qqaq=dirpe0xb9q8qiLsFr0=vr0=vr0dc8meaabaqaciaacaGaaeqabaqabeGadaaakeaacqWG3bWDdaWgaaWcbaGaeGOmaidabeaakiabg2da9maaceaabaqbaeqabmqaaaqaaiabigdaXiabcYcaSiabbccaGiabbAgaMjabb+gaVjabbkhaYjabbccaGiabdkeacjabdkeacjabbccaGiabbggaHjabbsha0jabbccaGiabbYgaSjabb+gaVjabbogaJjabbwha1jabbohaZjabbccaGiabbkdaYaqaaiabicdaWiabcYcaSiabbccaGiabbAgaMjabb+gaVjabbkhaYjabbccaGiabdkeacjabdkgaIjabbccaGiabbggaHjabbsha0jabbccaGiabbYgaSjabb+gaVjabbogaJjabbwha1jabbohaZjabbccaGiabbkdaYaqaaiabgkHiTiabigdaXiabcYcaSiabbccaGiabbAgaMjabb+gaVjabbkhaYjabbccaGiabdkgaIjabdkgaIjabbccaGiabbggaHjabbsha0jabbccaGiabbYgaSjabb+gaVjabbogaJjabbwha1jabbohaZjabbccaGiabbkdaYaaaaiaawUhaaaaa@76AB@

and

v 2 = { 1 / 2 ,  for  B B  at locus 2 1 / 2 ,  for  B b  at locus 2 1 / 2 ,  for  b b  at locus 2 ( 15 ) MathType@MTEF@5@5@+=feaafiart1ev1aaatCvAUfKttLearuWrP9MDH5MBPbIqV92AaeXatLxBI9gBaebbnrfifHhDYfgasaacH8akY=wiFfYdH8Gipec8Eeeu0xXdbba9frFj0=OqFfea0dXdd9vqai=hGuQ8kuc9pgc9s8qqaq=dirpe0xb9q8qiLsFr0=vr0=vr0dc8meaabaqaciaacaGaaeqabaqabeGadaaakeaacqWG2bGDdaWgaaWcbaGaeGOmaidabeaakiabg2da9maaceaabaqbaeqabmqaaaqaaiabgkHiTiabigdaXiabc+caViabikdaYiabcYcaSiabbccaGiabbAgaMjabb+gaVjabbkhaYjabbccaGiabdkeacjabdkeacjabbccaGiabbggaHjabbsha0jabbccaGiabbYgaSjabb+gaVjabbogaJjabbwha1jabbohaZjabbccaGiabbkdaYaqaaiabigdaXiabc+caViabikdaYiabcYcaSiabbccaGiabbAgaMjabb+gaVjabbkhaYjabbccaGiabdkeacjabdkgaIjabbccaGiabbggaHjabbsha0jabbccaGiabbYgaSjabb+gaVjabbogaJjabbwha1jabbohaZjabbccaGiabbkdaYaqaaiabgkHiTiabigdaXiabc+caViabikdaYiabcYcaSiabbccaGiabbAgaMjabb+gaVjabbkhaYjabbccaGiabdkgaIjabdkgaIjabbccaGiabbggaHjabbsha0jabbccaGiabbYgaSjabb+gaVjabbogaJjabbwha1jabbohaZjabbccaGiabbkdaYaaaaiaawUhaaiaaxMaacaWLjaWaaeWaaeaacqaIXaqmcqaI1aqnaiaawIcacaGLPaaaaaa@81D5@

The model can then be written as

G = μ + a 1 w 1 + d 1 v 1 + a 2 w 2 + d 2 v 2 + ( a a ) 12 ( w 1 w 2 ) + ( a d ) 12 ( w 1 v 2 ) + ( d a ) 12 ( v 1 w 2 ) + ( d d ) 12 ( v 1 v 2 ) ( 16 ) MathType@MTEF@5@5@+=feaafiart1ev1aaatCvAUfKttLearuWrP9MDH5MBPbIqV92AaeXatLxBI9gBaebbnrfifHhDYfgasaacH8akY=wiFfYdH8Gipec8Eeeu0xXdbba9frFj0=OqFfea0dXdd9vqai=hGuQ8kuc9pgc9s8qqaq=dirpe0xb9q8qiLsFr0=vr0=vr0dc8meaabaqaciaacaGaaeqabaqabeGadaaakeaafaqabeWabaaabaGaem4raCKaeyypa0dcciGae8hVd0Maey4kaSIaemyyae2aaSbaaSqaaiabigdaXaqabaGccqWG3bWDdaWgaaWcbaGaeGymaedabeaakiabgUcaRiabdsgaKnaaBaaaleaacqaIXaqmaeqaaOGaemODay3aaSbaaSqaaiabigdaXaqabaGccqGHRaWkcqWGHbqydaWgaaWcbaGaeGOmaidabeaakiabdEha3naaBaaaleaacqaIYaGmaeqaaOGaey4kaSIaemizaq2aaSbaaSqaaiabikdaYaqabaGccqWG2bGDdaWgaaWcbaGaeGOmaidabeaaaOqaaiabgUcaRiabcIcaOiabdggaHjabdggaHjabcMcaPmaaBaaaleaacqaIXaqmcqaIYaGmaeqaaOGaeiikaGIaem4DaC3aaSbaaSqaaiabigdaXaqabaGccqWG3bWDdaWgaaWcbaGaeGOmaidabeaakiabcMcaPiabgUcaRiabcIcaOiabdggaHjabdsgaKjabcMcaPmaaBaaaleaacqaIXaqmcqaIYaGmaeqaaOGaeiikaGIaem4DaC3aaSbaaSqaaiabigdaXaqabaGccqWG2bGDdaWgaaWcbaGaeGOmaidabeaakiabcMcaPaqaaiabgUcaRiabcIcaOiabdsgaKjabdggaHjabcMcaPmaaBaaaleaacqaIXaqmcqaIYaGmaeqaaOGaeiikaGIaemODay3aaSbaaSqaaiabigdaXaqabaGccqWG3bWDdaWgaaWcbaGaeGOmaidabeaakiabcMcaPiabgUcaRiabcIcaOiabdsgaKjabdsgaKjabcMcaPmaaBaaaleaacqaIXaqmcqaIYaGmaeqaaOGaeiikaGIaemODay3aaSbaaSqaaiabigdaXaqabaGccqWG2bGDdaWgaaWcbaGaeGOmaidabeaakiabcMcaPaaacaWLjaGaaCzcamaabmaabaGaeGymaeJaeGOnaydacaGLOaGaayzkaaaaaa@85EC@

where the parameters are related as a1 = 2α1, a2 = 2β2, d1 = - 2 δ 1 1 MathType@MTEF@5@5@+=feaafiart1ev1aaatCvAUfKttLearuWrP9MDH5MBPbIqV92AaeXatLxBI9gBaebbnrfifHhDYfgasaacH8akY=wiFfYdH8Gipec8Eeeu0xXdbba9frFj0=OqFfea0dXdd9vqai=hGuQ8kuc9pgc9s8qqaq=dirpe0xb9q8qiLsFr0=vr0=vr0dc8meaabaqaciaacaGaaeqabaqabeGadaaakeaacqGHsislcqaIYaGmiiGacqWF0oazdaqhaaWcbaGaeGymaedabaGaeGymaedaaaaa@3244@ , d2 = - 2 γ 1 1 MathType@MTEF@5@5@+=feaafiart1ev1aaatCvAUfKttLearuWrP9MDH5MBPbIqV92AaeXatLxBI9gBaebbnrfifHhDYfgasaacH8akY=wiFfYdH8Gipec8Eeeu0xXdbba9frFj0=OqFfea0dXdd9vqai=hGuQ8kuc9pgc9s8qqaq=dirpe0xb9q8qiLsFr0=vr0=vr0dc8meaabaqaciaacaGaaeqabaqabeGadaaakeaacqGHsislcqaIYaGmiiGacqWFZoWzdaqhaaWcbaGaeGymaedabaGaeGymaedaaaaa@3246@ , (aa)12 = 4(α1β1), (ad)12 = 8( α 1 γ 1 1 MathType@MTEF@5@5@+=feaafiart1ev1aaatCvAUfeBSjuyZL2yd9gzLbvyNv2Caerbhv2BYDwAHbqedmvETj2BSbqee0evGueE0jxyaibaiKI8=vI8tuQ8FMI8Gi=hEeeu0xXdbba9frFj0=OqFfea0dXdd9vqai=hGuQ8kuc9pgc9s8qqaq=dirpe0xb9q8qiLsFr0=vr0=vr0dc8meaabaqaciGacaGaaeqabaqadeqadaaakeaaiiGacqWFXoqydaWgaaWcbaGaaGymaaqabaGccqWFZoWzdaqhaaWcbaGaaGymaaqaaiaaigdaaaaaaa@3909@ ), (da)12 = 8( δ 1 1 β 1 MathType@MTEF@5@5@+=feaafiart1ev1aaatCvAUfKttLearuWrP9MDH5MBPbIqV92AaeXatLxBI9gBaebbnrfifHhDYfgasaacH8akY=wiFfYdH8Gipec8Eeeu0xXdbba9frFj0=OqFfea0dXdd9vqai=hGuQ8kuc9pgc9s8qqaq=dirpe0xb9q8qiLsFr0=vr0=vr0dc8meaabaqaciaacaGaaeqabaqabeGadaaakeaaiiGacqWF0oazdaqhaaWcbaGaeGymaedabaGaeGymaedaaOGae8NSdi2aaSbaaSqaaiabigdaXaqabaaaaa@3327@ ), (dd)12 = 16( δ 1 1 γ 1 1 MathType@MTEF@5@5@+=feaafiart1ev1aaatCvAUfKttLearuWrP9MDH5MBPbIqV92AaeXatLxBI9gBaebbnrfifHhDYfgasaacH8akY=wiFfYdH8Gipec8Eeeu0xXdbba9frFj0=OqFfea0dXdd9vqai=hGuQ8kuc9pgc9s8qqaq=dirpe0xb9q8qiLsFr0=vr0=vr0dc8meaabaqaciaacaGaaeqabaqabeGadaaakeaaiiGacqWF0oazdaqhaaWcbaGaeGymaedabaGaeGymaedaaOGae83SdC2aa0baaSqaaiabigdaXaqaaiabigdaXaaaaaa@341E@ ). With random mating and linkage equilibrium, we have

a 1 = E [ G μ ) w 1 ] / E ( w 1 2 ) = 2 ( G 1. .. G .. .. ) d 1 = E [ ( G μ ) v 1 ] / E ( v 2 1 ) = ( 2 ) ( G 1. 1. 2 G 1. .. + G .. .. ) a 2 = 2 ( G .1 .. G .. .. ) d 2 = ( 2 ) ( G .1 .1 2 G .1 .. + G .. .. ) ( a a ) 12 = E [ ( G μ ) w 1 w 2 ] / E ( w 1 2 w 2 2 ) = 4 ( G .. 11 G 1. .. G .1 .. + G .. .. ( a d ) 12 = E [ ( G μ ) w 1 v 2 ] / E ( w 1 2 v 2 2 ) = ( 4 ) ( G 11 .1 2 G 11 .. G .1 .1 + G 1. .. + 2 G .1 .. G .. .. ) ( d a ) 12 = E [ ( G μ ) v 1 w 2 ] / E ( v 1 2 w 2 2 ) = ( 4 ) ( G 11 1. 2 G 11 .. G 1. 1. + G .1 .. + 2 G 1. .. G .. .. ) ( d d ) 12 = E [ ( G μ ) v 1 v 2 ] / E ( v 1 2 v 2 2 ) = 4 ( G 11 11 2 G 11 1. 2 G 11 .1 + G 1. 1. + G .1 .1 + 4 G 11 .. 2 G 1. .. 2 G .1 .. + G .. .. ) MathType@MTEF@5@5@+=feaafiart1ev1aaatCvAUfKttLearuWrP9MDH5MBPbIqV92AaeXatLxBI9gBaebbnrfifHhDYfgasaacH8akY=wiFfYdH8Gipec8Eeeu0xXdbba9frFj0=OqFfea0dXdd9vqai=hGuQ8kuc9pgc9s8qqaq=dirpe0xb9q8qiLsFr0=vr0=vr0dc8meaabaqaciaacaGaaeqabaqabeGadaaakqGaeeqaa8sabaGaemyyae2aaSbaaSqaaiabigdaXaqabaGccqGH9aqpcqWGfbqrcqGGBbWwcqWGhbWrcqGHsisliiGacqWF8oqBcqGGPaqkcqWG3bWDdaWgaaWcbaGaeGymaedabeaakiabc2faDjabc+caViabdweafjabcIcaOiabdEha3naaDaaaleaacqaIXaqmaeaacqaIYaGmaaGccqGGPaqkcqGH9aqpcqaIYaGmcqGGOaakcqWGhbWrdaqhaaWcbaGaeGymaeJaeiOla4cabaGaeiOla4IaeiOla4caaOGaeyOeI0Iaem4raC0aa0baaSqaaiabc6caUiabc6caUaqaaiabc6caUiabc6caUaaakiabcMcaPaqaaiabdsgaKnaaBaaaleaacqaIXaqmaeqaaOGaeyypa0JaemyrauKaei4waSLaeiikaGIaem4raCKaeyOeI0Iae8hVd0MaeiykaKIaemODay3aaSbaaSqaaiabigdaXaqabaGccqGGDbqxcqGGVaWlcqWGfbqrcqGGOaakcqWG2bGDdaqhaaWcbaGaeGOmaidabaGaeGymaedaaOGaeiykaKcabaGaeyypa0JaeiikaGIaeyOeI0IaeGOmaiJaeiykaKIaeiikaGIaem4raC0aa0baaSqaaiabigdaXiabc6caUaqaaiabigdaXiabc6caUaaakiabgkHiTiabikdaYiabdEeahnaaDaaaleaacqaIXaqmcqGGUaGlaeaacqGGUaGlcqGGUaGlaaGccqGHRaWkcqWGhbWrdaqhaaWcbaGaeiOla4IaeiOla4cabaGaeiOla4IaeiOla4caaOGaeiykaKcabaGaemyyae2aaSbaaSqaaiabikdaYaqabaGccqGH9aqpcqaIYaGmcqGGOaakcqWGhbWrdaqhaaWcbaGaeiOla4IaeGymaedabaGaeiOla4IaeiOla4caaOGaeyOeI0Iaem4raC0aa0baaSqaaiabc6caUiabc6caUaqaaiabc6caUiabc6caUaaakiabcMcaPaqaaiabdsgaKnaaBaaaleaacqaIYaGmaeqaaOGaeyypa0JaeiikaGIaeyOeI0IaeGOmaiJaeiykaKIaeiikaGIaem4raC0aa0baaSqaaiabc6caUiabigdaXaqaaiabc6caUiabigdaXaaakiabgkHiTiabikdaYiabdEeahnaaDaaaleaacqGGUaGlcqaIXaqmaeaacqGGUaGlcqGGUaGlaaGccqGHRaWkcqWGhbWrdaqhaaWcbaGaeiOla4IaeiOla4cabaGaeiOla4IaeiOla4caaOGaeiykaKcabaGaeiikaGIaemyyaeMaemyyaeMaeiykaKYaaSbaaSqaaiabigdaXiabikdaYaqabaGccqGH9aqpcqWGfbqrcqGGBbWwcqGGOaakcqWGhbWrcqGHsislcqWF8oqBcqGGPaqkcqWG3bWDdaWgaaWcbaGaeGymaedabeaakiabdEha3naaBaaaleaacqaIYaGmaeqaaOGaeiyxa0Laei4la8IaemyrauKaeiikaGIaem4DaC3aa0baaSqaaiabigdaXaqaaiabikdaYaaakiabdEha3naaDaaaleaacqaIYaGmaeaacqaIYaGmaaGccqGGPaqkaeaacqGH9aqpcqaI0aancqGGOaakcqWGhbWrdaqhaaWcbaGaeiOla4IaeiOla4cabaGaeGymaeJaeGymaedaaOGaeyOeI0Iaem4raC0aa0baaSqaaiabigdaXiabc6caUaqaaiabc6caUiabc6caUaaakiabgkHiTiabdEeahnaaDaaaleaacqGGUaGlcqaIXaqmaeaacqGGUaGlcqGGUaGlaaGccqGHRaWkcqWGhbWrdaqhaaWcbaGaeiOla4IaeiOla4cabaGaeiOla4IaeiOla4caaaGcbaGaeiikaGIaemyyaeMaemizaqMaeiykaKYaaSbaaSqaaiabigdaXiabikdaYaqabaGccqGH9aqpcqWGfbqrcqGGBbWwcqGGOaakcqWGhbWrcqGHsislcqWF8oqBcqGGPaqkcqWG3bWDdaWgaaWcbaGaeGymaedabeaakiabdAha2naaBaaaleaacqaIYaGmaeqaaOGaeiyxa0Laei4la8IaemyrauKaeiikaGIaem4DaC3aa0baaSqaaiabigdaXaqaaiabikdaYaaakiabdAha2naaDaaaleaacqaIYaGmaeaacqaIYaGmaaGccqGGPaqkaeaacqGH9aqpcqGGOaakcqGHsislcqaI0aancqGGPaqkcqGGOaakcqWGhbWrdaqhaaWcbaGaeGymaeJaeGymaedabaGaeiOla4IaeGymaedaaOGaeyOeI0IaeGOmaiJaem4raC0aa0baaSqaaiabigdaXiabigdaXaqaaiabc6caUiabc6caUaaakiabgkHiTiabdEeahnaaDaaaleaacqGGUaGlcqaIXaqmaeaacqGGUaGlcqaIXaqmaaGccqGHRaWkcqWGhbWrdaqhaaWcbaGaeGymaeJaeiOla4cabaGaeiOla4IaeiOla4caaOGaey4kaSIaeGOmaiJaem4raC0aa0baaSqaaiabc6caUiabigdaXaqaaiabc6caUiabc6caUaaakiabgkHiTiabdEeahnaaDaaaleaacqGGUaGlcqGGUaGlaeaacqGGUaGlcqGGUaGlaaGccqGGPaqkaeaacqGGOaakcqWGKbazcqWGHbqycqGGPaqkdaWgaaWcbaGaeGymaeJaeGOmaidabeaakiabg2da9iabdweafjabcUfaBjabcIcaOiabdEeahjabgkHiTiab=X7aTjabcMcaPiabdAha2naaBaaaleaacqaIXaqmaeqaaOGaem4DaC3aaSbaaSqaaiabikdaYaqabaGccqGGDbqxcqGGVaWlcqWGfbqrcqGGOaakcqWG2bGDdaqhaaWcbaGaeGymaedabaGaeGOmaidaaOGaem4DaC3aa0baaSqaaiabikdaYaqaaiabikdaYaaakiabcMcaPaqaaiabg2da9iabcIcaOiabgkHiTiabisda0iabcMcaPiabcIcaOiabdEeahnaaDaaaleaacqaIXaqmcqaIXaqmaeaacqaIXaqmcqGGUaGlaaGccqGHsislcqaIYaGmcqWGhbWrdaqhaaWcbaGaeGymaeJaeGymaedabaGaeiOla4IaeiOla4caaOGaeyOeI0Iaem4raC0aa0baaSqaaiabigdaXiabc6caUaqaaiabigdaXiabc6caUaaakiabgUcaRiabdEeahnaaDaaaleaacqGGUaGlcqaIXaqmaeaacqGGUaGlcqGGUaGlaaGccqGHRaWkcqaIYaGmcqWGhbWrdaqhaaWcbaGaeGymaeJaeiOla4cabaGaeiOla4IaeiOla4caaOGaeyOeI0Iaem4raC0aa0baaSqaaiabc6caUiabc6caUaqaaiabc6caUiabc6caUaaakiabcMcaPaqaaiabcIcaOiabdsgaKjabdsgaKjabcMcaPmaaBaaaleaacqaIXaqmcqaIYaGmaeqaaOGaeyypa0JaemyrauKaei4waSLaeiikaGIaem4raCKaeyOeI0Iae8hVd0MaeiykaKIaemODay3aaSbaaSqaaiabigdaXaqabaGccqWG2bGDdaWgaaWcbaGaeGOmaidabeaakiabc2faDjabc+caViabdweafjabcIcaOiabdAha2naaDaaaleaacqaIXaqmaeaacqaIYaGmaaGccqWG2bGDdaqhaaWcbaGaeGOmaidabaGaeGOmaidaaOGaeiykaKcabaGaeyypa0JaeGinaqJaeiikaGIaem4raC0aa0baaSqaaiabigdaXiabigdaXaqaaiabigdaXiabigdaXaaakiabgkHiTiabikdaYiabdEeahnaaDaaaleaacqaIXaqmcqaIXaqmaeaacqaIXaqmcqGGUaGlaaGccqGHsislcqaIYaGmcqWGhbWrdaqhaaWcbaGaeGymaeJaeGymaedabaGaeiOla4IaeGymaedaaOGaey4kaSIaem4raC0aa0baaSqaaiabigdaXiabc6caUaqaaiabigdaXiabc6caUaaakiabgUcaRiabdEeahnaaDaaaleaacqGGUaGlcqaIXaqmaeaacqGGUaGlcqaIXaqmaaGccqGHRaWkcqaI0aancqWGhbWrdaqhaaWcbaGaeGymaeJaeGymaedabaGaeiOla4IaeiOla4caaaGcbaGaaCzcaiabgkHiTiabikdaYiabdEeahnaaDaaaleaacqaIXaqmcqGGUaGlaeaacqGGUaGlcqGGUaGlaaGccqGHsislcqaIYaGmcqWGhbWrdaqhaaWcbaGaeiOla4IaeGymaedabaGaeiOla4IaeiOla4caaOGaey4kaSIaem4raC0aa0baaSqaaiabc6caUiabc6caUaqaaiabc6caUiabc6caUaaakiabcMcaPaaaaa@D683@

The orthogonal partition of the genotypic variance is

V G = 1 2 a 1 2 + 1 4 d 1 2 + 1 2 a 2 2 + 1 4 d 2 2 + 1 4 ( a a ) 12 2 + 1 8 ( a d ) 12 2 + 1 8 ( d a ) 12 2 + 1 16 ( d d ) 12 2 . ( 17 ) MathType@MTEF@5@5@+=feaafiart1ev1aaatCvAUfKttLearuWrP9MDH5MBPbIqV92AaeXatLxBI9gBaebbnrfifHhDYfgasaacH8akY=wiFfYdH8Gipec8Eeeu0xXdbba9frFj0=OqFfea0dXdd9vqai=hGuQ8kuc9pgc9s8qqaq=dirpe0xb9q8qiLsFr0=vr0=vr0dc8meaabaqaciaacaGaaeqabaqabeGadaaakeaafaqabeGacaaabaGaemOvay1aaSbaaSqaaiabdEeahbqabaGccqGH9aqpdaWcaaqaaiabigdaXaqaaiabikdaYaaacqWGHbqydaqhaaWcbaGaeGymaedabaGaeGOmaidaaOGaey4kaSYaaSaaaeaacqaIXaqmaeaacqaI0aanaaGaemizaq2aa0baaSqaaiabigdaXaqaaiabikdaYaaakiabgUcaRmaalaaabaGaeGymaedabaGaeGOmaidaaiabdggaHnaaDaaaleaacqaIYaGmaeaacqaIYaGmaaGccqGHRaWkdaWcaaqaaiabigdaXaqaaiabisda0aaacqWGKbazdaqhaaWcbaGaeGOmaidabaGaeGOmaidaaOGaey4kaSYaaSaaaeaacqaIXaqmaeaacqaI0aanaaGaeiikaGIaemyyaeMaemyyaeMaeiykaKYaa0baaSqaaiabigdaXiabikdaYaqaaiabikdaYaaaaOqaaaqaaiabgUcaRmaalaaabaGaeGymaedabaGaeGioaGdaaiabcIcaOiabdggaHjabdsgaKjabcMcaPmaaDaaaleaacqaIXaqmcqaIYaGmaeaacqaIYaGmaaGccqGHRaWkdaWcaaqaaiabigdaXaqaaiabiIda4aaacqGGOaakcqWGKbazcqWGHbqycqGGPaqkdaqhaaWcbaGaeGymaeJaeGOmaidabaGaeGOmaidaaOGaey4kaSYaaSaaaeaacqaIXaqmaeaacqaIXaqmcqaI2aGnaaGaeiikaGIaemizaqMaemizaqMaeiykaKYaa0baaSqaaiabigdaXiabikdaYaqaaiabikdaYaaakiabc6caUaqaaiaaxMaacaWLjaWaaeWaaeaacqaIXaqmcqaI3aWnaiaawIcacaGLPaaaaaaaaa@77BF@

Recently, Kao and Zeng [18] have examined many genetic and statistical issues of the above F2 model and the effects of linkage disequilibrium. As we have shown here, the F2 model is a special case of Cockerham model with two alleles at each locus and all allelic frequencies being 1/2.

Now we give the partition of genetic variance for m loci with epistasis and linkage disequilibrium in the F2 population. Generalizing model (16) to m loci and ignoring the trigenic and higher order epistasis, we have the following model

G = μ + r = 1 m a r w r + r = 1 m d r v r + r < s ( a a ) r s ( w r w s ) + r s ( a d ) r s ( w r v s ) + r < s ( d d ) r s ( v r v s ) = μ + A + D + A A + A d + D D ( 18 ) MathType@MTEF@5@5@+=feaafiart1ev1aaatCvAUfKttLearuWrP9MDH5MBPbIqV92AaeXatLxBI9gBaebbnrfifHhDYfgasaacH8akY=wiFfYdH8Gipec8Eeeu0xXdbba9frFj0=OqFfea0dXdd9vqai=hGuQ8kuc9pgc9s8qqaq=dirpe0xb9q8qiLsFr0=vr0=vr0dc8meaabaqaciaacaGaaeqabaqabeGadaaakeaafaqabeWacaaabaGaem4raCKaeyypa0dcciGae8hVd0Maey4kaSYaaabCaeaacqWGHbqydaWgaaWcbaGaemOCaihabeaakiabdEha3naaBaaaleaacqWGYbGCaeqaaOGaey4kaSYaaabCaeaacqWGKbazdaWgaaWcbaGaemOCaihabeaakiabdAha2naaBaaaleaacqWGYbGCaeqaaOGaey4kaSYaaabuaeaacqGGOaakcqWGHbqycqWGHbqycqGGPaqkdaWgaaWcbaGaemOCaiNaem4CamhabeaakiabcIcaOiabdEha3naaBaaaleaacqWGYbGCaeqaaOGaem4DaC3aaSbaaSqaaiabdohaZbqabaGccqGGPaqkaSqaaiabdkhaYjabgYda8iabdohaZbqab0GaeyyeIuoaaSqaaiabdkhaYjabg2da9iabigdaXaqaaiabd2gaTbqdcqGHris5aaWcbaGaemOCaiNaeyypa0JaeGymaedabaGaemyBa0ganiabggHiLdaakeaaaeaacqGHRaWkdaaeqbqaaiabcIcaOiabdggaHjabdsgaKjabcMcaPmaaBaaaleaacqWGYbGCcqWGZbWCaeqaaOGaeiikaGIaem4DaC3aaSbaaSqaaiabdkhaYbqabaGccqWG2bGDdaWgaaWcbaGaem4CamhabeaakiabcMcaPiabgUcaRmaaqafabaGaeiikaGIaemizaqMaemizaqMaeiykaKYaaSbaaSqaaiabdkhaYjabdohaZbqabaGccqGGOaakcqWG2bGDdaWgaaWcbaGaemOCaihabeaakiabdAha2naaBaaaleaacqWGZbWCaeqaaOGaeiykaKcaleaacqWGYbGCcqGH8aapcqWGZbWCaeqaniabggHiLdaaleaacqWGYbGCcqGHGjsUcqWGZbWCaeqaniabggHiLdaakeaaaeaacqGH9aqpcqWF8oqBcqGHRaWkcqWGbbqqcqGHRaWkcqWGebarcqGHRaWkcqWGbbqqcqWGbbqqcqGHRaWkcqWGbbqqcqWGKbazcqGHRaWkcqWGebarcqWGebaraeaacaWLjaGaaCzcamaabmaabaGaeGymaeJaeGioaGdacaGLOaGaayzkaaaaaaaa@A465@

The partition of genetic variance for this model under the assumption of Hardy-Weinberg equilibrium is

V G = V A + V D + V A A + V A D + V D D + 2 Cov ( A , D ) + 2 Cov ( A , A A ) + 2 Cov ( A , A D ) + 2 Cov(A,DD)+2Cov ( D , A A ) + 2 Cov ( D , A D ) + 2 Cov( D , D D ) + 2 C o v ( A A , A D ) + 2 Cov( A A , D D ) + 2 Cov ( A D , D D ) . ( 19 ) MathType@MTEF@5@5@+=feaafiart1ev1aaatCvAUfKttLearuWrP9MDH5MBPbIqV92AaeXatLxBI9gBaebbnrfifHhDYfgasaacH8akY=wiFfYdH8Gipec8Eeeu0xXdbba9frFj0=OqFfea0dXdd9vqai=hGuQ8kuc9pgc9s8qqaq=dirpe0xb9q8qiLsFr0=vr0=vr0dc8meaabaqaciaacaGaaeqabaqabeGadaaakeaafaqaaeqbcaaaaeaacqWGwbGvdaWgaaWcbaGaem4raCeabeaakiabg2da9iabdAfawnaaBaaaleaacqWGbbqqaeqaaOGaey4kaSIaemOvay1aaSbaaSqaaiabdseaebqabaGccqGHRaWkcqWGwbGvdaWgaaWcbaGaemyqaeKaemyqaeeabeaakiabgUcaRiabdAfawnaaBaaaleaacqWGbbqqcqWGebaraeqaaOGaey4kaSIaemOvay1aaSbaaSqaaiabdseaejabdseaebqabaaakeaaaeaacqGHRaWkcqaIYaGmcqqGdbWqcqqGVbWBcqqG2bGDcqGGOaakcqWGbbqqcqGGSaalcqWGebarcqGGPaqkcqGHRaWkcqaIYaGmcqqGdbWqcqqGVbWBcqqG2bGDcqGGOaakcqWGbbqqcqGGSaalcqWGbbqqcqWGbbqqcqGGPaqkcqGHRaWkcqaIYaGmcqqGdbWqcqqGVbWBcqqG2bGDcqGGOaakcqWGbbqqcqGGSaalcqWGbbqqcqWGebarcqGGPaqkaeaaaeaacqGHRaWkcqaIYaGmcqqGdbWqcqqGVbWBcqqG2bGDcqqGOaakcqqGbbqqcqqGSaalcqqGebarcqqGebarcqqGPaqkcqqGRaWkcqqGYaGmcqqGdbWqcqqGVbWBcqqG2bGDcqGGOaakcqWGebarcqGGSaalcqWGbbqqcqWGbbqqcqGGPaqkcqGHRaWkcqaIYaGmcqqGdbWqcqqGVbWBcqqG2bGDcqGGOaakcqWGebarcqGGSaalcqWGbbqqcqWGebarcqGGPaqkaeaaaeaacqGHRaWkcqaIYaGmcqqGdbWqcqqGVbWBcqqG2bGDcqqGOaakcqWGebarcqGGSaalcqWGebarcqWGebarcqGGPaqkcqGHRaWkcqaIYaGmieGacqWFdbWqcqWFVbWBcqWF2bGDcqGGOaakcqWGbbqqcqWGbbqqcqGGSaalcqWGbbqqcqWGebarcqGGPaqkaeaaaeaacqGHRaWkcqaIYaGmcqqGdbWqcqqGVbWBcqqG2bGDcqqGOaakcqWGbbqqcqWGbbqqcqGGSaalcqWGebarcqWGebarcqGGPaqkcqGHRaWkcqaIYaGmcqqGdbWqcqqGVbWBcqqG2bGDcqGGOaakcqWGbbqqcqWGebarcqGGSaalcqWGebarcqWGebarcqGGPaqkcqGGUaGlaeaacaWLjaGaaCzcamaabmaabaGaeGymaeJaeGyoaKdacaGLOaGaayzkaaaaaaaa@BD98@

The detail of each component is presented in Appendix D.

The F2 model is a special case of the general two-allele model with p r = 1/2. Note the difference on the v variable used for the F2 model and for the general two-allele model below. This partition of genetic variance can provide a basis for the interpretation of genetic variance estimation by multiple interval mapping in a F2 population [19, 21].

3. A general two-allele model

Here, we provide details of a general two-allele model for multiple loci. This model is probably useful for studying genetic architecture of a quantitative trait in natural populations. Let the two alleles at locus r be A r and a r for r = 1, 2, ..., m with m the number of QTL. Assume that the frequencies and genetic effects of alleles are the same for both paternal and maternal gametes. Let p r denote the frequency of allele A r at locus r. Note that in this case z M 1 ( r ) = 1 z M 2 ( r ) MathType@MTEF@5@5@+=feaafiart1ev1aaatCvAUfKttLearuWrP9MDH5MBPbIqV92AaeXatLxBI9gBaebbnrfifHhDYfgasaacH8akY=wiFfYdH8Gipec8Eeeu0xXdbba9frFj0=OqFfea0dXdd9vqai=hGuQ8kuc9pgc9s8qqaq=dirpe0xb9q8qiLsFr0=vr0=vr0dc8meaabaqaciaacaGaaeqabaqabeGadaaakeaacqWG6bGEdaqhaaWcbaGaemyta00aaSbaaWqaaiabigdaXaqabaaaleaacqGGOaakcqWGYbGCcqGGPaqkaaGccqGH9aqpcqaIXaqmcqGHsislcqWG6bGEdaqhaaWcbaGaemyta00aaSbaaWqaaiabikdaYaqabaaaleaacqGGOaakcqWGYbGCcqGGPaqkaaaaaa@3DC3@ , r = 1, 2, ..., m. Also x M 1 ( r ) = z M 1 ( r ) E [ z M 1 ( r ) ] = ( 1 z M 2 ( r ) ) E ( 1 z M 2 ( r ) ) = x M 2 ( r ) MathType@MTEF@5@5@+=feaafiart1ev1aaatCvAUfKttLearuWrP9MDH5MBPbIqV92AaeXatLxBI9gBaebbnrfifHhDYfgasaacH8akY=wiFfYdH8Gipec8Eeeu0xXdbba9frFj0=OqFfea0dXdd9vqai=hGuQ8kuc9pgc9s8qqaq=dirpe0xb9q8qiLsFr0=vr0=vr0dc8meaabaqaciaacaGaaeqabaqabeGadaaakeaacqWG4baEdaqhaaWcbaGaemyta00aaSbaaWqaaiabigdaXaqabaaaleaacqGGOaakcqWGYbGCcqGGPaqkaaGccqGH9aqpcqWG6bGEdaqhaaWcbaGaemyta00aaSbaaWqaaiabigdaXaqabaaaleaacqGGOaakcqWGYbGCcqGGPaqkaaGccqGHsislcqWGfbqrcqGGBbWwcqWG6bGEdaqhaaWcbaGaemyta00aaSbaaWqaaiabigdaXaqabaaaleaacqGGOaakcqWGYbGCcqGGPaqkaaGccqGGDbqxcqGH9aqpcqGGOaakcqaIXaqmcqGHsislcqWG6bGEdaqhaaWcbaGaemyta00aaSbaaWqaaiabikdaYaqabaaaleaacqGGOaakcqWGYbGCcqGGPaqkaaGccqGGPaqkcqGHsislcqWGfbqrcqGGOaakcqaIXaqmcqGHsislcqWG6bGEdaqhaaWcbaGaemyta00aaSbaaWqaaiabikdaYaqabaaaleaacqGGOaakcqWGYbGCcqGGPaqkaaGccqGGPaqkcqGH9aqpcqGHsislcqWG4baEdaqhaaWcbaGaemyta00aaSbaaWqaaiabikdaYaqabaaaleaacqGGOaakcqWGYbGCcqGGPaqkaaaaaa@68F1@ . Similarly, x F 2 ( r ) = x F 1 ( r ) MathType@MTEF@5@5@+=feaafiart1ev1aaatCvAUfKttLearuWrP9MDH5MBPbIqV92AaeXatLxBI9gBaebbnrfifHhDYfgasaacH8akY=wiFfYdH8Gipec8Eeeu0xXdbba9frFj0=OqFfea0dXdd9vqai=hGuQ8kuc9pgc9s8qqaq=dirpe0xb9q8qiLsFr0=vr0=vr0dc8meaabaqaciaacaGaaeqabaqabeGadaaakeaacqWG4baEdaqhaaWcbaGaemOray0aaSbaaWqaaiabikdaYaqabaaaleaacqGGOaakcqWGYbGCcqGGPaqkaaGccqGH9aqpcqGHsislcqWG4baEdaqhaaWcbaGaemOray0aaSbaaWqaaiabigdaXaqabaaaleaacqGGOaakcqWGYbGCcqGGPaqkaaaaaa@3CAF@ Ignoring higher order epistasis involving at least three loci, we can define a two-allele model as

G = μ + r = 1 m a r w r + r = 1 m d r v r + r < s ( a a ) r s ( w r w s ) + r s ( a d ) r s ( w r v s ) + r < s ( d d ) r s ( v r v s ) ( 20 ) MathType@MTEF@5@5@+=feaafiart1ev1aaatCvAUfKttLearuWrP9MDH5MBPbIqV92AaeXatLxBI9gBaebbnrfifHhDYfgasaacH8akY=wiFfYdH8Gipec8Eeeu0xXdbba9frFj0=OqFfea0dXdd9vqai=hGuQ8kuc9pgc9s8qqaq=dirpe0xb9q8qiLsFr0=vr0=vr0dc8meaabaqaciaacaGaaeqabaqabeGadaaakeaafaqabeGacaaabaGaem4raCKaeyypa0dcciGae8hVd0Maey4kaSYaaabCaeaacqWGHbqydaWgaaWcbaGaemOCaihabeaakiabdEha3naaBaaaleaacqWGYbGCaeqaaOGaey4kaSYaaabCaeaacqWGKbazdaWgaaWcbaGaemOCaihabeaakiabdAha2naaBaaaleaacqWGYbGCaeqaaOGaey4kaSYaaabuaeaacqGGOaakcqWGHbqycqWGHbqycqGGPaqkdaWgaaWcbaGaemOCaiNaem4CamhabeaakiabcIcaOiabdEha3naaBaaaleaacqWGYbGCaeqaaOGaem4DaC3aaSbaaSqaaiabdohaZbqabaGccqGGPaqkaSqaaiabdkhaYjabgYda8iabdohaZbqab0GaeyyeIuoaaSqaaiabdkhaYjabg2da9iabigdaXaqaaiabd2gaTbqdcqGHris5aaWcbaGaemOCaiNaeyypa0JaeGymaedabaGaemyBa0ganiabggHiLdaakeaaaeaacqGHRaWkdaaeqbqaaiabcIcaOiabdggaHjabdsgaKjabcMcaPmaaBaaaleaacqWGYbGCcqWGZbWCaeqaaOGaeiikaGIaem4DaC3aaSbaaSqaaiabdkhaYbqabaGccqWG2bGDdaWgaaWcbaGaem4CamhabeaakiabcMcaPiabgUcaRmaaqafabaGaeiikaGIaemizaqMaemizaqMaeiykaKYaaSbaaSqaaiabdkhaYjabdohaZbqabaGccqGGOaakcqWG2bGDdaWgaaWcbaGaemOCaihabeaakiabdAha2naaBaaaleaacqWGZbWCaeqaaOGaeiykaKcaleaacqWGYbGCcqGH8aapcqWGZbWCaeqaniabggHiLdaaleaacqWGYbGCcqGHGjsUcqWGZbWCaeqaniabggHiLdaakeaacaWLjaGaaCzcamaabmaabaGaeGOmaiJaeGimaadacaGLOaGaayzkaaaaaaaa@9483@

where

w r = x M 1 ( r ) + x F 1 ( r ) = { ( 1 p r ) for  A r A r  at locus  r 1 2 p r for  A r a r  at locus  r 2 p r for  a r a r  at locus  r ( 21 ) MathType@MTEF@5@5@+=feaafiart1ev1aaatCvAUfKttLearuWrP9MDH5MBPbIqV92AaeXatLxBI9gBaebbnrfifHhDYfgasaacH8akY=wiFfYdH8Gipec8Eeeu0xXdbba9frFj0=OqFfea0dXdd9vqai=hGuQ8kuc9pgc9s8qqaq=dirpe0xb9q8qiLsFr0=vr0=vr0dc8meaabaqaciaacaGaaeqabaqabeGadaaakqaaeeqaaiabdEha3naaBaaaleaacqWGYbGCaeqaaOGaeyypa0JaemiEaG3aa0baaSqaaiabd2eannaaBaaameaacqaIXaqmaeqaaaWcbaGaeiikaGIaemOCaiNaeiykaKcaaOGaey4kaSIaemiEaG3aa0baaSqaaiabdAeagnaaBaaameaacqaIXaqmaeqaaaWcbaGaeiikaGIaemOCaiNaeiykaKcaaaGcbaGaeyypa0ZaaiqaaeaafaqabeWacaaabaGaeiikaGIaeGymaeJaeyOeI0IaemiCaa3aaSbaaSqaaiabdkhaYbqabaGccqGGPaqkaeaacqqGMbGzcqqGVbWBcqqGYbGCcqqGGaaicqWGbbqqdaWgaaWcbaGaemOCaihabeaakiabdgeabnaaBaaaleaacqWGYbGCaeqaaOGaeeiiaaIaeeyyaeMaeeiDaqNaeeiiaaIaeeiBaWMaee4Ba8Maee4yamMaeeyDauNaee4CamNaeeiiaaIaemOCaihabaGaeGymaeJaeyOeI0IaeGOmaiJaemiCaa3aaSbaaSqaaiabdkhaYbqabaaakeaacqqGMbGzcqqGVbWBcqqGYbGCcqqGGaaicqWGbbqqdaWgaaWcbaGaemOCaihabeaakiabdggaHnaaBaaaleaacqWGYbGCaeqaaOGaeeiiaaIaeeyyaeMaeeiDaqNaeeiiaaIaeeiBaWMaee4Ba8Maee4yamMaeeyDauNaee4CamNaeeiiaaIaemOCaihabaGaeyOeI0IaeGOmaiJaemiCaa3aaSbaaSqaaiabdkhaYbqabaaakeaacqqGMbGzcqqGVbWBcqqGYbGCcqqGGaaicqWGHbqydaWgaaWcbaGaemOCaihabeaakiabdggaHnaaBaaaleaacqWGYbGCaeqaaOGaeeiiaaIaeeyyaeMaeeiDaqNaeeiiaaIaeeiBaWMaee4Ba8Maee4yamMaeeyDauNaee4CamNaeeiiaaIaemOCaihaaiaaxMaacaWLjaWaaeWaaeaacqaIYaGmcqaIXaqmaiaawIcacaGLPaaaaiaawUhaaaaaaa@9FEE@

v r = x M 1 ( x ) x F 1 ( x ) = { ( 1 p r ) 2 for  A r A r  at locus  r p r ( 1 p r ) for  A r a r  at locus  r p r 2 for  a r a r  at locus  r ( 22 ) MathType@MTEF@5@5@+=feaafiart1ev1aaatCvAUfKttLearuWrP9MDH5MBPbIqV92AaeXatLxBI9gBaebbnrfifHhDYfgasaacH8akY=wiFfYdH8Gipec8Eeeu0xXdbba9frFj0=OqFfea0dXdd9vqai=hGuQ8kuc9pgc9s8qqaq=dirpe0xb9q8qiLsFr0=vr0=vr0dc8meaabaqaciaacaGaaeqabaqabeGadaaakqaaeeqaaiabdAha2naaBaaaleaacqWGYbGCaeqaaOGaeyypa0JaemiEaG3aa0baaSqaaiabd2eannaaBaaameaacqaIXaqmaeqaaaWcbaGaeiikaGIaemiEaGNaeiykaKcaaOGaemiEaG3aa0baaSqaaiabdAeagnaaBaaameaacqaIXaqmaeqaaaWcbaGaeiikaGIaemiEaGNaeiykaKcaaaGcbaGaeyypa0ZaaiqaaeaafaqaaeWacaaabaGaeiikaGIaeGymaeJaeyOeI0IaemiCaa3aaSbaaSqaaiabdkhaYbqabaGccqGGPaqkdaahaaWcbeqaaiabikdaYaaaaOqaaiabbAgaMjabb+gaVjabbkhaYjabbccaGiabdgeabnaaBaaaleaacqWGYbGCaeqaaOGaemyqae0aaSbaaSqaaiabdkhaYbqabaGccqqGGaaicqqGHbqycqqG0baDcqqGGaaicqqGSbaBcqqGVbWBcqqGJbWycqqG1bqDcqqGZbWCcqqGGaaicqWGYbGCaeaacqGHsislcqWGWbaCdaWgaaWcbaGaemOCaihabeaakiabcIcaOiabigdaXiabgkHiTiabdchaWnaaBaaaleaacqWGYbGCaeqaaOGaeiykaKcabaGaeeOzayMaee4Ba8MaeeOCaiNaeeiiaaIaemyqae0aaSbaaSqaaiabdkhaYbqabaGccqWGHbqydaWgaaWcbaGaemOCaihabeaakiabbccaGiabbggaHjabbsha0jabbccaGiabbYgaSjabb+gaVjabbogaJjabbwha1jabbohaZjabbccaGiabdkhaYbqaaiabdchaWnaaDaaaleaacqWGYbGCaeaacqaIYaGmaaaakeaacqqGMbGzcqqGVbWBcqqGYbGCcqqGGaaicqWGHbqydaWgaaWcbaGaemOCaihabeaakiabdggaHnaaBaaaleaacqWGYbGCaeqaaOGaeeiiaaIaeeyyaeMaeeiDaqNaeeiiaaIaeeiBaWMaee4Ba8Maee4yamMaeeyDauNaee4CamNaeeiiaaIaemOCaihaaiaaxMaacaWLjaWaaeWaaeaacqaIYaGmcqaIYaGmaiaawIcacaGLPaaaaiaawUhaaaaaaa@A419@

for r = 1, 2, ..., m. The coefficients are associated with the original parameters in Cockerham model as follows.

a r = α 1 ( r ) α 2 ( r ) d r = δ 1 1 ( r ) δ 2 1 ( r ) δ 1 2 ( r ) + δ 2 2 ( r ) ( a a ) r s = ( α 1 ( r ) α 1 ( s ) ) ( α 1 ( r ) α 2 ( s ) ) ( α 2 ( r ) α 1 ( s ) ) + ( α 2 α 2 ( s ) ) ( a d ) r s = ( α 1 ( r ) δ 1 1 ( s ) ) ( α 1 ( r ) δ 2 1 ( s ) ) ( α 1 ( r ) δ 1 2 ( s ) ) + ( α 1 ( r ) δ 2 2 ( s ) ) ( α 2 ( r ) δ 1 1 ( s ) ) + ( α 2 ( r ) δ 2 1 ( s ) ) + ( α 2 ( r ) δ 1 2 ( s ) ) ( α 2 ( r ) δ 2 2 ( s ) ) ( d d ) r s = ( δ 1 1 ( r ) δ 1 1 ( s ) ) ( δ 1 1 ( r ) δ 2 1 ( s ) ) ( δ 1 1 ( r ) δ 1 2 ( s ) ) + ( δ 1 1 ( r ) δ 2 2 ( s ) ) ( δ 2 1 ( r ) δ 1 1 ( s ) ) + ( δ 2 1 ( r ) δ 2 1 ( s ) ) + ( δ 2 1 ( r ) δ 1 2 ( s ) ) ( δ 2 1 ( r ) δ 2 2 ( s ) ) ( δ 1 2 ( r ) δ 1 1 ( s ) ) + ( δ 1 2 ( r ) δ 2 1 ( s ) ) + ( δ 1 2 ( r ) δ 1 2 ( s ) ) ( δ 1 2 ( r ) δ 2 2 ( s ) ) + ( δ 2 2 ( r ) δ 1 1 ( s ) ) ( δ 2 2 ( r ) δ 2 1 ( s ) ) ( δ 2 2 ( r ) δ 1 2 ( s ) ) + ( δ 2 2 ( r ) δ 2 2 ( s ) ) MathType@MTEF@5@5@+=feaafiart1ev1aaatCvAUfKttLearuWrP9MDH5MBPbIqV92AaeXatLxBI9gBaebbnrfifHhDYfgasaacH8akY=wiFfYdH8Gipec8Eeeu0xXdbba9frFj0=OqFfea0dXdd9vqai=hGuQ8kuc9pgc9s8qqaq=dirpe0xb9q8qiLsFr0=vr0=vr0dc8meaabaqaciaacaGaaeqabaqabeGadaaakeaafaqadeadcaaaaaaabaGaemyyae2aaSbaaSqaaiabdkhaYbqabaGccqGH9aqpaeaaiiGacqWFXoqydaqhaaWcbaGaeGymaedabaGaeiikaGIaemOCaiNaeiykaKcaaOGaeyOeI0Iae8xSde2aa0baaSqaaiabikdaYaqaaiabcIcaOiabdkhaYjabcMcaPaaaaOqaaiabdsgaKnaaBaaaleaacqWGYbGCaeqaaOGaeyypa0dabaGae8hTdq2aa0baaSqaaiabigdaXaqaaiabigdaXiabcIcaOiabdkhaYjabcMcaPaaakiabgkHiTiab=r7aKnaaDaaaleaacqaIYaGmaeaacqaIXaqmcqGGOaakcqWGYbGCcqGGPaqkaaGccqGHsislcqWF0oazdaqhaaWcbaGaeGymaedabaGaeGOmaiJaeiikaGIaemOCaiNaeiykaKcaaOGaey4kaSIae8hTdq2aa0baaSqaaiabikdaYaqaaiabikdaYiabcIcaOiabdkhaYjabcMcaPaaaaOqaaiabcIcaOiabdggaHjabdggaHjabcMcaPmaaBaaaleaacqWGYbGCcqWGZbWCaeqaaOGaeyypa0dabaGaeiikaGIae8xSde2aa0baaSqaaiabigdaXaqaaiabcIcaOiabdkhaYjabcMcaPaaakiab=f7aHnaaDaaaleaacqaIXaqmaeaacqGGOaakcqWGZbWCcqGGPaqkaaGccqGGPaqkcqGHsislcqGGOaakcqWFXoqydaqhaaWcbaGaeGymaedabaGaeiikaGIaemOCaiNaeiykaKcaaOGae8xSde2aa0baaSqaaiabikdaYaqaaiabcIcaOiabdohaZjabcMcaPaaakiabcMcaPiabgkHiTiabcIcaOiab=f7aHnaaDaaaleaacqaIYaGmaeaacqGGOaakcqWGYbGCcqGGPaqkaaGccqWFXoqydaqhaaWcbaGaeGymaedabaGaeiikaGIaem4CamNaeiykaKcaaOGaeiykaKcabaaabaGaey4kaSIaeiikaGIae8xSde2aaSbaaSqaaiabikdaYaqabaGccqWFXoqydaqhaaWcbaGaeGOmaidabaGaeiikaGIaem4CamNaeiykaKcaaOGaeiykaKcabaGaeiikaGIaemyyaeMaemizaqMaeiykaKYaaSbaaSqaaiabdkhaYjabdohaZbqabaGccqGH9aqpaeaacqGGOaakcqWFXoqydaqhaaWcbaGaeGymaedabaGaeiikaGIaemOCaiNaeiykaKcaaOGae8hTdq2aa0baaSqaaiabigdaXaqaaiabigdaXiabcIcaOiabdohaZjabcMcaPaaakiabcMcaPiabgkHiTiabcIcaOiab=f7aHnaaDaaaleaacqaIXaqmaeaacqGGOaakcqWGYbGCcqGGPaqkaaGccqWF0oazdaqhaaWcbaGaeGOmaidabaGaeGymaeJaeiikaGIaem4CamNaeiykaKcaaOGaeiykaKIaeyOeI0IaeiikaGIae8xSde2aa0baaSqaaiabigdaXaqaaiabcIcaOiabdkhaYjabcMcaPaaakiab=r7aKnaaDaaaleaacqaIXaqmaeaacqaIYaGmcqGGOaakcqWGZbWCcqGGPaqkaaGccqGGPaqkaeaaaeaacqGHRaWkcqGGOaakcqWFXoqydaqhaaWcbaGaeGymaedabaGaeiikaGIaemOCaiNaeiykaKcaaOGae8hTdq2aa0baaSqaaiabikdaYaqaaiabikdaYiabcIcaOiabdohaZjabcMcaPaaakiabcMcaPiabgkHiTiabcIcaOiab=f7aHnaaDaaaleaacqaIYaGmaeaacqGGOaakcqWGYbGCcqGGPaqkaaGccqWF0oazdaqhaaWcbaGaeGymaedabaGaeGymaeJaeiikaGIaem4CamNaeiykaKcaaOGaeiykaKIaey4kaSIaeiikaGIae8xSde2aa0baaSqaaiabikdaYaqaaiabcIcaOiabdkhaYjabcMcaPaaakiab=r7aKnaaDaaaleaacqaIYaGmaeaacqaIXaqmcqGGOaakcqWGZbWCcqGGPaqkaaGccqGGPaqkaeaaaeaacqGHRaWkcqGGOaakcqWFXoqydaqhaaWcbaGaeGOmaidabaGaeiikaGIaemOCaiNaeiykaKcaaOGae8hTdq2aa0baaSqaaiabigdaXaqaaiabikdaYiabcIcaOiabdohaZjabcMcaPaaakiabcMcaPiabgkHiTiabcIcaOiab=f7aHnaaDaaaleaacqaIYaGmaeaacqGGOaakcqWGYbGCcqGGPaqkaaGccqWF0oazdaqhaaWcbaGaeGOmaidabaGaeGOmaiJaeiikaGIaem4CamNaeiykaKcaaOGaeiykaKcabaGaeiikaGIaemizaqMaemizaqMaeiykaKYaaSbaaSqaaiabdkhaYjabdohaZbqabaGccqGH9aqpaeaacqGGOaakcqWF0oazdaqhaaWcbaGaeGymaedabaGaeGymaeJaeiikaGIaemOCaiNaeiykaKcaaOGae8hTdq2aa0baaSqaaiabigdaXaqaaiabigdaXiabcIcaOiabdohaZjabcMcaPaaakiabcMcaPiabgkHiTiabcIcaOiab=r7aKnaaDaaaleaacqaIXaqmaeaacqaIXaqmcqGGOaakcqWGYbGCcqGGPaqkaaGccqWF0oazdaqhaaWcbaGaeGOmaidabaGaeGymaeJaeiikaGIaem4CamNaeiykaKcaaOGaeiykaKIaeyOeI0IaeiikaGIae8hTdq2aa0baaSqaaiabigdaXaqaaiabigdaXiabcIcaOiabdkhaYjabcMcaPaaakiab=r7aKnaaDaaaleaacqaIXaqmaeaacqaIYaGmcqGGOaakcqWGZbWCcqGGPaqkaaGccqGGPaqkaeaaaeaacqGHRaWkcqGGOaakcqWF0oazdaqhaaWcbaGaeGymaedabaGaeGymaeJaeiikaGIaemOCaiNaeiykaKcaaOGae8hTdq2aa0baaSqaaiabikdaYaqaaiabikdaYiabcIcaOiabdohaZjabcMcaPaaakiabcMcaPiabgkHiTiabcIcaOiab=r7aKnaaDaaaleaacqaIYaGmaeaacqaIXaqmcqGGOaakcqWGYbGCcqGGPaqkaaGccqWF0oazdaqhaaWcbaGaeGymaedabaGaeGymaeJaeiikaGIaem4CamNaeiykaKcaaOGaeiykaKIaey4kaSIaeiikaGIae8hTdq2aa0baaSqaaiabikdaYaqaaiabigdaXiabcIcaOiabdkhaYjabcMcaPaaakiab=r7aKnaaDaaaleaacqaIYaGmaeaacqaIXaqmcqGGOaakcqWGZbWCcqGGPaqkaaGccqGGPaqkaeaaaeaacqGHRaWkcqGGOaakcqWF0oazdaqhaaWcbaGaeGOmaidabaGaeGymaeJaeiikaGIaemOCaiNaeiykaKcaaOGae8hTdq2aa0baaSqaaiabigdaXaqaaiabikdaYiabcIcaOiabdohaZjabcMcaPaaakiabcMcaPiabgkHiTiabcIcaOiab=r7aKnaaDaaaleaacqaIYaGmaeaacqaIXaqmcqGGOaakcqWGYbGCcqGGPaqkaaGccqWF0oazdaqhaaWcbaGaeGOmaidabaGaeGOmaiJaeiikaGIaem4CamNaeiykaKcaaOGaeiykaKIaeyOeI0IaeiikaGIae8hTdq2aa0baaSqaaiabigdaXaqaaiabikdaYiabcIcaOiabdkhaYjabcMcaPaaakiab=r7aKnaaDaaaleaacqaIXaqmaeaacqaIXaqmcqGGOaakcqWGZbWCcqGGPaqkaaGccqGGPaqkaeaaaeaacqGHRaWkcqGGOaakcqWF0oazdaqhaaWcbaGaeGymaedabaGaeGOmaiJaeiikaGIaemOCaiNaeiykaKcaaOGae8hTdq2aa0baaSqaaiabikdaYaqaaiabigdaXiabcIcaOiabdohaZjabcMcaPaaakiabcMcaPiabgUcaRiabcIcaOiab=r7aKnaaDaaaleaacqaIXaqmaeaacqaIYaGmcqGGOaakcqWGYbGCcqGGPaqkaaGccqWF0oazdaqhaaWcbaGaeGymaedabaGaeGOmaiJaeiikaGIaem4CamNaeiykaKcaaOGaeiykaKIaeyOeI0IaeiikaGIae8hTdq2aa0baaSqaaiabigdaXaqaaiabikdaYiabcIcaOiabdkhaYjabcMcaPaaakiab=r7aKnaaDaaaleaacqaIYaGmaeaacqaIYaGmcqGGOaakcqWGZbWCcqGGPaqkaaGccqGGPaqkaeaaaqaabeqaaiabgUcaRiabcIcaOiab=r7aKnaaDaaaleaacqaIYaGmaeaacqaIYaGmcqGGOaakcqWGYbGCcqGGPaqkaaGccqWF0oazdaqhaaWcbaGaeGymaedabaGaeGymaeJaeiikaGIaem4CamNaeiykaKcaaOGaeiykaKIaeyOeI0IaeiikaGIae8hTdq2aa0baaSqaaiabikdaYaqaaiabikdaYiabcIcaOiabdkhaYjabcMcaPaaakiab=r7aKnaaDaaaleaacqaIYaGmaeaacqaIXaqmcqGGOaakcqWGZbWCcqGGPaqkaaGccqGGPaqkcqGHsislcqGGOaakcqWF0oazdaqhaaWcbaGaeGOmaidabaGaeGOmaiJaeiikaGIaemOCaiNaeiykaKcaaOGae8hTdq2aa0baaSqaaiabigdaXaqaaiabikdaYiabcIcaOiabdohaZjabcMcaPaaakiabcMcaPaqaaiabgUcaRiabcIcaOiab=r7aKnaaDaaaleaacqaIYaGmaeaacqaIYaGmcqGGOaakcqWGYbGCcqGGPaqkaaGccqWF0oazdaqhaaWcbaGaeGOmaidabaGaeGOmaiJaeiikaGIaem4CamNaeiykaKcaaOGaeiykaKcaaaaaaa@2BE6@

The constraint conditions further lead to

a r = α 1 ( r ) ( p r ) ( 1 p r ) α 1 ( r ) = 1 ( 1 p r ) α 1 ( r ) d r = 1 ( 1 p r ) 2 δ 1 1 ( r ) ( a a ) r s = 1 ( 1 p r ) ( 1 p s ) ( α 1 ( r ) α 1 ( s ) ) ( a d ) r s = 1 ( 1 p r ) ( 1 p s ) 2 ( α 1 ( r ) δ 1 1 ( s ) ) ( d d ) r s = 1 ( 1 p r ) 2 ( 1 p s ) 2 ( δ 1 1 ( r ) δ 1 1 ( s ) ) MathType@MTEF@5@5@+=feaafiart1ev1aaatCvAUfKttLearuWrP9MDH5MBPbIqV92AaeXatLxBI9gBaebbnrfifHhDYfgasaacH8akY=wiFfYdH8Gipec8Eeeu0xXdbba9frFj0=OqFfea0dXdd9vqai=hGuQ8kuc9pgc9s8qqaq=dirpe0xb9q8qiLsFr0=vr0=vr0dc8meaabaqaciaacaGaaeqabaqabeGadaaakqaaeeqaaiabdggaHnaaBaaaleaacqWGYbGCaeqaaOGaeyypa0dcciGae8xSde2aa0baaSqaaiabigdaXaqaaiabcIcaOiabdkhaYjabcMcaPaaakiabgkHiTmaalaaabaGaeiikaGIaeyOeI0IaemiCaa3aaSbaaSqaaiabdkhaYbqabaGccqGGPaqkaeaacqGGOaakcqaIXaqmcqGHsislcqWGWbaCdaWgaaWcbaGaemOCaihabeaakiabcMcaPaaacqWFXoqydaqhaaWcbaGaeGymaedabaGaeiikaGIaemOCaiNaeiykaKcaaOGaeyypa0ZaaSaaaeaacqaIXaqmaeaacqGGOaakcqaIXaqmcqGHsislcqWGWbaCdaWgaaWcbaGaemOCaihabeaakiabcMcaPaaacqWFXoqydaqhaaWcbaGaeGymaedabaGaeiikaGIaemOCaiNaeiykaKcaaaGcbaGaemizaq2aaSbaaSqaaiabdkhaYbqabaGccqGH9aqpdaWcaaqaaiabigdaXaqaaiabcIcaOiabigdaXiabgkHiTiabdchaWnaaBaaaleaacqWGYbGCaeqaaOGaeiykaKYaaWbaaSqabeaacqaIYaGmaaaaaOGae8hTdq2aa0baaSqaaiabigdaXaqaaiabigdaXiabcIcaOiabdkhaYjabcMcaPaaaaOqaaiabcIcaOiabdggaHjabdggaHjabcMcaPmaaBaaaleaacqWGYbGCcqWGZbWCaeqaaOGaeyypa0ZaaSaaaeaacqaIXaqmaeaacqGGOaakcqaIXaqmcqGHsislcqWGWbaCdaWgaaWcbaGaemOCaihabeaakiabcMcaPiabcIcaOiabigdaXiabgkHiTiabdchaWnaaBaaaleaacqWGZbWCaeqaaOGaeiykaKcaaiabcIcaOiab=f7aHnaaDaaaleaacqaIXaqmaeaacqGGOaakcqWGYbGCcqGGPaqkaaGccqWFXoqydaqhaaWcbaGaeGymaedabaGaeiikaGIaem4CamNaeiykaKcaaOGaeiykaKcabaGaeiikaGIaemyyaeMaemizaqMaeiykaKYaaSbaaSqaaiabdkhaYjabdohaZbqabaGccqGH9aqpdaWcaaqaaiabigdaXaqaaiabcIcaOiabigdaXiabgkHiTiabdchaWnaaBaaaleaacqWGYbGCaeqaaOGaeiykaKIaeiikaGIaeGymaeJaeyOeI0IaemiCaa3aaSbaaSqaaiabdohaZbqabaGccqGGPaqkdaahaaWcbeqaaiabikdaYaaaaaGccqGGOaakcqWFXoqydaqhaaWcbaGaeGymaedabaGaeiikaGIaemOCaiNaeiykaKcaaOGae8hTdq2aa0baaSqaaiabigdaXaqaaiabigdaXiabcIcaOiabdohaZjabcMcaPaaakiabcMcaPaqaaiabcIcaOiabdsgaKjabdsgaKjabcMcaPmaaBaaaleaacqWGYbGCcqWGZbWCaeqaaOGaeyypa0ZaaSaaaeaacqaIXaqmaeaacqGGOaakcqaIXaqmcqGHsislcqWGWbaCdaWgaaWcbaGaemOCaihabeaakiabcMcaPmaaCaaaleqabaGaeGOmaidaaOGaeiikaGIaeGymaeJaeyOeI0IaemiCaa3aaSbaaSqaaiabdohaZbqabaGccqGGPaqkdaahaaWcbeqaaiabikdaYaaaaaGccqGGOaakcqWF0oazdaqhaaWcbaGaeGymaedabaGaeGymaeJaeiikaGIaemOCaiNaeiykaKcaaOGae8hTdq2aa0baaSqaaiabigdaXaqaaiabigdaXiabcIcaOiabdohaZjabcMcaPaaakiabcMcaPaaaaa@DE64@

With Hardy-Weinberg, linkage and genotypic equilibria, the partial regression coefficients in the above model correspond to the simple regression coefficients

a r = 1 ( 1 p r ) [ E ( G | z M 1 ( r ) = 1 ) E ( G ) ] d r = 1 ( 1 p r ) 2 [ E ( G | z M 1 ( r ) = z F 1 ( r ) = 1 ) 2 E ( G | z M 1 ( r ) = 1 ) + E ( G ) ] ( a a ) r s = 1 ( 1 p r ) ( 1 p s ) [ E ( G | z M 1 ( r ) = z M 1 ( s ) = 1 ) E ( G | z M 1 ( r ) = 1 ) E ( G | z M 1 ( s ) = 1 ) + E ( G ) ] ( a d ) r s = 1 ( 1 p r ) ( 1 p s ) 2 [ E ( G | z M 1 ( r ) = z M 1 ( s ) = z F 1 ( s ) = 1 ) 2 E ( G | z M 1 ( r ) = z M 1 ( s ) = 1 ) E ( G | z M 1 ( s ) = z F 1 ( s ) = 1 ) + E ( G | z M 1 ( r ) = 1 ) + 2 E ( G | z M 1 ( s ) = 1 ) E ( G ) ] ( d d ) r s = 1 ( 1 p r ) 2 ( 1 p s ) 2 [ E ( G | z M 1 ( r ) = z F 1 ( r ) = z M 1 ( s ) = z F 1 ( s ) = 1 ) 2 E ( G | z M 1 ( r ) = z F 1 ( r ) = z M 1 ( s ) = 1 ) 2 E ( G | z M 1 ( r ) = z M 1 ( s ) = z F 1 ( s ) = 1 ) E ( G | z M 1 ( r ) = z F 1 ( r ) = 1 ) + E ( G | z M 1 ( s ) = z F 1 ( r ) = 1 ) + 4 E ( G | z M 1 ( r ) = z F 1 ( s ) = 1 ) 2 E ( G | z M 1 ( r ) = 1 ) 2 E ( G | z M 1 ( s ) = 1 ) + E ( G ) ] MathType@MTEF@5@5@+=feaafiart1ev1aaatCvAUfKttLearuWrP9MDH5MBPbIqV92AaeXatLxBI9gBaebbnrfifHhDYfgasaacH8akY=wiFfYdH8Gipec8Eeeu0xXdbba9frFj0=OqFfea0dXdd9vqai=hGuQ8kuc9pgc9s8qqaq=dirpe0xb9q8qiLsFr0=vr0=vr0dc8meaabaqaciaacaGaaeqabaqabeGadaaakeaafaqaaeGedaaaaaaaaeaacqWGHbqydaWgaaWcbaGaemOCaihabeaaaOqaaiabg2da9aqaamaalaaabaGaeGymaedabaGaeiikaGIaeGymaeJaeyOeI0IaemiCaa3aaSbaaSqaaiabdkhaYbqabaGccqGGPaqkaaGaei4waSLaemyrauKaeiikaGIaem4raCKaeiiFaWNaemOEaO3aa0baaSqaaiabd2eannaaBaaameaacqaIXaqmaeqaaaWcbaGaeiikaGIaemOCaiNaeiykaKcaaOGaeyypa0JaeGymaeJaeiykaKIaeyOeI0IaemyrauKaeiikaGIaem4raCKaeiykaKIaeiyxa0fabaGaemizaq2aaSbaaSqaaiabdkhaYbqabaaakeaacqGH9aqpaeaadaWcaaqaaiabigdaXaqaaiabcIcaOiabigdaXiabgkHiTiabdchaWnaaBaaaleaacqWGYbGCaeqaaOGaeiykaKYaaWbaaSqabeaacqaIYaGmaaaaaOGaei4waSLaemyrauKaeiikaGIaem4raCKaeiiFaWNaemOEaO3aa0baaSqaaiabd2eannaaBaaameaacqaIXaqmaeqaaaWcbaGaeiikaGIaemOCaiNaeiykaKcaaOGaeyypa0JaemOEaO3aa0baaSqaaiabdAeagnaaBaaameaacqaIXaqmaeqaaaWcbaGaeiikaGIaemOCaiNaeiykaKcaaOGaeyypa0JaeGymaeJaeiykaKcabaaabaaabaGaeyOeI0IaeGOmaiJaemyrauKaeiikaGIaem4raCKaeiiFaWNaemOEaO3aa0baaSqaaiabd2eannaaBaaameaacqaIXaqmaeqaaaWcbaGaeiikaGIaemOCaiNaeiykaKcaaOGaeyypa0JaeGymaeJaeiykaKIaey4kaSIaemyrauKaeiikaGIaem4raCKaeiykaKIaeiyxa0fabaGaeiikaGIaemyyaeMaemyyaeMaeiykaKYaaSbaaSqaaiabdkhaYjabdohaZbqabaaakeaacqGH9aqpaeaadaWcaaqaaiabigdaXaqaaiabcIcaOiabigdaXiabgkHiTiabdchaWnaaBaaaleaacqWGYbGCaeqaaOGaeiykaKIaeiikaGIaeGymaeJaeyOeI0IaemiCaa3aaSbaaSqaaiabdohaZbqabaGccqGGPaqkaaGaei4waSLaemyrauKaeiikaGIaem4raCKaeiiFaWNaemOEaO3aa0baaSqaaiabd2eannaaBaaameaacqaIXaqmaeqaaaWcbaGaeiikaGIaemOCaiNaeiykaKcaaOGaeyypa0JaemOEaO3aa0baaSqaaiabd2eannaaBaaameaacqaIXaqmaeqaaaWcbaGaeiikaGIaem4CamNaeiykaKcaaOGaeyypa0JaeGymaeJaeiykaKcabaaabaaabaGaeyOeI0IaemyrauKaeiikaGIaem4raCKaeiiFaWNaemOEaO3aa0baaSqaaiabd2eannaaBaaameaacqaIXaqmaeqaaaWcbaGaeiikaGIaemOCaiNaeiykaKcaaOGaeyypa0JaeGymaeJaeiykaKIaeyOeI0IaemyrauKaeiikaGIaem4raCKaeiiFaWNaemOEaO3aa0baaSqaaiabd2eannaaBaaameaacqaIXaqmaeqaaaWcbaGaeiikaGIaem4CamNaeiykaKcaaOGaeyypa0JaeGymaeJaeiykaKIaey4kaSIaemyrauKaeiikaGIaem4raCKaeiykaKIaeiyxa0fabaGaeiikaGIaemyyaeMaemizaqMaeiykaKYaaSbaaSqaaiabdkhaYjabdohaZbqabaaakeaacqGH9aqpaeaadaWcaaqaaiabigdaXaqaaiabcIcaOiabigdaXiabgkHiTiabdchaWnaaBaaaleaacqWGYbGCaeqaaOGaeiykaKIaeiikaGIaeGymaeJaeyOeI0IaemiCaa3aaSbaaSqaaiabdohaZbqabaGccqGGPaqkdaahaaWcbeqaaiabikdaYaaaaaGccqGGBbWwcqWGfbqrcqGGOaakcqWGhbWrcqGG8baFcqWG6bGEdaqhaaWcbaGaemyta00aaSbaaWqaaiabigdaXaqabaaaleaacqGGOaakcqWGYbGCcqGGPaqkaaGccqGH9aqpcqWG6bGEdaqhaaWcbaGaemyta00aaSbaaWqaaiabigdaXaqabaaaleaacqGGOaakcqWGZbWCcqGGPaqkaaGccqGH9aqpcqWG6bGEdaqhaaWcbaGaemOray0aaSbaaWqaaiabigdaXaqabaaaleaacqGGOaakcqWGZbWCcqGGPaqkaaGccqGH9aqpcqaIXaqmcqGGPaqkaeaaaeaaaeaacqGHsislcqaIYaGmcqWGfbqrcqGGOaakcqWGhbWrcqGG8baFcqWG6bGEdaqhaaWcbaGaemyta00aaSbaaWqaaiabigdaXaqabaaaleaacqGGOaakcqWGYbGCcqGGPaqkaaGccqGH9aqpcqWG6bGEdaqhaaWcbaGaemyta00aaSbaaWqaaiabigdaXaqabaaaleaacqGGOaakcqWGZbWCcqGGPaqkaaGccqGH9aqpcqaIXaqmcqGGPaqkaeaaaeaaaeaacqGHsislcqWGfbqrcqGGOaakcqWGhbWrcqGG8baFcqWG6bGEdaqhaaWcbaGaemyta00aaSbaaWqaaiabigdaXaqabaaaleaacqGGOaakcqWGZbWCcqGGPaqkaaGccqGH9aqpcqWG6bGEdaqhaaWcbaGaemOray0aaSbaaWqaaiabigdaXaqabaaaleaacqGGOaakcqWGZbWCcqGGPaqkaaGccqGH9aqpcqaIXaqmcqGGPaqkcqGHRaWkcqWGfbqrcqGGOaakcqWGhbWrcqGG8baFcqWG6bGEdaqhaaWcbaGaemyta00aaSbaaWqaaiabigdaXaqabaaaleaacqGGOaakcqWGYbGCcqGGPaqkaaGccqGH9aqpcqaIXaqmcqGGPaqkaeaaaeaaaeaacqGHRaWkcqaIYaGmcqWGfbqrcqGGOaakcqWGhbWrcqGG8baFcqWG6bGEdaqhaaWcbaGaemyta00aaSbaaWqaaiabigdaXaqabaaaleaacqGGOaakcqWGZbWCcqGGPaqkaaGccqGH9aqpcqaIXaqmcqGGPaqkcqGHsislcqWGfbqrcqGGOaakcqWGhbWrcqGGPaqkcqGGDbqxaeaacqGGOaakcqWGKbazcqWGKbazcqGGPaqkdaWgaaWcbaGaemOCaiNaem4CamhabeaaaOqaaiabg2da9aqaamaalaaabaGaeGymaedabaGaeiikaGIaeGymaeJaeyOeI0IaemiCaa3aaSbaaSqaaiabdkhaYbqabaGccqGGPaqkdaahaaWcbeqaaiabikdaYaaakiabcIcaOiabigdaXiabgkHiTiabdchaWnaaBaaaleaacqWGZbWCaeqaaOGaeiykaKYaaWbaaSqabeaacqaIYaGmaaaaaaGcbaaabaaabaGaei4waSLaemyrauKaeiikaGIaem4raCKaeiiFaWNaemOEaO3aa0baaSqaaiabd2eannaaBaaameaacqaIXaqmaeqaaaWcbaGaeiikaGIaemOCaiNaeiykaKcaaOGaeyypa0JaemOEaO3aa0baaSqaaiabdAeagnaaBaaameaacqaIXaqmaeqaaaWcbaGaeiikaGIaemOCaiNaeiykaKcaaOGaeyypa0JaemOEaO3aa0baaSqaaiabd2eannaaBaaameaacqaIXaqmaeqaaaWcbaGaeiikaGIaem4CamNaeiykaKcaaOGaeyypa0JaemOEaO3aa0baaSqaaiabdAeagnaaBaaameaacqaIXaqmaeqaaaWcbaGaeiikaGIaem4CamNaeiykaKcaaOGaeyypa0JaeGymaeJaeiykaKcabaaabaaabaGaeyOeI0IaeGOmaiJaemyrauKaeiikaGIaem4raCKaeiiFaWNaemOEaO3aa0baaSqaaiabd2eannaaBaaameaacqaIXaqmaeqaaaWcbaGaeiikaGIaemOCaiNaeiykaKcaaOGaeyypa0JaemOEaO3aa0baaSqaaiabdAeagnaaBaaameaacqaIXaqmaeqaaaWcbaGaeiikaGIaemOCaiNaeiykaKcaaOGaeyypa0JaemOEaO3aa0baaSqaaiabd2eannaaBaaameaacqaIXaqmaeqaaaWcbaGaeiikaGIaem4CamNaeiykaKcaaOGaeyypa0JaeGymaeJaeiykaKcabaaabaaabaGaeyOeI0IaeGOmaiJaemyrauKaeiikaGIaem4raCKaeiiFaWNaemOEaO3aa0baaSqaaiabd2eannaaBaaameaacqaIXaqmaeqaaaWcbaGaeiikaGIaemOCaiNaeiykaKcaaOGaeyypa0JaemOEaO3aa0baaSqaaiabd2eannaaBaaameaacqaIXaqmaeqaaaWcbaGaeiikaGIaem4CamNaeiykaKcaaOGaeyypa0JaemOEaO3aa0baaSqaaiabdAeagnaaBaaameaacqaIXaqmaeqaaaWcbaGaeiikaGIaem4CamNaeiykaKcaaOGaeyypa0JaeGymaeJaeiykaKcabaaabaaabaGaeyOeI0IaemyrauKaeiikaGIaem4raCKaeiiFaWNaemOEaO3aa0baaSqaaiabd2eannaaBaaameaacqaIXaqmaeqaaaWcbaGaeiikaGIaemOCaiNaeiykaKcaaOGaeyypa0JaemOEaO3aa0baaSqaaiabdAeagnaaBaaameaacqaIXaqmaeqaaaWcbaGaeiikaGIaemOCaiNaeiykaKcaaOGaeyypa0JaeGymaeJaeiykaKcabaaabaaabaGaey4kaSIaemyrauKaeiikaGIaem4raCKaeiiFaWNaemOEaO3aa0baaSqaaiabd2eannaaBaaameaacqaIXaqmaeqaaaWcbaGaeiikaGIaem4CamNaeiykaKcaaOGaeyypa0JaemOEaO3aa0baaSqaaiabdAeagnaaBaaameaacqaIXaqmaeqaaaWcbaGaeiikaGIaemOCaiNaeiykaKcaaOGaeyypa0JaeGymaeJaeiykaKcabaaabaaabaGaey4kaSIaeGinaqJaemyrauKaeiikaGIaem4raCKaeiiFaWNaemOEaO3aa0baaSqaaiabd2eannaaBaaameaacqaIXaqmaeqaaaWcbaGaeiikaGIaemOCaiNaeiykaKcaaOGaeyypa0JaemOEaO3aa0baaSqaaiabdAeagnaaBaaameaacqaIXaqmaeqaaaWcbaGaeiikaGIaem4CamNaeiykaKcaaOGaeyypa0JaeGymaeJaeiykaKcabaaabaaabaGaeyOeI0IaeGOmaiJaemyrauKaeiikaGIaem4raCKaeiiFaWNaemOEaO3aa0baaSqaaiabd2eannaaBaaameaacqaIXaqmaeqaaaWcbaGaeiikaGIaemOCaiNaeiykaKcaaOGaeyypa0JaeGymaeJaeiykaKIaeyOeI0IaeGOmaiJaemyrauKaeiikaGIaem4raCKaeiiFaWNaemOEaO3aa0baaSqaaiabd2eannaaBaaameaacqaIXaqmaeqaaaWcbaGaeiikaGIaem4CamNaeiykaKcaaOGaeyypa0JaeGymaeJaeiykaKcabaaabaaabaGaey4kaSIaemyrauKaeiikaGIaem4raCKaeiykaKIaeiyxa0faaaaa@596E@

Note that in this case the genetic effects in the original model are

α 1 ( r ) = E ( G | z M 1 ( r ) = 1 ) E ( G ) δ 1 1 ( r ) = E ( G | z M 1 ( r ) = z F 1 ( r ) = 1 ) 2 E ( G | z M 1 ( r ) = 1 ) + E ( G ) ( α 1 ( r ) α 1 ( s ) ) = E ( G | z M 1 ( r ) = z M 1 ( s ) = 1 ) E ( G | z M 1 ( r ) = 1 ) E ( G | z M 1 ( s ) = 1 ) + E ( G ) ( α 1 ( r ) δ 1 1 ( s ) ) = E ( G | z M 1 ( r ) = z M 1 ( s ) = z F 1 ( s ) = 1 ) 2 E ( G | z M 1 ( r ) = z M 1 ( s ) = 1 ) E ( G | z M 1 ( s ) = z F 1 ( s ) = 1 ) + E ( G | z M 1 ( r ) = 1 ) + 2 E ( G | z M 1 ( s ) = 1 ) E ( G ) ( δ 1 1 ( r ) δ 1 1 ( s ) ) = E ( G | z M 1 ( r ) = z F 1 ( r ) = z M 1 ( s ) = z F 1 ( s ) = 1 ) 2 E ( G | z M 1 ( r ) = z F 1 ( r ) = z M 1 ( s ) = 1 ) 2 E ( G | z M 1 ( r ) = z M 1 ( s ) = z F 1 ( s ) = 1 ) + E ( G | z M 1 ( r ) = z F 1 ( r ) = 1 ] + E ( G | z M 1 ( s ) = z F 1 ( s ) = 1 ) + 4 E ( G | z M 1 ( r ) = z F 1 ( s ) = 1 ) 2 E ( G | z M 1 ( r ) = 1 ) 2 E ( G | z M 1 ( s ) = 1 ) + E ( G ) MathType@MTEF@5@5@+=feaafiart1ev1aaatCvAUfKttLearuWrP9MDH5MBPbIqV92AaeXatLxBI9gBaebbnrfifHhDYfgasaacH8akY=wiFfYdH8Gipec8Eeeu0xXdbba9frFj0=OqFfea0dXdd9vqai=hGuQ8kuc9pgc9s8qqaq=dirpe0xb9q8qiLsFr0=vr0=vr0dc8meaabaqaciaacaGaaeqabaqabeGadaaakeaafaqaaeWedaaaaaaaaeaaiiGacqWFXoqydaqhaaWcbaGaeGymaedabaGaeiikaGIaemOCaiNaeiykaKcaaaGcbaGaeyypa0dabaGaemyrauKaeiikaGIaem4raCKaeiiFaWNaemOEaO3aa0baaSqaaiabd2eannaaBaaameaacqaIXaqmaeqaaaWcbaGaeiikaGIaemOCaiNaeiykaKcaaOGaeyypa0JaeGymaeJaeiykaKIaeyOeI0IaemyrauKaeiikaGIaem4raCKaeiykaKcabaGae8hTdq2aa0baaSqaaiabigdaXaqaaiabigdaXaaakiabcIcaOiabdkhaYjabcMcaPaqaaiabg2da9aqaaiabdweafjabcIcaOiabdEeahjabcYha8jabdQha6naaDaaaleaacqWGnbqtdaWgaaadbaGaeGymaedabeaaaSqaaiabcIcaOiabdkhaYjabcMcaPaaakiabg2da9iabdQha6naaDaaaleaacqWGgbGrdaWgaaadbaGaeGymaedabeaaaSqaaiabcIcaOiabdkhaYjabcMcaPaaakiabg2da9iabigdaXiabcMcaPaqaaaqaaaqaaiabgkHiTiabikdaYiabdweafjabcIcaOiabdEeahjabcYha8jabdQha6naaDaaaleaacqWGnbqtdaWgaaadbaGaeGymaedabeaaaSqaaiabcIcaOiabdkhaYjabcMcaPaaakiabg2da9iabigdaXiabcMcaPiabgUcaRiabdweafjabcIcaOiabdEeahjabcMcaPaqaaiabcIcaOiab=f7aHnaaDaaaleaacqaIXaqmaeaacqGGOaakcqWGYbGCcqGGPaqkaaGccqWFXoqydaqhaaWcbaGaeGymaedabaGaeiikaGIaem4CamNaeiykaKcaaOGaeiykaKcabaGaeyypa0dabaGaemyrauKaeiikaGIaem4raCKaeiiFaWNaemOEaO3aa0baaSqaaiabd2eannaaBaaameaacqaIXaqmaeqaaaWcbaGaeiikaGIaemOCaiNaeiykaKcaaOGaeyypa0JaemOEaO3aa0baaSqaaiabd2eannaaBaaameaacqaIXaqmaeqaaaWcbaGaeiikaGIaem4CamNaeiykaKcaaOGaeyypa0JaeGymaeJaeiykaKcabaaabaaabaGaeyOeI0IaemyrauKaeiikaGIaem4raCKaeiiFaWNaemOEaO3aa0baaSqaaiabd2eannaaBaaameaacqaIXaqmaeqaaaWcbaGaeiikaGIaemOCaiNaeiykaKcaaOGaeyypa0JaeGymaeJaeiykaKIaeyOeI0IaemyrauKaeiikaGIaem4raCKaeiiFaWNaemOEaO3aa0baaSqaaiabd2eannaaBaaameaacqaIXaqmaeqaaaWcbaGaeiikaGIaem4CamNaeiykaKcaaOGaeyypa0JaeGymaeJaeiykaKcabaaabaaabaGaey4kaSIaemyrauKaeiikaGIaem4raCKaeiykaKcabaGaeiikaGIae8xSde2aa0baaSqaaiabigdaXaqaaiabcIcaOiabdkhaYjabcMcaPaaakiab=r7aKnaaDaaaleaacqaIXaqmaeaacqaIXaqmcqGGOaakcqWGZbWCcqGGPaqkaaGccqGGPaqkaeaacqGH9aqpaeaacqWGfbqrcqGGOaakcqWGhbWrcqGG8baFcqWG6bGEdaqhaaWcbaGaemyta00aaSbaaWqaaiabigdaXaqabaaaleaacqGGOaakcqWGYbGCcqGGPaqkaaGccqGH9aqpcqWG6bGEdaqhaaWcbaGaemyta00aaSbaaWqaaiabigdaXaqabaaaleaacqGGOaakcqWGZbWCcqGGPaqkaaGccqGH9aqpcqWG6bGEdaqhaaWcbaGaemOray0aaSbaaWqaaiabigdaXaqabaaaleaacqGGOaakcqWGZbWCcqGGPaqkaaGccqGH9aqpcqaIXaqmcqGGPaqkaeaaaeaaaeaacqGHsislcqaIYaGmcqWGfbqrcqGGOaakcqWGhbWrcqGG8baFcqWG6bGEdaqhaaWcbaGaemyta00aaSbaaWqaaiabigdaXaqabaaaleaacqGGOaakcqWGYbGCcqGGPaqkaaGccqGH9aqpcqWG6bGEdaqhaaWcbaGaemyta00aaSbaaWqaaiabigdaXaqabaaaleaacqGGOaakcqWGZbWCcqGGPaqkaaGccqGH9aqpcqaIXaqmcqGGPaqkaeaaaeaaaeaacqGHsislcqWGfbqrcqGGOaakcqWGhbWrcqGG8baFcqWG6bGEdaqhaaWcbaGaemyta00aaSbaaWqaaiabigdaXaqabaaaleaacqGGOaakcqWGZbWCcqGGPaqkaaGccqGH9aqpcqWG6bGEdaqhaaWcbaGaemOray0aaSbaaWqaaiabigdaXaqabaaaleaacqGGOaakcqWGZbWCcqGGPaqkaaGccqGH9aqpcqaIXaqmcqGGPaqkaeaaaeaaaeaacqGHRaWkcqWGfbqrcqGGOaakcqWGhbWrcqGG8baFcqWG6bGEdaqhaaWcbaGaemyta00aaSbaaWqaaiabigdaXaqabaaaleaacqGGOaakcqWGYbGCcqGGPaqkaaGccqGH9aqpcqaIXaqmcqGGPaqkcqGHRaWkcqaIYaGmcqWGfbqrcqGGOaakcqWGhbWrcqGG8baFcqWG6bGEdaqhaaWcbaGaemyta00aaSbaaWqaaiabigdaXaqabaaaleaacqGGOaakcqWGZbWCcqGGPaqkaaGccqGH9aqpcqaIXaqmcqGGPaqkaeaaaeaaaeaacqGHsislcqWGfbqrcqGGOaakcqWGhbWrcqGGPaqkaeaacqGGOaakcqWF0oazdaqhaaWcbaGaeGymaedabaGaeGymaeJaeiikaGIaemOCaiNaeiykaKcaaOGae8hTdq2aa0baaSqaaiabigdaXaqaaiabigdaXiabcIcaOiabdohaZjabcMcaPaaakiabcMcaPaqaaiabg2da9aqaaiabdweafjabcIcaOiabdEeahjabcYha8jabdQha6naaDaaaleaacqWGnbqtdaWgaaadbaGaeGymaedabeaaaSqaaiabcIcaOiabdkhaYjabcMcaPaaakiabg2da9iabdQha6naaDaaaleaacqWGgbGrdaWgaaadbaGaeGymaedabeaaaSqaaiabcIcaOiabdkhaYjabcMcaPaaakiabg2da9iabdQha6naaDaaaleaacqWGnbqtdaWgaaadbaGaeGymaedabeaaaSqaaiabcIcaOiabdohaZjabcMcaPaaakiabg2da9iabdQha6naaDaaaleaacqWGgbGrdaWgaaadbaGaeGymaedabeaaaSqaaiabcIcaOiabdohaZjabcMcaPaaakiabg2da9iabigdaXiabcMcaPaqaaaqaaaqaaiabgkHiTiabikdaYiabdweafjabcIcaOiabdEeahjabcYha8jabdQha6naaDaaaleaacqWGnbqtdaWgaaadbaGaeGymaedabeaaaSqaaiabcIcaOiabdkhaYjabcMcaPaaakiabg2da9iabdQha6naaDaaaleaacqWGgbGrdaWgaaadbaGaeGymaedabeaaaSqaaiabcIcaOiabdkhaYjabcMcaPaaakiabg2da9iabdQha6naaDaaaleaacqWGnbqtdaWgaaadbaGaeGymaedabeaaaSqaaiabcIcaOiabdohaZjabcMcaPaaakiabg2da9iabigdaXiabcMcaPaqaaaqaaaqaaiabgkHiTiabikdaYiabdweafjabcIcaOiabdEeahjabcYha8jabdQha6naaDaaaleaacqWGnbqtdaWgaaadbaGaeGymaedabeaaaSqaaiabcIcaOiabdkhaYjabcMcaPaaakiabg2da9iabdQha6naaDaaaleaacqWGnbqtdaWgaaadbaGaeGymaedabeaaaSqaaiabcIcaOiabdohaZjabcMcaPaaakiabg2da9iabdQha6naaDaaaleaacqWGgbGrdaWgaaadbaGaeGymaedabeaaaSqaaiabcIcaOiabdohaZjabcMcaPaaakiabg2da9iabigdaXiabcMcaPaqaaaqaaaqaaiabgUcaRiabdweafjabcIcaOiabdEeahjabcYha8jabdQha6naaDaaaleaacqWGnbqtdaWgaaadbaGaeGymaedabeaaaSqaaiabcIcaOiabdkhaYjabcMcaPaaakiabg2da9iabdQha6naaDaaaleaacqWGgbGrdaWgaaadbaGaeGymaedabeaaaSqaaiabcIcaOiabdkhaYjabcMcaPaaakiabg2da9iabigdaXiabc2faDbqaaaqaaaqaaiabgUcaRiabdweafjabcIcaOiabdEeahjabcYha8jabdQha6naaDaaaleaacqWGnbqtdaWgaaadbaGaeGymaedabeaaaSqaaiabcIcaOiabdohaZjabcMcaPaaakiabg2da9iabdQha6naaDaaaleaacqWGgbGrdaWgaaadbaGaeGymaedabeaaaSqaaiabcIcaOiabdohaZjabcMcaPaaakiabg2da9iabigdaXiabcMcaPaqaaaqaaaqaaiabgUcaRiabisda0iabdweafjabcIcaOiabdEeahjabcYha8jabdQha6naaDaaaleaacqWGnbqtdaWgaaadbaGaeGymaedabeaaaSqaaiabcIcaOiabdkhaYjabcMcaPaaakiabg2da9iabdQha6naaDaaaleaacqWGgbGrdaWgaaadbaGaeGymaedabeaaaSqaaiabcIcaOiabdohaZjabcMcaPaaakiabg2da9iabigdaXiabcMcaPaqaaaqaaaqaaiabgkHiTiabikdaYiabdweafjabcIcaOiabdEeahjabcYha8jabdQha6naaDaaaleaacqWGnbqtdaWgaaadbaGaeGymaedabeaaaSqaaiabcIcaOiabdkhaYjabcMcaPaaakiabg2da9iabigdaXiabcMcaPiabgkHiTiabikdaYiabdweafjabcIcaOiabdEeahjabcYha8jabdQha6naaDaaaleaacqWGnbqtdaWgaaadbaGaeGymaedabeaaaSqaaiabcIcaOiabdohaZjabcMcaPaaakiabg2da9iabigdaXiabcMcaPaqaaaqaaaqaaiabgUcaRiabdweafjabcIcaOiabdEeahjabcMcaPaaaaaa@2ACD@

They are the same as the least squares definition.

Yet another form of this result is shown in Table 1 of [10]. Zeng et al. [10] also show that linkage disequilibrium does not change the values of genetic effects in a full model. This means that the partial regression coefficients in a disequilibrium population equal to the simple regression coefficients in a corresponding equilibrium population with the same allelic frequency configuration.

The partition of genotypic variance in an equilibrium population is

V G = 2 r = 1 m p r ( 1 p r ) a r 2 + r = 1 m p r 2 ( 1 p r ) 2 d r 2 + 4 r < s p r p s ( 1 p r ) ( 1 p s ) ( a a ) r s 2 + 2 r s p r ( 1 p r ) p s 2 ( 1 p s ) 2 ( a d ) r s 2 + r < s p r 2 p s 2 ( 1 p r ) 2 ( 1 p s ) 2 ( d d ) r s 2 ( 23 ) MathType@MTEF@5@5@+=feaafiart1ev1aaatCvAUfKttLearuWrP9MDH5MBPbIqV92AaeXatLxBI9gBaebbnrfifHhDYfgasaacH8akY=wiFfYdH8Gipec8Eeeu0xXdbba9frFj0=OqFfea0dXdd9vqai=hGuQ8kuc9pgc9s8qqaq=dirpe0xb9q8qiLsFr0=vr0=vr0dc8meaabaqaciaacaGaaeqabaqabeGadaaakeaafaqabeabcaaaaeaacqWGwbGvdaWgaaWcbaGaem4raCeabeaakiabg2da9iabikdaYmaaqahabaGaemiCaa3aaSbaaSqaaiabdkhaYbqabaGccqGGOaakcqaIXaqmcqGHsislcqWGWbaCdaWgaaWcbaGaemOCaihabeaakiabcMcaPiabdggaHnaaDaaaleaacqWGYbGCaeaacqaIYaGmaaGccqGHRaWkdaaeWbqaaiabdchaWnaaDaaaleaacqWGYbGCaeaacqaIYaGmaaGccqGGOaakcqaIXaqmcqGHsislcqWGWbaCdaWgaaWcbaGaemOCaihabeaakiabcMcaPmaaCaaaleqabaGaeGOmaidaaOGaemizaq2aa0baaSqaaiabdkhaYbqaaiabikdaYaaaaeaacqWGYbGCcqGH9aqpcqaIXaqmaeaacqWGTbqBa0GaeyyeIuoaaSqaaiabdkhaYjabg2da9iabigdaXaqaaiabd2gaTbqdcqGHris5aaGcbaaabaGaey4kaSIaeGinaqZaaabuaeaacqWGWbaCdaWgaaWcbaGaemOCaihabeaakiabdchaWnaaBaaaleaacqWGZbWCaeqaaOGaeiikaGIaeGymaeJaeyOeI0IaemiCaa3aaSbaaSqaaiabdkhaYbqabaGccqGGPaqkcqGGOaakcqaIXaqmcqGHsislcqWGWbaCdaWgaaWcbaGaem4CamhabeaakiabcMcaPiabcIcaOiabdggaHjabdggaHjabcMcaPmaaDaaaleaacqWGYbGCcqWGZbWCaeaacqaIYaGmaaaabaGaemOCaiNaeyipaWJaem4CamhabeqdcqGHris5aaGcbaaabaGaey4kaSIaeGOmaiZaaabuaeaacqWGWbaCdaWgaaWcbaGaemOCaihabeaakiabcIcaOiabigdaXiabgkHiTiabdchaWnaaBaaaleaacqWGYbGCaeqaaOGaeiykaKIaemiCaa3aa0baaSqaaiabdohaZbqaaiabikdaYaaakiabcIcaOiabigdaXiabgkHiTiabdchaWnaaBaaaleaacqWGZbWCaeqaaOGaeiykaKYaaWbaaSqabeaacqaIYaGmaaGccqGGOaakcqWGHbqycqWGKbazcqGGPaqkdaqhaaWcbaGaemOCaiNaem4CamhabaGaeGOmaidaaaqaaiabdkhaYjabgcMi5kabdohaZbqab0GaeyyeIuoaaOqaaaqaaiabgUcaRmaaqafabaGaemiCaa3aa0baaSqaaiabdkhaYbqaaiabikdaYaaakiabdchaWnaaDaaaleaacqWGZbWCaeaacqaIYaGmaaGccqGGOaakcqaIXaqmcqGHsislcqWGWbaCdaWgaaWcbaGaemOCaihabeaakiabcMcaPmaaCaaaleqabaGaeGOmaidaaOGaeiikaGIaeGymaeJaeyOeI0IaemiCaa3aaSbaaSqaaiabdohaZbqabaGccqGGPaqkdaahaaWcbeqaaiabikdaYaaakiabcIcaOiabdsgaKjabdsgaKjabcMcaPmaaDaaaleaacqWGYbGCcqWGZbWCaeaacqaIYaGmaaaabaGaemOCaiNaeyipaWJaem4CamhabeqdcqGHris5aaGcbaGaaCzcaiaaxMaadaqadaqaaiabikdaYiabiodaZaGaayjkaiaawMcaaaaaaaa@D284@

or

V G = 2 p r ( 1 p r ) r = 1 m ( α 1 ( r ) ) 2 + p r 2 ( 1 p r ) 2 r = 1 m ( δ 1 1 ( r ) ) 2 + 4 p r p s ( 1 p r ) ( 1 p s ) r < s ( α 1 ( r ) α 1 ( s ) ) 2 + 2 p r p s 2 ( 1 p r ) ( 1 p s ) 2 r s ( α 1 ( r ) δ 1 1 ( s ) ) 2 + p r 2 p s 2 ( 1 p r ) 2 ( 1 p s ) 2 r < s ( δ 1 1 ( r ) δ 1 1 ( s ) ) 2 ( 24 ) MathType@MTEF@5@5@+=feaafiart1ev1aaatCvAUfKttLearuWrP9MDH5MBPbIqV92AaeXatLxBI9gBaebbnrfifHhDYfgasaacH8akY=wiFfYdH8Gipec8Eeeu0xXdbba9frFj0=OqFfea0dXdd9vqai=hGuQ8kuc9pgc9s8qqaq=dirpe0xb9q8qiLsFr0=vr0=vr0dc8meaabaqaciaacaGaaeqabaqabeGadaaakeaafaqadeabbaaaaeaacqWGwbGvdaWgaaWcbaGaem4raCeabeaakiabg2da9maalaaabaGaeGOmaiJaemiCaa3aaSbaaSqaaiabdkhaYbqabaaakeaacqGGOaakcqaIXaqmcqGHsislcqWGWbaCdaWgaaWcbaGaemOCaihabeaakiabcMcaPaaadaaeWbqaaiabcIcaOGGaciab=f7aHnaaDaaaleaacqaIXaqmaeaacqGGOaakcqWGYbGCcqGGPaqkaaGccqGGPaqkdaahaaWcbeqaaiabikdaYaaakiabgUcaRmaalaaabaGaemiCaa3aa0baaSqaaiabdkhaYbqaaiabikdaYaaaaOqaaiabcIcaOiabigdaXiabgkHiTiabdchaWnaaBaaaleaacqWGYbGCaeqaaOGaeiykaKYaaWbaaSqabeaacqaIYaGmaaaaaaqaaiabdkhaYjabg2da9iabigdaXaqaaiabd2gaTbqdcqGHris5aOWaaabCaeaacqGGOaakcqWF0oazdaqhaaWcbaGaeGymaedabaGaeGymaeJaeiikaGIaemOCaiNaeiykaKcaaOGaeiykaKYaaWbaaSqabeaacqaIYaGmaaaabaGaemOCaiNaeyypa0JaeGymaedabaGaemyBa0ganiabggHiLdaakeaacqGHRaWkdaWcaaqaaiabisda0iabdchaWnaaBaaaleaacqWGYbGCaeqaaOGaemiCaa3aaSbaaSqaaiabdohaZbqabaaakeaacqGGOaakcqaIXaqmcqGHsislcqWGWbaCdaWgaaWcbaGaemOCaihabeaakiabcMcaPiabcIcaOiabigdaXiabgkHiTiabdchaWnaaBaaaleaacqWGZbWCaeqaaOGaeiykaKcaamaaqafabaGaeiikaGIae8xSde2aa0baaSqaaiabigdaXaqaaiabcIcaOiabdkhaYjabcMcaPaaakiab=f7aHnaaDaaaleaacqaIXaqmaeaacqGGOaakcqWGZbWCcqGGPaqkaaGccqGGPaqkdaahaaWcbeqaaiabikdaYaaaaeaacqWGYbGCcqGH8aapcqWGZbWCaeqaniabggHiLdaakeaacqGHRaWkdaWcaaqaaiabikdaYiabdchaWnaaBaaaleaacqWGYbGCaeqaaOGaemiCaa3aa0baaSqaaiabdohaZbqaaiabikdaYaaaaOqaaiabcIcaOiabigdaXiabgkHiTiabdchaWnaaBaaaleaacqWGYbGCaeqaaOGaeiykaKIaeiikaGIaeGymaeJaeyOeI0IaemiCaa3aaSbaaSqaaiabdohaZbqabaGccqGGPaqkdaahaaWcbeqaaiabikdaYaaaaaGcdaaeqbqaaiabcIcaOiab=f7aHnaaDaaaleaacqaIXaqmaeaacqGGOaakcqWGYbGCcqGGPaqkaaGccqWF0oazdaqhaaWcbaGaeGymaedabaGaeGymaeJaeiikaGIaem4CamNaeiykaKcaaOGaeiykaKYaaWbaaSqabeaacqaIYaGmaaaabaGaemOCaiNaeyiyIKRaem4CamhabeqdcqGHris5aaGcbaGaey4kaSYaaSaaaeaacqWGWbaCdaqhaaWcbaGaemOCaihabaGaeGOmaidaaOGaemiCaa3aa0baaSqaaiabdohaZbqaaiabikdaYaaaaOqaaiabcIcaOiabigdaXiabgkHiTiabdchaWnaaBaaaleaacqWGYbGCaeqaaOGaeiykaKYaaWbaaSqabeaacqaIYaGmaaGccqGGOaakcqaIXaqmcqGHsislcqWGWbaCdaWgaaWcbaGaem4CamhabeaakiabcMcaPmaaCaaaleqabaGaeGOmaidaaaaakmaaqafabaGaeiikaGIae8hTdq2aa0baaSqaaiabigdaXaqaaiabigdaXiabcIcaOiabdkhaYjabcMcaPaaakiab=r7aKnaaDaaaleaacqaIXaqmaeaacqaIXaqmcqGGOaakcqWGZbWCcqGGPaqkaaGccqGGPaqkdaahaaWcbeqaaiabikdaYaaaaeaacqWGYbGCcqGH8aapcqWGZbWCaeqaniabggHiLdaaaOGaaCzcaiaaxMaadaqadaqaaiabikdaYiabisda0aGaayjkaiaawMcaaaaa@F338@

The partition of the genetic variance with epistasis and linkage disequilibrium is complex. We give the result with trigenic and quadrigenic linkage disequilibria included as well. The partition of variance has a similar form as (19). The detail of each component is presented in Appendix E.

Discussion

In this paper we explore various properties of the standard quantitative genetic model with multiple interacting loci in linkage equilibrium and disequilibrium. Starting from the traditional least squares model, we represent it in the setting of multiple regression with standardized allelic indicator variables and their products as the independent variables and the trait value as the dependent variable. Then the partial regression coefficients associated with these indicator variables define the additive, dominance and epistatic effects for QTL. This is the original definition of QTL effects introduced by Fisher [6] and extended to epistasis by Cockerham [7]. We examine the properties and meaning of these QTL effects in an equilibrium population and also in a disequilibrium population. We show details of the partition of genetic variance for both equilibrium and disequilibrium populations in terms of QTL effects, allelic frequencies and disequilibrium measures. Moreover, we relate this general model to several reduced models used for QTL mapping analysis in cross populations from inbred lines, such as F2, backcross and recombinant inbred lines. The detailed partition of genetic variance in these populations can provide a basis for the interpretation of genetic variance component estimates from multiple interval mapping [21].

The purpose of modeling QTL is to provide a meaningful and convenient framework and basis to infer and interpret relative significance of each QTL and intricate inter-relationship among QTL on a set of quantitative traits in an experimental or natural population for genetic study. The linear model provides a framework to study the effects of QTL on the mean and variance of the distribution of a trait or multiple traits in a population. With the assumption of a normal distribution for both genotypic and phenotypic values of a quantitative trait or multiple traits, this analysis on the first and second order statistics is sufficient to characterize the relationship between QTL and trait (s). Otherwise, it is an approximation on the relationship. In this model, the model parameters are partitioned into two parts: one is the effects of QTL (additive, dominance and epistatic effects), and the other is frequencies and correlations (Hardy-Weinberg and linkage disequilibria) of QTL alleles. Together they characterize the genetic architecture of quantitative traits in a population.

This linear model also provides a framework for statistical inference of genetic model parameters. If QTL genotypes are known and directly observed, a regression analysis of trait phenotype on QTL genotypes would provide a direct estimation of the genetic model parameters. However, if QTL genotypes are unknown and are only indirectly observed through molecular markers, the statistical inference of QTL and model parameters becomes more complicated. Statistically, we can regard QTL genotypes as missing data with trait phenotypes and marker genotypes as observed data and use a mixture model through the maximum likelihood analysis to infer the conditional distribution of missing data and through that to infer QTL parameters which also include the number and genomic position of QTL [19, 24, 25]. The likely positions of QTL are searched in the whole genome if data permit and the number of significant QTL positions can be estimated through some model selection procedure.

On modeling QTL, the consistence of model parameters in a multiple-locus setting is an important consideration. It is important for a model to be multiple-locus consistent, and the relationship within and between loci can be clearly and readily analyzed, estimated and interpreted. Here the consistence means that the effect of a QTL is consistently defined in a reference equilibrium population for one, two or multiple loci. In statistics, this is the property of orthogonality. This property is particularly important for the study of epistasis. With that the additive, dominance and epistatic effects can be independently and consistently estimated for one, two, three or multiple loci in the reference population where the model is defined and interpreted. Thus, if the number of QTL is incorrectly identified which seems to be always the case in practice, the parameter values for those identified QTL can still be consistently estimated. However, the situation would certainly be different and complicated if the population is not at equilibrium, for example for QTL in linkage disequilibrium. Linkage disequilibrium would complicate the partition of genetic variance, and could certainly bias the estimation of parameter values for those identified QTL if the QTL model (number and genomic position of QTL) is miss-identified.

In this paper, we study extensively the composition and property of the genetic model parameters, such as genetic effects and partition of genetic variance, when both epistasis and linkage disequilibrium are considered. This would help us to understand the relationship of various genetic quantities, such as allelic frequencies and linkage disequilibrium, on the definition of genetic effects. It would also help us to understand and properly interpret estimates of the genetic effects and variance components in a QTL mapping experiment. It is important to emphasize that modeling QTL is inherently population based as it defines the variation of QTL in reference to a population, either a study population, cross population or natural population. The very basic concept of additive effect of a QTL is a population concept and is population dependent. It depends on the genotypes at other loci and depends on the genetic structure of the population (allelic frequencies, Hardy-Weinberg and linkage disequilibria).

We also clarify the connection between the general genetic model and some reduced models. By restricting the number of alleles at each locus to two and setting allelic frequencies to half, the general genetic model is reduced to the F2 model. This simplification reduces the partition of genetic variance enormously.

Another property for this F2 population is that, if there is no crossing-over interference, the three-locus linkage disequilibrium is expected to be zero regardlessly whether the loci are linked. Also the four-locus disequilibrium is reduced to the product of the two-locus disequilibria for the two non-adjacent locus pairs. If there is crossing-over interference, the three-locus linkage disequilibrium would be a good measure of the interference. As many QTL mapping experiments are performed in a F2 population, this reduced model is very relevant to QTL mapping analysis for the interpretation of genetic architecture in a F2 population. Another reduced model is the backcross model which is essentially a haploid model.

We give many details for a general two-allele model with epistasis and linkage disequilibrium. Research on QTL mapping analysis has been shifted in recent years from inbred line crosses to natural populations. With the availability of very dense SNP markers, it is now possible to use SNP for fine mapping of QTL in a natural population. Currently most QTL fine mapping studies are concentrated on candidate genes. It will be increasingly possible to have genome-wide SNP data for a sample of individuals from a natural population. The general two-allele model can be used as a framework to interpret and estimate the genome-wide genetic architecture for a quantitative trait in a natural population. The model can be extended to multiple alleles to take haplotypes into account if needed.

Appendix

A. Cockerham least squares estimates

In this appendix, we show that the regression coefficients (genetic effects) in model (7) are Cockerham least squares estimates under Hardy-Weinberg, linkage and genotypic equilibria. First, note that at each locus only one allele is present on a gamete. That is if an individual inherits an allele A i from a parental gamete, z M i ( 1 ) MathType@MTEF@5@5@+=feaafiart1ev1aaatCvAUfKttLearuWrP9MDH5MBPbIqV92AaeXatLxBI9gBaebbnrfifHhDYfgasaacH8akY=wiFfYdH8Gipec8Eeeu0xXdbba9frFj0=OqFfea0dXdd9vqai=hGuQ8kuc9pgc9s8qqaq=dirpe0xb9q8qiLsFr0=vr0=vr0dc8meaabaqaciaacaGaaeqabaqabeGadaaakeaacqWG6bGEdaqhaaWcbaGaemyta00aaSbaaWqaaiabdMgaPbqabaaaleaacqGGOaakcqaIXaqmcqGGPaqkaaaaaa@33AE@ = 1 and the other z M j ( 1 ) MathType@MTEF@5@5@+=feaafiart1ev1aaatCvAUfKttLearuWrP9MDH5MBPbIqV92AaeXatLxBI9gBaebbnrfifHhDYfgasaacH8akY=wiFfYdH8Gipec8Eeeu0xXdbba9frFj0=OqFfea0dXdd9vqai=hGuQ8kuc9pgc9s8qqaq=dirpe0xb9q8qiLsFr0=vr0=vr0dc8meaabaqaciaacaGaaeqabaqabeGadaaakeaacqWG6bGEdaqhaaWcbaGaemyta00aaSbaaWqaaiabdQgaQbqabaaaleaacqGGOaakcqaIXaqmcqGGPaqkaaaaaa@33B0@ = 0 for ji Therefore, when ij, we have E( z M i ( 1 ) z M j ( 1 ) MathType@MTEF@5@5@+=feaafiart1ev1aaatCvAUfKttLearuWrP9MDH5MBPbIqV92AaeXatLxBI9gBaebbnrfifHhDYfgasaacH8akY=wiFfYdH8Gipec8Eeeu0xXdbba9frFj0=OqFfea0dXdd9vqai=hGuQ8kuc9pgc9s8qqaq=dirpe0xb9q8qiLsFr0=vr0=vr0dc8meaabaqaciaacaGaaeqabaqabeGadaaakeaacqWG6bGEdaqhaaWcbaGaemyta00aaSbaaWqaaiabdMgaPbqabaaaleaacqGGOaakcqaIXaqmcqGGPaqkaaGccqWG6bGEdaqhaaWcbaGaemyta00aaSbaaWqaaiabdQgaQbqabaaaleaacqGGOaakcqaIXaqmcqGGPaqkaaaaaa@3ABC@ ) = 0 or E ( x M i ( 1 ) x M j ( 1 ) ) = E ( z M i ( 1 ) z M j ( 1 ) ) E ( z M i ( 1 ) ) E ( z M j ( 1 ) ) = p i p j MathType@MTEF@5@5@+=feaafiart1ev1aaatCvAUfKttLearuWrP9MDH5MBPbIqV92AaeXatLxBI9gBaebbnrfifHhDYfgasaacH8akY=wiFfYdH8Gipec8Eeeu0xXdbba9frFj0=OqFfea0dXdd9vqai=hGuQ8kuc9pgc9s8qqaq=dirpe0xb9q8qiLsFr0=vr0=vr0dc8meaabaqaciaacaGaaeqabaqabeGadaaakeaacqWGfbqrcqGGOaakcqWG4baEdaqhaaWcbaGaemyta00aaSbaaWqaaiabdMgaPbqabaaaleaacqGGOaakcqaIXaqmcqGGPaqkaaGccqWG4baEdaqhaaWcbaGaemyta00aaSbaaWqaaiabdQgaQbqabaaaleaacqGGOaakcqaIXaqmcqGGPaqkaaGccqGGPaqkcqGH9aqpcqWGfbqrcqGGOaakcqWG6bGEdaqhaaWcbaGaemyta00aaSbaaWqaaiabdMgaPbqabaaaleaacqGGOaakcqaIXaqmcqGGPaqkaaGccqWG6bGEdaqhaaWcbaGaemyta00aaSbaaWqaaiabdQgaQbqabaaaleaacqGGOaakcqaIXaqmcqGGPaqkaaGccqGGPaqkcqGHsislcqWGfbqrcqGGOaakcqWG6bGEdaqhaaWcbaGaemyta00aaSbaaWqaaiabdMgaPbqabaaaleaacqGGOaakcqaIXaqmcqGGPaqkaaGccqGGPaqkcqWGfbqrcqGGOaakcqWG6bGEdaqhaaWcbaGaemyta00aaSbaaWqaaiabdQgaQbqabaaaleaacqGGOaakcqaIXaqmcqGGPaqkaaGccqGGPaqkcqGH9aqpcqGHsislcqWGWbaCdaahaaWcbeqaaiabdMgaPbaakiabdchaWnaaCaaaleqabaGaemOAaOgaaaaa@6BDA@ . Using these relationships, we can show the following for model (7).

• Additive effects: For i = 1, 2, ..., n1, we can show

E [ ( G μ ) x M i ( 1 ) ] = E [ ( i ' α i ' x M i ' ( 1 ) ) x M i ( 1 ) ] = α i E ( x M i ( 1 ) 2 ) + i ' i α i ' E ( x M i ' ( 1 ) x M i ( 1 ) ) = α i p i ( 1 p i ) + i ' i α i ' ( p i ' p i ) = α i p i + ( p i ) i ' α i ' p i ' = α i p i , MathType@MTEF@5@5@+=feaafiart1ev1aaatCvAUfKttLearuWrP9MDH5MBPbIqV92AaeXatLxBI9gBaebbnrfifHhDYfgasaacH8akY=wiFfYdH8Gipec8Eeeu0xXdbba9frFj0=OqFfea0dXdd9vqai=hGuQ8kuc9pgc9s8qqaq=dirpe0xb9q8qiLsFr0=vr0=vr0dc8meaabaqaciaacaGaaeqabaqabeGadaaakqaabeqaaiabdweafjabcUfaBjabcIcaOiabdEeahjabgkHiTGGaciab=X7aTjabcMcaPiabdIha4naaDaaaleaacqWGnbqtdaWgaaadbaGaemyAaKgabeaaaSqaaiabcIcaOiabigdaXiabcMcaPaaakiabc2faDjabg2da9iabdweafjabcUfaBjabcIcaOmaaqafabaGae8xSde2aaWbaaSqabeaacqWGPbqAcqGGNaWjaaGccqWG4baEdaqhaaWcbaGaemyta00aaSbaaWqaaiabdMgaPjabcEcaNaqabaaaleaacqGGOaakcqaIXaqmcqGGPaqkaaGccqGGPaqkcqWG4baEdaqhaaWcbaGaemyta00aaSbaaWqaaiabdMgaPbqabaaaleaacqGGOaakcqaIXaqmcqGGPaqkaaGccqGGDbqxcqGH9aqpcqWFXoqydaahaaWcbeqaaiabdMgaPbaakiabdweafjabcIcaOiabdIha4naaDaaaleaacqWGnbqtdaWgaaadbaGaemyAaKgabeaaaSqaaiabcIcaOiabigdaXiabcMcaPiabikdaYaaakiabcMcaPiabgUcaRmaaqafabaGae8xSde2aaWbaaSqabeaacqWGPbqAcqGGNaWjaaaabaGaemyAaKMaei4jaCIaeyiyIKRaemyAaKgabeqdcqGHris5aOGaemyrauKaeiikaGIaemiEaG3aa0baaSqaaiabd2eannaaDaaameaacqWGPbqAaeaacqGGNaWjaaaaleaacqGGOaakcqaIXaqmcqGGPaqkaaGccqWG4baEdaqhaaWcbaGaemyta00aaSbaaWqaaiabdMgaPbqabaaaleaacqGGOaakcqaIXaqmcqGGPaqkaaaabaGaemyAaKMaei4jaCcabeqdcqGHris5aOGaeiykaKcabaGaeyypa0Jae8xSde2aaWbaaSqabeaacqWGPbqAaaGccqWGWbaCdaahaaWcbeqaaiabdMgaPbaakiabcIcaOiabigdaXiabgkHiTiabdchaWnaaCaaaleqabaGaemyAaKgaaOGaeiykaKIaey4kaSYaaabuaeaacqWFXoqydaahaaWcbeqaaiabdMgaPjabcEcaNaaaaeaacqWGPbqAcqGGNaWjcqGHGjsUcqWGPbqAaeqaniabggHiLdGccqGGOaakcqGHsislcqWGWbaCdaahaaWcbeqaaiabdMgaPjabcEcaNaaakiabdchaWnaaCaaaleqabaGaemyAaKgaaOGaeiykaKIaeyypa0Jae8xSde2aaWbaaSqabeaacqWGPbqAaaGccqWGWbaCdaahaaWcbeqaaiabdMgaPbaakiabgUcaRiabcIcaOiabgkHiTiabdchaWnaaCaaaleqabaGaemyAaKgaaOGaeiykaKYaaabuaeaacqWFXoqydaahaaWcbeqaaiabdMgaPjabcEcaNaaaaeaacqWGPbqAcqGGNaWjaeqaniabggHiLdGccqWGWbaCdaahaaWcbeqaaiabdMgaPjabcEcaNaaakiabg2da9iab=f7aHnaaCaaaleqabaGaemyAaKgaaOGaemiCaa3aaWbaaSqabeaacqWGPbqAaaGccqGGSaalaaaa@CC6C@

On the other hand,

E [ ( G μ ) x M i ( 1 ) ] = E ( G x M i ( 1 ) ) = E [ G ( z M i ( 1 ) p i ) ] = E ( G z M i ( 1 ) ) p i E ( G ) = E [ E ( G z M i ( 1 ) | z M i ( 1 ) ) ] p i G .. .. = p i E ( G | z M i ( 1 ) = 1 ) p i G .. .. = p i ( G .. i . G .. .. ) . MathType@MTEF@5@5@+=feaafiart1ev1aaatCvAUfKttLearuWrP9MDH5MBPbIqV92AaeXatLxBI9gBaebbnrfifHhDYfgasaacH8akY=wiFfYdH8Gipec8Eeeu0xXdbba9frFj0=OqFfea0dXdd9vqai=hGuQ8kuc9pgc9s8qqaq=dirpe0xb9q8qiLsFr0=vr0=vr0dc8meaabaqaciaacaGaaeqabaqabeGadaaakqaabeqaaiabdweafjabcUfaBjabcIcaOiabdEeahjabgkHiTGGaciab=X7aTjabcMcaPiabdIha4naaDaaaleaacqWGnbqtdaWgaaadbaGaemyAaKgabeaaaSqaaiabcIcaOiabigdaXiabcMcaPaaakiabc2faDjabg2da9iabdweafjabcIcaOiabdEeahjabbccaGiabdIha4naaDaaaleaacqWGnbqtdaWgaaadbaGaemyAaKgabeaaaSqaaiabcIcaOiabigdaXiabcMcaPaaakiabcMcaPiabg2da9iabdweafjabcUfaBjabdEeahjabcIcaOiabdQha6naaDaaaleaacqWGnbqtdaWgaaadbaGaemyAaKgabeaaaSqaaiabcIcaOiabigdaXiabcMcaPaaakiabgkHiTiabdchaWnaaCaaaleqabaGaemyAaKgaaOGaeiykaKIaeiyxa0Laeyypa0JaemyrauKaeiikaGIaem4raCKaemOEaO3aa0baaSqaaiabd2eannaaBaaameaacqWGPbqAaeqaaaWcbaGaeiikaGIaeGymaeJaeiykaKcaaOGaeiykaKIaeyOeI0IaemiCaa3aaWbaaSqabeaacqWGPbqAaaGccqWGfbqrcqGGOaakcqWGhbWrcqGGPaqkaeaacqGH9aqpcqWGfbqrcqGGBbWwcqWGfbqrcqGGOaakcqWGhbWrcqWG6bGEdaqhaaWcbaGaemyta00aaSbaaWqaaiabdMgaPbqabaaaleaacqGGOaakcqaIXaqmcqGGPaqkaaGccqGG8baFcqWG6bGEdaqhaaWcbaGaemyta00aaSbaaWqaaiabdMgaPbqabaaaleaacqGGOaakcqaIXaqmcqGGPaqkaaGccqGGPaqkcqGGDbqxcqGHsislcqWGWbaCdaahaaWcbeqaaiabdMgaPbaakiabdEeahnaaDaaaleaacqGGUaGlcqGGUaGlaeaacqGGUaGlcqGGUaGlaaGccqGH9aqpcqWGWbaCdaahaaWcbeqaaiabdMgaPbaakiabdweafjabcIcaOiabdEeahjabcYha8jabdQha6naaDaaaleaacqWGnbqtdaWgaaadbaGaemyAaKgabeaaaSqaaiabcIcaOiabigdaXiabcMcaPaaakiabg2da9iabigdaXiabcMcaPiabgkHiTiabdchaWnaaCaaaleqabaGaemyAaKgaaOGaem4raC0aa0baaSqaaiabc6caUiabc6caUaqaaiabc6caUiabc6caUaaakiabg2da9iabdchaWnaaCaaaleqabaGaemyAaKgaaOGaeiikaGIaem4raC0aa0baaSqaaiabc6caUiabc6caUaqaaiabdMgaPjabc6caUaaakiabgkHiTiabdEeahnaaDaaaleaacqGGUaGlcqGGUaGlaeaacqGGUaGlcqGGUaGlaaGccqGGPaqkcqGGUaGlaaaa@BD29@

Therefore, α i = G .. i . G .. .. MathType@MTEF@5@5@+=feaafiart1ev1aaatCvAUfKttLearuWrP9MDH5MBPbIqV92AaeXatLxBI9gBaebbnrfifHhDYfgasaacH8akY=wiFfYdH8Gipec8Eeeu0xXdbba9frFj0=OqFfea0dXdd9vqai=hGuQ8kuc9pgc9s8qqaq=dirpe0xb9q8qiLsFr0=vr0=vr0dc8meaabaqaciaacaGaaeqabaqabeGadaaakeaaiiGacqWFXoqydaahaaWcbeqaaiabdMgaPbaakiabg2da9iabdEeahnaaDaaaleaacqGGUaGlcqGGUaGlaeaacqWGPbqAcqGGUaGlaaGccqGHsislcqWGhbWrdaqhaaWcbaGaeiOla4IaeiOla4cabaGaeiOla4IaeiOla4caaaaa@3C00@ for i = 1, 2, ..., n1. Similarly, we can show that α j = G j . .. G .. .. MathType@MTEF@5@5@+=feaafiart1ev1aaatCvAUfKttLearuWrP9MDH5MBPbIqV92AaeXatLxBI9gBaebbnrfifHhDYfgasaacH8akY=wiFfYdH8Gipec8Eeeu0xXdbba9frFj0=OqFfea0dXdd9vqai=hGuQ8kuc9pgc9s8qqaq=dirpe0xb9q8qiLsFr0=vr0=vr0dc8meaabaqaciaacaGaaeqabaqabeGadaaakeaaiiGacqWFXoqydaWgaaWcbaGaemOAaOgabeaakiabg2da9iabdEeahnaaDaaaleaacqWGQbGAcqGGUaGlaeaacqGGUaGlcqGGUaGlaaGccqGHsislcqWGhbWrdaqhaaWcbaGaeiOla4IaeiOla4cabaGaeiOla4IaeiOla4caaaaa@3C03@ for j = 1, 2, ..., n1, and β k = G .. . k G .. .. MathType@MTEF@5@5@+=feaafiart1ev1aaatCvAUfKttLearuWrP9MDH5MBPbIqV92AaeXatLxBI9gBaebbnrfifHhDYfgasaacH8akY=wiFfYdH8Gipec8Eeeu0xXdbba9frFj0=OqFfea0dXdd9vqai=hGuQ8kuc9pgc9s8qqaq=dirpe0xb9q8qiLsFr0=vr0=vr0dc8meaabaqaciaacaGaaeqabaqabeGadaaakeaaiiGacqWFYoGydaahaaWcbeqaaiabdUgaRbaakiabg2da9iabdEeahnaaDaaaleaacqGGUaGlcqGGUaGlaeaacqGGUaGlcqWGRbWAaaGccqGHsislcqWGhbWrdaqhaaWcbaGaeiOla4IaeiOla4cabaGaeiOla4IaeiOla4caaaaa@3C0A@ , β l = G . l .. G .. .. MathType@MTEF@5@5@+=feaafiart1ev1aaatCvAUfKttLearuWrP9MDH5MBPbIqV92AaeXatLxBI9gBaebbnrfifHhDYfgasaacH8akY=wiFfYdH8Gipec8Eeeu0xXdbba9frFj0=OqFfea0dXdd9vqai=hGuQ8kuc9pgc9s8qqaq=dirpe0xb9q8qiLsFr0=vr0=vr0dc8meaabaqaciaacaGaaeqabaqabeGadaaakeaaiiGacqWFYoGydaWgaaWcbaGaemiBaWgabeaakiabg2da9iabdEeahnaaDaaaleaacqGGUaGlcqWGSbaBaeaacqGGUaGlcqGGUaGlaaGccqGHsislcqWGhbWrdaqhaaWcbaGaeiOla4IaeiOla4cabaGaeiOla4IaeiOla4caaaaa@3C0D@ for k, l = 1, 2, ..., n2.

• Dominance effects: For locus 1, we have

E [ ( G μ ) x M i ( 1 ) x F j ( 1 ) ] = E [ ( i ' , j ' δ j ' i ' x M i ' ( 1 ) x F j ' ( 1 ) ) x M i ( 1 ) x F j ( 1 ) ] = j ' δ j ' i E ( x M i ( 1 ) 2 ) E ( x F j ( 1 ) x F j ' ( 1 ) ) + i ' i j ' δ j ' i ' E ( x M i ( 1 ) x M i ' ( 1 ) ) E ( x F j ( 1 ) x F j ' ( 1 ) ) = p i ( 1 p i ) j ' δ j ' i E ( x F j ( 1 ) x F j ' ( 1 ) ) + i ' i ( p i p i ' ) j ' δ j ' i ' E ( x F j ( 1 ) x F j ' ( 1 ) ) = p i j ' δ j ' i E ( x F j ( 1 ) x F j ' ( 1 ) ) i ' p i p i ' j ' δ j ' i E ( x F j ( 1 ) x F j ' ( 1 ) ) = p i ( p j δ j i + j ' δ j ' i p j ' ) p i j ' E ( x F j ( 1 ) x F j ' ( 1 ) ) i ' p i ' δ j ' i ' = p i p j δ j i  for  i , j = 1 , 2 , , n 1 . MathType@MTEF@5@5@+=feaafiart1ev1aaatCvAUfKttLearuWrP9MDH5MBPbIqV92AaeXatLxBI9gBaebbnrfifHhDYfgasaacH8akY=wiFfYdH8Gipec8Eeeu0xXdbba9frFj0=OqFfea0dXdd9vqai=hGuQ8kuc9pgc9s8qqaq=dirpe0xb9q8qiLsFr0=vr0=vr0dc8meaabaqaciaacaGaaeqabaqabeGadaaakqaabeqaaiabdweafjabcUfaBjabcIcaOiabdEeahjabgkHiTGGaciab=X7aTjabcMcaPiabdIha4naaDaaaleaacqWGnbqtdaWgaaadbaGaemyAaKgabeaaaSqaaiabcIcaOiabigdaXiabcMcaPaaakiabdIha4naaDaaaleaacqWGgbGrdaWgaaadbaGaemOAaOgabeaaaSqaaiabcIcaOiabigdaXiabcMcaPaaakiabc2faDjabg2da9iabdweafjabcUfaBjabcIcaOmaaqafabaGae8hTdq2aa0baaSqaaiabdQgaQjabcEcaNaqaaiabdMgaPjabcEcaNaaakiabdIha4naaDaaaleaacqWGnbqtdaWgaaadbaGaemyAaKMaei4jaCcabeaaaSqaaiabcIcaOiabigdaXiabcMcaPaaakiabdIha4naaDaaaleaacqWGgbGrdaWgaaadbaGaemOAaOMaei4jaCcabeaaaSqaaiabcIcaOiabigdaXiabcMcaPaaakiabcMcaPiabdIha4naaDaaaleaacqWGnbqtdaWgaaadbaGaemyAaKgabeaaaSqaaiabcIcaOiabigdaXiabcMcaPaaakiabdIha4naaDaaaleaacqWGgbGrdaWgaaadbaGaemOAaOgabeaaaSqaaiabcIcaOiabigdaXiabcMcaPaaakiabc2faDbWcbaGaemyAaKMaei4jaCIaeiilaWIaemOAaOMaei4jaCcabeqdcqGHris5aaGcbaGaeyypa0ZaaabuaeaacqWF0oazdaqhaaWcbaGaemOAaOMaei4jaCcabaGaemyAaKgaaOGaemyrauKaeiikaGIaemiEaG3aa0baaSqaaiabd2eannaaBaaameaacqWGPbqAaeqaaaWcbaGaeiikaGIaeGymaeJaeiykaKIaeGOmaidaaOGaeiykaKIaemyrauKaeiikaGIaemiEaG3aa0baaSqaaiabdAeagnaaBaaameaacqWGQbGAaeqaaaWcbaGaeiikaGIaeGymaeJaeiykaKcaaOGaemiEaG3aa0baaSqaaiabdAeagnaaBaaameaacqWGQbGAcqGGNaWjaeqaaaWcbaGaeiikaGIaeGymaeJaeiykaKcaaOGaeiykaKIaey4kaSYaaabuaeaadaaeqbqaaiab=r7aKnaaDaaaleaacqWGQbGAcqGGNaWjaeaacqWGPbqAcqGGNaWjaaGccqWGfbqrcqGGOaakcqWG4baEdaqhaaWcbaGaemyta00aaSbaaWqaaiabdMgaPbqabaaaleaacqGGOaakcqaIXaqmcqGGPaqkaaGccqWG4baEdaqhaaWcbaGaemyta00aaSbaaWqaaiabdMgaPjabcEcaNaqabaaaleaacqGGOaakcqaIXaqmcqGGPaqkaaGccqGGPaqkcqWGfbqrcqGGOaakcqWG4baEdaqhaaWcbaGaemOray0aaSbaaWqaaiabdQgaQbqabaaaleaacqGGOaakcqaIXaqmcqGGPaqkaaGccqWG4baEdaqhaaWcbaGaemOray0aaSbaaWqaaiabdQgaQjabcEcaNaqabaaaleaacqGGOaakcqaIXaqmcqGGPaqkaaGccqGGPaqkaSqaaiabdQgaQjabcEcaNaqab0GaeyyeIuoaaSqaaiabdMgaPjabcEcaNiabgcMi5kabdMgaPbqab0GaeyyeIuoaaSqaaiabdQgaQjabcEcaNaqab0GaeyyeIuoaaOqaaiabg2da9iabdchaWnaaCaaaleqabaGaemyAaKgaaOGaeiikaGIaeGymaeJaeyOeI0IaemiCaa3aaWbaaSqabeaacqWGPbqAaaGccqGGPaqkdaaeqbqaaiab=r7aKnaaDaaaleaacqWGQbGAcqGGNaWjaeaacqWGPbqAaaGccqWGfbqrcqGGOaakcqWG4baEdaqhaaWcbaGaemOray0aaSbaaWqaaiabdQgaQbqabaaaleaacqGGOaakcqaIXaqmcqGGPaqkaaGccqWG4baEdaqhaaWcbaGaemOray0aaSbaaWqaaiabdQgaQjabcEcaNaqabaaaleaacqGGOaakcqaIXaqmcqGGPaqkaaGccqGGPaqkcqGHRaWkdaaeqbqaaiabcIcaOiabgkHiTiabdchaWnaaCaaaleqabaGaemyAaKgaaOGaemiCaa3aaWbaaSqabeaacqWGPbqAcqGGNaWjaaGccqGGPaqkdaaeqbqaaiab=r7aKnaaDaaaleaacqWGQbGAcqGGNaWjaeaacqWGPbqAcqGGNaWjaaGccqWGfbqrcqGGOaakcqWG4baEdaqhaaWcbaGaemOray0aaSbaaWqaaiabdQgaQbqabaaaleaacqGGOaakcqaIXaqmcqGGPaqkaaGccqWG4baEdaqhaaWcbaGaemOray0aaSbaaWqaaiabdQgaQjabcEcaNaqabaaaleaacqGGOaakcqaIXaqmcqGGPaqkaaaabaGaemOAaOMaei4jaCcabeqdcqGHris5aaWcbaGaemyAaKMaei4jaCIaeyiyIKRaemyAaKgabeqdcqGHris5aOGaeiykaKcaleaacqWGQbGAcqGGNaWjaeqaniabggHiLdaakeaacqGH9aqpcqWGWbaCdaahaaWcbeqaaiabdMgaPbaakmaaqafabaGae8hTdq2aa0baaSqaaiabdQgaQjabcEcaNaqaaiabdMgaPbaakiabdweafjabcIcaOiabdIha4naaDaaaleaacqWGgbGrdaWgaaadbaGaemOAaOgabeaaaSqaaiabcIcaOiabigdaXiabcMcaPaaakiabdIha4naaDaaaleaacqWGgbGrdaWgaaadbaGaemOAaOgabeaaliabcEcaNaqaaiabcIcaOiabigdaXiabcMcaPaaakiabcMcaPiabgkHiTmaaqafabaGaemiCaa3aaWbaaSqabeaacqWGPbqAaaGccqWGWbaCdaahaaWcbeqaaiabdMgaPjabcEcaNaaaaeaacqWGPbqAcqGGNaWjaeqaniabggHiLdGcdaaeqbqaaiab=r7aKnaaDaaaleaacqWGQbGAcqGGNaWjaeaacqWGPbqAaaGccqWGfbqrcqGGOaakcqWG4baEdaqhaaWcbaGaemOray0aaSbaaWqaaiabdQgaQbqabaaaleaacqGGOaakcqaIXaqmcqGGPaqkaaGccqWG4baEdaqhaaWcbaGaemOray0aaSbaaWqaaiabdQgaQjabcEcaNaqabaaaleaacqGGOaakcqaIXaqmcqGGPaqkaaGccqGGPaqkaSqaaiabdQgaQjabcEcaNaqab0GaeyyeIuoaaSqaaiabdQgaQjabcEcaNaqab0GaeyyeIuoaaOqaaiabg2da9iabdchaWnaaCaaaleqabaGaemyAaKgaaOGaeiikaGIaemiCaa3aaSbaaSqaaiabdQgaQbqabaGccqWF0oazdaqhaaWcbaGaemOAaOgabaGaemyAaKgaaOGaey4kaSYaaabuaeaacqWF0oazdaqhaaWcbaGaemOAaOMaei4jaCcabaGaemyAaKgaaOGaemiCaa3aaSbaaSqaaiabdQgaQjabcEcaNaqabaGccqGGPaqkcqGHsislcqWGWbaCdaahaaWcbeqaaiabdMgaPbaakmaaqafabaGaemyrauKaeiikaGIaemiEaG3aa0baaSqaaiabdAeagnaaBaaameaacqWGQbGAaeqaaaWcbaGaeiikaGIaeGymaeJaeiykaKcaaOGaemiEaG3aa0baaSqaaiabdAeagnaaBaaameaacqWGQbGAcqGGNaWjaeqaaaWcbaGaeiikaGIaeGymaeJaeiykaKcaaOGaeiykaKYaaabuaeaacqWGWbaCdaahaaWcbeqaaiabdMgaPjabcEcaNaaakiab=r7aKnaaDaaaleaacqWGQbGAcqGGNaWjaeaacqWGPbqAcqGGNaWjaaaabaGaemyAaKMaei4jaCcabeqdcqGHris5aaWcbaGaemOAaOMaei4jaCcabeqdcqGHris5aaWcbaGaemOAaOMaei4jaCcabeqdcqGHris5aaGcbaGaeyypa0JaemiCaa3aaWbaaSqabeaacqWGPbqAaaGccqWGWbaCdaWgaaWcbaGaemOAaOgabeaakiab=r7aKnaaDaaaleaacqWGQbGAaeaacqWGPbqAaaGccqqGGaaicqqGMbGzcqqGVbWBcqqGYbGCcqqGGaaicqWGPbqAcqGGSaalcqWGQbGAcqGH9aqpcqaIXaqmcqGGSaalcqaIYaGmcqGGSaalcqWIMaYscqGGSaalcqWGUbGBdaWgaaWcbaGaeGymaedabeaakiabc6caUaaaaa@CFD9@

On the other hand,

E [ ( G μ ) x M i ( 1 ) x F j ( 1 ) ] = E [ G ( z M i ( 1 ) p i ) ( z F j ( 1 ) p j ) ] = E ( G z M i ( 1 ) z F j ( 1 ) p i E ( G z F j ( 1 ) ) p j E ( G z M i ( 1 ) ) + p i p j E ( G ) = E [ E ( G z M i ( 1 ) z F j ( 1 ) | z M i ( 1 ) , z F j ( 1 ) ) ] p i E [ E ( G z F j ( 1 ) | z F j ( 1 ) ] ) p j E [ E ( G z M i ( 1 ) | z M i ( 1 ) ) ] + p i p j G .. .. = p i p j ( G j . i . G .. i . G j . .. + G .. .. ) MathType@MTEF@5@5@+=feaafiart1ev1aaatCvAUfKttLearuWrP9MDH5MBPbIqV92AaeXatLxBI9gBaebbnrfifHhDYfgasaacH8akY=wiFfYdH8Gipec8Eeeu0xXdbba9frFj0=OqFfea0dXdd9vqai=hGuQ8kuc9pgc9s8qqaq=dirpe0xb9q8qiLsFr0=vr0=vr0dc8meaabaqaciaacaGaaeqabaqabeGadaaakqaabeqaaiabdweafjabcUfaBjabcIcaOiabdEeahjabgkHiTGGaciab=X7aTjabcMcaPiabdIha4naaDaaaleaacqWGnbqtdaWgaaadbaGaemyAaKgabeaaaSqaaiabcIcaOiabigdaXiabcMcaPaaakiabdIha4naaDaaaleaacqWGgbGrdaWgaaadbaGaemOAaOgabeaaaSqaaiabcIcaOiabigdaXiabcMcaPaaakiabc2faDjabg2da9iabdweafjabcUfaBjabdEeahjabcIcaOiabdQha6naaDaaaleaacqWGnbqtdaWgaaadbaGaemyAaKgabeaaaSqaaiabcIcaOiabigdaXiabcMcaPaaakiabgkHiTiabdchaWnaaCaaaleqabaGaemyAaKgaaOGaeiykaKIaeiikaGIaemOEaO3aa0baaSqaaiabdAeagnaaBaaameaacqWGQbGAaeqaaaWcbaGaeiikaGIaeGymaeJaeiykaKcaaOGaeyOeI0IaemiCaa3aaSbaaSqaaiabdQgaQbqabaGccqGGPaqkcqGGDbqxaeaacqGH9aqpcqWGfbqrcqGGOaakcqWGhbWrcqWG6bGEdaqhaaWcbaGaemyta00aaSbaaWqaaiabdMgaPbqabaaaleaacqGGOaakcqaIXaqmcqGGPaqkaaGccqWG6bGEdaqhaaWcbaGaemOray0aaSbaaWqaaiabdQgaQbqabaaaleaacqGGOaakcqaIXaqmcqGGPaqkaaGccqGHsislcqWGWbaCdaahaaWcbeqaaiabdMgaPbaakiabdweafjabcIcaOiabdEeahjabdQha6naaDaaaleaacqWGgbGrdaWgaaadbaGaemOAaOgabeaaaSqaaiabcIcaOiabigdaXiabcMcaPaaakiabcMcaPiabgkHiTiabdchaWnaaBaaaleaacqWGQbGAaeqaaOGaemyrauKaeiikaGIaem4raCKaemOEaO3aa0baaSqaaiabd2eannaaBaaameaacqWGPbqAaeqaaaWcbaGaeiikaGIaeGymaeJaeiykaKcaaOGaeiykaKIaey4kaSIaemiCaa3aaWbaaSqabeaacqWGPbqAaaGccqWGWbaCdaWgaaWcbaGaemOAaOgabeaakiabdweafjabcIcaOiabdEeahjabcMcaPaqaaiabg2da9iabdweafjabcUfaBjabdweafjabcIcaOiabdEeahjabdQha6naaDaaaleaacqWGnbqtdaWgaaadbaGaemyAaKgabeaaaSqaaiabcIcaOiabigdaXiabcMcaPaaakiabdQha6naaDaaaleaacqWGgbGrdaWgaaadbaGaemOAaOgabeaaaSqaaiabcIcaOiabigdaXiabcMcaPaaakiabcYha8jabdQha6naaDaaaleaacqWGnbqtdaWgaaadbaGaemyAaKgabeaaaSqaaiabcIcaOiabigdaXiabcMcaPaaakiabcYcaSiabdQha6naaDaaaleaacqWGgbGrdaWgaaadbaGaemOAaOgabeaaaSqaaiabcIcaOiabigdaXiabcMcaPaaakiabcMcaPiabc2faDjabgkHiTiabdchaWnaaCaaaleqabaGaemyAaKgaaOGaemyrauKaei4waSLaemyrauKaeiikaGIaem4raCKaemOEaO3aa0baaSqaaiabdAeagnaaBaaameaacqWGQbGAaeqaaaWcbaGaeiikaGIaeGymaeJaeiykaKcaaOGaeiiFaWNaemOEaO3aa0baaSqaaiabdAeagnaaBaaameaacqWGQbGAaeqaaaWcbaGaeiikaGIaeGymaeJaeiykaKcaaOGaeiyxa0LaeiykaKIaeyOeI0IaemiCaa3aaSbaaSqaaiabdQgaQbqabaGccqWGfbqrcqGGBbWwcqWGfbqrcqGGOaakcqWGhbWrcqWG6bGEdaqhaaWcbaGaemyta00aaSbaaWqaaiabdMgaPbqabaaaleaacqGGOaakcqaIXaqmcqGGPaqkaaGccqGG8baFcqWG6bGEdaqhaaWcbaGaemyta00aaSbaaWqaaiabdMgaPbqabaaaleaacqGGOaakcqaIXaqmcqGGPaqkaaGccqGGPaqkcqGGDbqxcqGHRaWkcqWGWbaCdaahaaWcbeqaaiabdMgaPbaakiabdchaWnaaBaaaleaacqWGQbGAaeqaaOGaem4raC0aa0baaSqaaiabc6caUiabc6caUaqaaiabc6caUiabc6caUaaaaOqaaiabg2da9iabdchaWnaaCaaaleqabaGaemyAaKgaaOGaemiCaa3aaSbaaSqaaiabdQgaQbqabaGccqGGOaakcqWGhbWrdaqhaaWcbaGaemOAaOMaeiOla4cabaGaemyAaKMaeiOla4caaOGaeyOeI0Iaem4raC0aa0baaSqaaiabc6caUiabc6caUaqaaiabdMgaPjabc6caUaaakiabgkHiTiabdEeahnaaDaaaleaacqWGQbGAcqGGUaGlaeaacqGGUaGlcqGGUaGlaaGccqGHRaWkcqWGhbWrdaqhaaWcbaGaeiOla4IaeiOla4cabaGaeiOla4IaeiOla4caaOGaeiykaKcaaaa@263C@

Therefore, δ j i = G j . i . G .. i . G j . .. + G .. .. MathType@MTEF@5@5@+=feaafiart1ev1aaatCvAUfKttLearuWrP9MDH5MBPbIqV92AaeXatLxBI9gBaebbnrfifHhDYfgasaacH8akY=wiFfYdH8Gipec8Eeeu0xXdbba9frFj0=OqFfea0dXdd9vqai=hGuQ8kuc9pgc9s8qqaq=dirpe0xb9q8qiLsFr0=vr0=vr0dc8meaabaqaciaacaGaaeqabaqabeGadaaakeaaiiGacqWF0oazdaqhaaWcbaGaemOAaOgabaGaemyAaKgaaOGaeyypa0Jaem4raC0aa0baaSqaaiabdQgaQjabc6caUaqaaiabdMgaPjabc6caUaaakiabgkHiTiabdEeahnaaDaaaleaacqGGUaGlcqGGUaGlaeaacqWGPbqAcqGGUaGlaaGccqGHsislcqWGhbWrdaqhaaWcbaGaemOAaOMaeiOla4cabaGaeiOla4IaeiOla4caaOGaey4kaSIaem4raC0aa0baaSqaaiabc6caUiabc6caUaqaaiabc6caUiabc6caUaaaaaa@4A57@ for i, j = 1, 2, ..., n1. Similar results can be derived for other dominance terms at locus 2.

• Additive × additive effects: Note that

E [ ( G μ ) x M i ( 1 ) x M k ( 2 ) ] = i , k ( α i β k ) E ( x M i ( 1 ) x M i ( 1 ) ) E ( x M k ( 2 ) x M k ( 2 ) ) = k ' ( α i β k ) E ( x M i ( 1 ) 2 ) E ( x M k ( 2 ) x M k ( 2 ) ) + i i k ( α i β k ) ( p i p i ) E ( x M k ( 2 ) x M k ( 2 ) ) = p i k ( α i β k ) E ( x M k ( 2 ) x M k ( 2 ) ) p i i k ( α i β k ) p i E ( x M k ( 2 ) x M k ( 2 ) ) = p i q k ( α i β k ) MathType@MTEF@5@5@+=feaafiart1ev1aaatCvAUfKttLearuWrP9MDH5MBPbIqV92AaeXatLxBI9gBaebbnrfifHhDYfgasaacH8akY=wiFfYdH8Gipec8Eeeu0xXdbba9frFj0=OqFfea0dXdd9vqai=hGuQ8kuc9pgc9s8qqaq=dirpe0xb9q8qiLsFr0=vr0=vr0dc8meaabaqaciaacaGaaeqabaqabeGadaaakqaabeqaaiabdweafjabcUfaBjabcIcaOiabdEeahjabgkHiTGGaciab=X7aTjabcMcaPiabdIha4naaDaaaleaacqWGnbqtdaWgaaadbaGaemyAaKgabeaaaSqaaiabcIcaOiabigdaXiabcMcaPaaakiabdIha4naaDaaaleaacqWGnbqtdaWgaaadbaGaem4AaSgabeaaaSqaaiabcIcaOiabikdaYiabcMcaPaaakiabc2faDjabg2da9maaqafabaGaeiikaGIae8xSde2aaWbaaSqabeaaieGacuGFPbqAgaqbaaaakiab=j7aInaaCaaaleqabaGafm4AaSMbauaaaaGccqGGPaqkcqWGfbqrcqGGOaakcqWG4baEdaqhaaWcbaGaemyta00aaSbaaWqaaiabdMgaPbqabaaaleaacqGGOaakcqaIXaqmcqGGPaqkaaGccqWG4baEdaqhaaWcbaGaemyta00aaSbaaWqaaiqbdMgaPzaafaaabeaaaSqaaiabcIcaOiabigdaXiabcMcaPaaakiabcMcaPiabdweafjabcIcaOiabdIha4naaDaaaleaacqWGnbqtdaWgaaadbaGaem4AaSgabeaaaSqaaiabcIcaOiabikdaYiabcMcaPaaakiabdIha4naaDaaaleaacqWGnbqtdaWgaaadbaGafm4AaSMbauaaaeqaaaWcbaGaeiikaGIaeGOmaiJaeiykaKcaaaqaaiqbdMgaPzaafaGaeiilaWIafm4AaSMbauaaaeqaniabggHiLdGccqGGPaqkaeaacqGH9aqpdaaeqbqaaiabcIcaOiab=f7aHnaaCaaaleqabaGae4xAaKgaaOGae8NSdi2aaWbaaSqabeaacuWGRbWAgaqbaaaakiabcMcaPiabdweafjabcIcaOiabdIha4naaDaaaleaacqWGnbqtdaWgaaadbaGaemyAaKgabeaaaSqaaiabcIcaOiabigdaXiabcMcaPiabikdaYaaakiabcMcaPiabdweafjabcIcaOiabdIha4naaDaaaleaacqWGnbqtdaWgaaadbaGaem4AaSgabeaaaSqaaiabcIcaOiabikdaYiabcMcaPaaakiabdIha4naaDaaaleaacqWGnbqtdaWgaaadbaGafm4AaSMbauaaaeqaaaWcbaGaeiikaGIaeGOmaiJaeiykaKcaaOGaeiykaKcaleaacqWGRbWAdaahaaadbeqaaiabcEcaNaaaaSqab0GaeyyeIuoakiabgUcaRmaaqafabaWaaabuaeaacqGGOaakcqWFXoqydaahaaWcbeqaaiqb+LgaPzaafaaaaOGae8NSdi2aaWbaaSqabeaacuWGRbWAgaqbaaaakiabcMcaPaWcbaGafm4AaSMbauaaaeqaniabggHiLdGccqGGOaakcqGHsislcqWGWbaCdaahaaWcbeqaaiabdMgaPbaakiabdchaWnaaCaaaleqabaGafmyAaKMbauaaaaGccqGGPaqkcqWGfbqrcqGGOaakcqWG4baEdaqhaaWcbaGaemyta00aaSbaaWqaaiabdUgaRbqabaaaleaacqGGOaakcqaIYaGmcqGGPaqkaaGccqWG4baEdaqhaaWcbaGaemyta00aaSbaaWqaaiqbdUgaRzaafaaabeaaaSqaaiabcIcaOiabikdaYiabcMcaPaaakiabcMcaPaWcbaGafmyAaKMbauaacqGHGjsUcqWGPbqAaeqaniabggHiLdaakeaacqGH9aqpcqWGWbaCdaahaaWcbeqaaiabdMgaPbaakmaaqafabaGaeiikaGIae8xSde2aaWbaaSqabeaacqGFPbqAaaGccqWFYoGydaahaaWcbeqaaiqbdUgaRzaafaaaaOGaeiykaKcaleaacuWGRbWAgaqbaaqab0GaeyyeIuoakiabdweafjabcIcaOiabdIha4naaDaaaleaacqWGnbqtdaWgaaadbaGaem4AaSgabeaaaSqaaiabcIcaOiabikdaYiabcMcaPaaakiabdIha4naaDaaaleaacqWGnbqtdaWgaaadbaGafm4AaSMbauaaaeqaaaWcbaGaeiikaGIaeGOmaiJaeiykaKcaaOGaeiykaKIaeyOeI0IaemiCaa3aaWbaaSqabeaacqWGPbqAaaGcdaaeqbqaamaaqafabaGaeiikaGIae8xSde2aaWbaaSqabeaacuGFPbqAgaqbaaaakiab=j7aInaaCaaaleqabaGafm4AaSMbauaaaaGccqGGPaqkaSqaaiqbdUgaRzaafaaabeqdcqGHris5aOGaemiCaa3aaWbaaSqabeaacuWGPbqAgaqbaaaakiabdweafjabcIcaOiabdIha4naaDaaaleaacqWGnbqtdaWgaaadbaGaem4AaSgabeaaaSqaaiabcIcaOiabikdaYiabcMcaPaaakiabdIha4naaDaaaleaacqWGnbqtdaWgaaadbaGafm4AaSMbauaaaeqaaaWcbaGaeiikaGIaeGOmaiJaeiykaKcaaOGaeiykaKcaleaacuWGPbqAgaqbaaqab0GaeyyeIuoaaOqaaiabg2da9iabdchaWnaaCaaaleqabaGaemyAaKgaaOGaemyCae3aaWbaaSqabeaacqWGRbWAaaGccqGGOaakcqWFXoqydaahaaWcbeqaaiab+LgaPbaakiab=j7aInaaCaaaleqabaGafm4AaSMbauaaaaGccqGGPaqkaaaa@21C3@

and

E [ ( G μ ) x M i ( 1 ) x M k ( 2 ) ] = E ( G x M i ( 1 ) x M k ( 2 ) ) = E [ G ( z M i ( 1 ) p i ) ( z M k ( 2 ) q k ) ] = p i q k ( G .. i k G .. i . G .. . k + G .. .. ) MathType@MTEF@5@5@+=feaafiart1ev1aaatCvAUfKttLearuWrP9MDH5MBPbIqV92AaeXatLxBI9gBaebbnrfifHhDYfgasaacH8akY=wiFfYdH8Gipec8Eeeu0xXdbba9frFj0=OqFfea0dXdd9vqai=hGuQ8kuc9pgc9s8qqaq=dirpe0xb9q8qiLsFr0=vr0=vr0dc8meaabaqaciaacaGaaeqabaqabeGadaaakeaacqWGfbqrcqGGBbWwcqGGOaakcqWGhbWrcqGHsisliiGacqWF8oqBcqGGPaqkcqWG4baEdaqhaaWcbaGaemyta00aaSbaaWqaaiabdMgaPbqabaaaleaacqGGOaakcqaIXaqmcqGGPaqkaaGccqWG4baEdaqhaaWcbaGaemyta00aaSbaaWqaaiabdUgaRbqabaaaleaacqGGOaakcqaIYaGmcqGGPaqkaaGccqGGDbqxcqGH9aqpcqWGfbqrcqGGOaakcqWGhbWrcqWG4baEdaqhaaWcbaGaemyta00aaSbaaWqaaiabdMgaPbqabaaaleaacqGGOaakcqaIXaqmcqGGPaqkaaGccqWG4baEdaqhaaWcbaGaemyta00aaSbaaWqaaiabdUgaRbqabaaaleaacqGGOaakcqaIYaGmcqGGPaqkaaGccqGGPaqkcqGH9aqpcqWGfbqrcqGGBbWwcqWGhbWrcqGGOaakcqWG6bGEdaqhaaWcbaGaemyta00aaSbaaWqaaiabdMgaPbqabaaaleaacqGGOaakcqaIXaqmcqGGPaqkaaGccqGHsislcqWGWbaCdaahaaWcbeqaaiabdMgaPbaakiabcMcaPiabcIcaOiabdQha6naaDaaaleaacqWGnbqtdaWgaaadbaGaem4AaSgabeaaaSqaaiabcIcaOiabikdaYiabcMcaPaaakiabgkHiTiabdghaXnaaCaaaleqabaGaem4AaSgaaOGaeiykaKIaeiyxa0Laeyypa0JaemiCaa3aaWbaaSqabeaacqWGPbqAaaGccqWGXbqCdaahaaWcbeqaaiabdUgaRbaakiabcIcaOiabdEeahnaaDaaaleaacqGGUaGlcqGGUaGlaeaacqWGPbqAcqWGRbWAaaGccqGHsislcqWGhbWrdaqhaaWcbaGaeiOla4IaeiOla4cabaGaemyAaKMaeiOla4caaOGaeyOeI0Iaem4raC0aa0baaSqaaiabc6caUiabc6caUaqaaiabc6caUiabdUgaRbaakiabgUcaRiabdEeahnaaDaaaleaacqGGUaGlcqGGUaGlaeaacqGGUaGlcqGGUaGlaaGccqGGPaqkaaa@9694@

We have ( α i β k ) = G .. i k G .. i . G .. . k + G .. .. MathType@MTEF@5@5@+=feaafiart1ev1aaatCvAUfKttLearuWrP9MDH5MBPbIqV92AaeXatLxBI9gBaebbnrfifHhDYfgasaacH8akY=wiFfYdH8Gipec8Eeeu0xXdbba9frFj0=OqFfea0dXdd9vqai=hGuQ8kuc9pgc9s8qqaq=dirpe0xb9q8qiLsFr0=vr0=vr0dc8meaabaqaciaacaGaaeqabaqabeGadaaakeaacqGGOaakiiGacqWFXoqydaahaaWcbeqaaGqaciab+LgaPbaakiab=j7aInaaCaaaleqabaGaem4AaSgaaOGaeiykaKIaeyypa0Jaem4raC0aa0baaSqaaiabc6caUiabc6caUaqaaiabdMgaPjabdUgaRbaakiabgkHiTiabdEeahnaaDaaaleaacqGGUaGlcqGGUaGlaeaacqWGPbqAcqGGUaGlaaGccqGHsislcqWGhbWrdaqhaaWcbaGaeiOla4IaeiOla4cabaGaeiOla4Iaem4AaSgaaOGaey4kaSIaem4raC0aa0baaSqaaiabc6caUiabc6caUaqaaiabc6caUiabc6caUaaaaaa@4DE2@ for i = 1, 2, ..., n1 and k = 1, 2, ..., n2. Similar results can be derived for other additive by additive terms.

• Additive × dominance effects: Note that

E [ ( G μ ) x M i ( 1 ) x M k ( 2 ) x F l ( 2 ) ] = E [ x M i ( 1 ) x M k ( 2 ) x F l ( 2 ) i , k , l ( α i γ l k ) x M i ( 1 ) x M k ( 2 ) x F l ( 2 ) ] = k , l ( α i γ l k ) E ( x M i ( 1 ) 2 ) E ( x M k ( 2 ) x M k ( 2 ) ) E ( x F l ( 2 ) x F l ( 2 ) ) = p i k , l ( α i γ l k ) E ( x M k ( 2 ) x M k ( 2 ) ) E ( x F l ( 2 ) x F l ( 2 ) ) = p i q k q l ( α i γ l k ) MathType@MTEF@5@5@+=feaafiart1ev1aaatCvAUfKttLearuWrP9MDH5MBPbIqV92AaeXatLxBI9gBaebbnrfifHhDYfgasaacH8akY=wiFfYdH8Gipec8Eeeu0xXdbba9frFj0=OqFfea0dXdd9vqai=hGuQ8kuc9pgc9s8qqaq=dirpe0xb9q8qiLsFr0=vr0=vr0dc8meaabaqaciaacaGaaeqabaqabeGadaaakqaabeqaaiabdweafjabcUfaBjabcIcaOiabdEeahjabgkHiTGGaciab=X7aTjabcMcaPiabdIha4naaDaaaleaacqWGnbqtdaWgaaadbaGaemyAaKgabeaaaSqaaiabcIcaOiabigdaXiabcMcaPaaakiabdIha4naaDaaaleaacqWGnbqtdaWgaaadbaGaem4AaSgabeaaaSqaaiabcIcaOiabikdaYiabcMcaPaaakiabdIha4naaDaaaleaacqWGgbGrdaWgaaadbaGaemiBaWgabeaaaSqaaiabcIcaOiabikdaYiabcMcaPaaakiabc2faDjabg2da9iabdweafjabcUfaBjabdIha4naaDaaaleaacqWGnbqtdaWgaaadbaGaemyAaKgabeaaaSqaaiabcIcaOiabigdaXiabcMcaPaaakiabdIha4naaDaaaleaacqWGnbqtdaWgaaadbaGaem4AaSgabeaaaSqaaiabcIcaOiabikdaYiabcMcaPaaakiabdIha4naaDaaaleaacqWGgbGrdaWgaaadbaGaemiBaWgabeaaaSqaaiabcIcaOiabikdaYiabcMcaPaaakmaaqafabaGaeiikaGIae8xSde2aaWbaaSqabeaaieGacuGFPbqAgaqbaaaakiab=n7aNnaaDaaaleaacuGFSbaBgaqbaaqaaiqb+TgaRzaafaaaaOGaeiykaKIaemiEaG3aa0baaSqaaiabd2eannaaBaaameaacuWGPbqAgaqbaaqabaaaleaacqGGOaakcqaIXaqmcqGGPaqkaaGccqWG4baEdaqhaaWcbaGaemyta00aaSbaaWqaaiqbdUgaRzaafaaabeaaaSqaaiabcIcaOiabikdaYiabcMcaPaaakiabdIha4naaDaaaleaacqWGgbGrdaWgaaadbaGafmiBaWMbauaaaeqaaaWcbaGaeiikaGIaeGOmaiJaeiykaKcaaaqaaiqbdMgaPzaafaGaeiilaWIafm4AaSMbauaacqGGSaalcuWGSbaBgaqbaaqab0GaeyyeIuoakiabc2faDbqaaiabg2da9maaqafabaGaeiikaGIae8xSde2aaWbaaSqabeaacqGFPbqAaaGccqWFZoWzdaqhaaWcbaGaf4hBaWMbauaaaeaacuGFRbWAgaqbaaaakiabcMcaPiabdweafbWcbaGafm4AaSMbauaacqGGSaalcuWGSbaBgaqbaaqab0GaeyyeIuoakiabcIcaOiabdIha4naaDaaaleaacqWGnbqtdaWgaaadbaGaemyAaKgabeaaaSqaaiabcIcaOiabigdaXiabcMcaPiabikdaYaaakiabcMcaPiabdweafjabcIcaOiabdIha4naaDaaaleaacqWGnbqtdaWgaaadbaGaem4AaSgabeaaaSqaaiabcIcaOiabikdaYiabcMcaPaaakiabdIha4naaDaaaleaacqWGnbqtdaWgaaadbaGafm4AaSMbauaaaeqaaaWcbaGaeiikaGIaeGOmaiJaeiykaKcaaOGaeiykaKIaemyrauKaeiikaGIaemiEaG3aa0baaSqaaiabdAeagnaaBaaameaacqWGSbaBaeqaaaWcbaGaeiikaGIaeGOmaiJaeiykaKcaaOGaemiEaG3aa0baaSqaaiabdAeagnaaBaaameaacuWGSbaBgaqbaaqabaaaleaacqGGOaakcqaIYaGmcqGGPaqkaaGccqGGPaqkcqGH9aqpcqWGWbaCdaahaaWcbeqaaiabdMgaPbaakmaaqafabaGaeiikaGIae8xSde2aaWbaaSqabeaacqGFPbqAaaGccqWFZoWzdaqhaaWcbaGaf4hBaWMbauaaaeaacuGFRbWAgaqbaaaakiabcMcaPiabdweafbWcbaGafm4AaSMbauaacqGGSaalcuWGSbaBgaqbaaqab0GaeyyeIuoakiabcIcaOiabdIha4naaDaaaleaacqWGnbqtdaWgaaadbaGaem4AaSgabeaaaSqaaiabcIcaOiabikdaYiabcMcaPaaakiabdIha4naaDaaaleaacqWGnbqtdaWgaaadbaGafm4AaSMbauaaaeqaaaWcbaGaeiikaGIaeGOmaiJaeiykaKcaaOGaeiykaKIaemyrauKaeiikaGIaemiEaG3aa0baaSqaaiabdAeagnaaBaaameaacqWGSbaBaeqaaaWcbaGaeiikaGIaeGOmaiJaeiykaKcaaOGaemiEaG3aa0baaSqaaiabdAeagnaaBaaameaacuWGSbaBgaqbaaqabaaaleaacqGGOaakcqaIYaGmcqGGPaqkaaGccqGGPaqkcqGH9aqpcqWGWbaCdaahaaWcbeqaaiabdMgaPbaakiabdghaXnaaCaaaleqabaGaem4AaSgaaOGaemyCae3aaSbaaSqaaiabdYgaSbqabaGccqGGOaakcqWFXoqydaahaaWcbeqaaiab+LgaPbaakiab=n7aNnaaDaaaleaacqGFSbaBaeaacqGFRbWAaaGccqGGPaqkaaaa@10EC@

and

E [ ( G μ ) x M i ( 1 ) x M k ( 2 ) x F l ( 2 ) ] = E [ G ( z M i ( 1 ) p i ) ( z M k ( 2 ) q k ) ( z F l ( 2 ) q l ) ] = p i q k q l ( G . l i k G .. i k G . l i . G . l . k + G .. i . + G .. . k + G . l .. G .. .. ) MathType@MTEF@5@5@+=feaafiart1ev1aaatCvAUfKttLearuWrP9MDH5MBPbIqV92AaeXatLxBI9gBaebbnrfifHhDYfgasaacH8akY=wiFfYdH8Gipec8Eeeu0xXdbba9frFj0=OqFfea0dXdd9vqai=hGuQ8kuc9pgc9s8qqaq=dirpe0xb9q8qiLsFr0=vr0=vr0dc8meaabaqaciaacaGaaeqabaqabeGadaaakqaabeqaaiabdweafjabcUfaBjabcIcaOiabdEeahjabgkHiTGGaciab=X7aTjabcMcaPiabdIha4naaDaaaleaacqWGnbqtdaWgaaadbaGaemyAaKgabeaaaSqaaiabcIcaOiabigdaXiabcMcaPaaakiabdIha4naaDaaaleaacqWGnbqtdaWgaaadbaGaem4AaSgabeaaaSqaaiabcIcaOiabikdaYiabcMcaPaaakiabdIha4naaDaaaleaacqWGgbGrdaWgaaadbaGaemiBaWgabeaaaSqaaiabcIcaOiabikdaYiabcMcaPaaakiabc2faDjabg2da9iabdweafjabcUfaBjabdEeahjabcIcaOiabdQha6naaDaaaleaacqWGnbqtdaWgaaadbaGaemyAaKgabeaaaSqaaiabcIcaOiabigdaXiabcMcaPaaakiabgkHiTiabdchaWnaaCaaaleqabaGaemyAaKgaaOGaeiykaKIaeiikaGIaemOEaO3aa0baaSqaaiabd2eannaaBaaameaacqWGRbWAaeqaaaWcbaGaeiikaGIaeGOmaiJaeiykaKcaaOGaeyOeI0IaemyCae3aaWbaaSqabeaacqWGRbWAaaGccqGGPaqkcqGGOaakcqWG6bGEdaqhaaWcbaGaemOray0aaSbaaWqaaiabdYgaSbqabaaaleaacqGGOaakcqaIYaGmcqGGPaqkaaGccqGHsislcqWGXbqCdaWgaaWcbaGaemiBaWgabeaakiabcMcaPiabc2faDbqaaiabg2da9iabdchaWnaaCaaaleqabaGaemyAaKgaaOGaemyCae3aaWbaaSqabeaacqWGRbWAaaGccqWGXbqCdaWgaaWcbaGaemiBaWgabeaakiabcIcaOiabdEeahnaaDaaaleaacqGGUaGlcqWGSbaBaeaacqWGPbqAcqWGRbWAaaGccqGHsislcqWGhbWrdaqhaaWcbaGaeiOla4IaeiOla4cabaGaemyAaKMaem4AaSgaaOGaeyOeI0Iaem4raC0aa0baaSqaaiabc6caUiabdYgaSbqaaiabdMgaPjabc6caUaaakiabgkHiTiabdEeahnaaDaaaleaacqGGUaGlcqWGSbaBaeaacqGGUaGlcqWGRbWAaaGccqGHRaWkcqWGhbWrdaqhaaWcbaGaeiOla4IaeiOla4cabaGaemyAaKMaeiOla4caaOGaey4kaSIaem4raC0aa0baaSqaaiabc6caUiabc6caUaqaaiabc6caUiabdUgaRbaakiabgUcaRiabdEeahnaaDaaaleaacqGGUaGlcqWGSbaBaeaacqGGUaGlcqGGUaGlaaGccqGHsislcqWGhbWrdaqhaaWcbaGaeiOla4IaeiOla4cabaGaeiOla4IaeiOla4caaOGaeiykaKcaaaa@B53C@

For i = 1, 2, ..., n1 and k, l = 1, 2, ..., n2, we have

( α i γ l k ) = G . l i k G .. i k G . l i . G . l . k + G .. i . + G .. . k + G . l .. G .. .. MathType@MTEF@5@5@+=feaafiart1ev1aaatCvAUfKttLearuWrP9MDH5MBPbIqV92AaeXatLxBI9gBaebbnrfifHhDYfgasaacH8akY=wiFfYdH8Gipec8Eeeu0xXdbba9frFj0=OqFfea0dXdd9vqai=hGuQ8kuc9pgc9s8qqaq=dirpe0xb9q8qiLsFr0=vr0=vr0dc8meaabaqaciaacaGaaeqabaqabeGadaaakeaacqGGOaakiiGacqWFXoqydaahaaWcbeqaaGqaciab+LgaPbaakiab=n7aNnaaDaaaleaacqWGSbaBaeaacqWGRbWAaaGccqGGPaqkcqGH9aqpcqWGhbWrdaqhaaWcbaGaeiOla4IaemiBaWgabaGaemyAaKMaem4AaSgaaOGaeyOeI0Iaem4raC0aa0baaSqaaiabc6caUiabc6caUaqaaiabdMgaPjabdUgaRbaakiabgkHiTiabdEeahnaaDaaaleaacqGGUaGlcqWGSbaBaeaacqWGPbqAcqGGUaGlaaGccqGHsislcqWGhbWrdaqhaaWcbaGaeiOla4IaemiBaWgabaGaeiOla4Iaem4AaSgaaOGaey4kaSIaem4raC0aa0baaSqaaiabc6caUiabc6caUaqaaiabdMgaPjabc6caUaaakiabgUcaRiabdEeahnaaDaaaleaacqGGUaGlcqGGUaGlaeaacqGGUaGlcqWGRbWAaaGccqGHRaWkcqWGhbWrdaqhaaWcbaGaeiOla4IaemiBaWgabaGaeiOla4IaeiOla4caaOGaeyOeI0Iaem4raC0aa0baaSqaaiabc6caUiabc6caUaqaaiabc6caUiabc6caUaaaaaa@6A37@

Similar results can be derived for dominance by additive terms.

• Dominance × dominance effects: Note that

E [ ( G μ ) x M i ( 1 ) x F j ( 1 ) x M k ( 2 ) x F l ( 2 ) ] = E [ x M i ( 1 ) x F j ( 1 ) x M k ( 2 ) x F l ( 2 ) i , j , k , l ( δ j i γ l k ) x M i ( 1 ) x F j ( 1 ) x M k ( 2 ) x F l ( 2 ) ] = i , j E ( x M i ( 1 ) x M i ( 1 ) ) E ( x F j ( 1 ) x F j ( 1 ) ) k , l ( δ j i γ l k ) E ( x M k ( 2 ) x M k ( 2 ) ) E ( x F l ( 2 ) x F l ( 2 ) ) = i , j E ( x M i ( 1 ) x M i ( 1 ) ) E ( x F j ( 1 ) x F j ( 1 ) ) ( δ j i γ l k ) q k q l = ( δ j i γ l k ) p i p j q k q l MathType@MTEF@5@5@+=feaafiart1ev1aaatCvAUfKttLearuWrP9MDH5MBPbIqV92AaeXatLxBI9gBaebbnrfifHhDYfgasaacH8akY=wiFfYdH8Gipec8Eeeu0xXdbba9frFj0=OqFfea0dXdd9vqai=hGuQ8kuc9pgc9s8qqaq=dirpe0xb9q8qiLsFr0=vr0=vr0dc8meaabaqaciaacaGaaeqabaqabeGadaaakqaabeqaaiabdweafjabcUfaBjabcIcaOiabdEeahjabgkHiTGGaciab=X7aTjabcMcaPiabdIha4naaDaaaleaacqWGnbqtdaWgaaadbaGaemyAaKgabeaaaSqaaiabcIcaOiabigdaXiabcMcaPaaakiabdIha4naaDaaaleaacqWGgbGrdaWgaaadbaGaemOAaOgabeaaaSqaaiabcIcaOiabigdaXiabcMcaPaaakiabdIha4naaDaaaleaacqWGnbqtdaWgaaadbaGaem4AaSgabeaaaSqaaiabcIcaOiabikdaYiabcMcaPaaakiabdIha4naaDaaaleaacqWGgbGrdaWgaaadbaGaemiBaWgabeaaaSqaaiabcIcaOiabikdaYiabcMcaPaaakiabc2faDjabg2da9iabdweafjabcUfaBjabdIha4naaDaaaleaacqWGnbqtdaWgaaadbaGaemyAaKgabeaaaSqaaiabcIcaOiabigdaXiabcMcaPaaakiabdIha4naaDaaaleaacqWGgbGrdaWgaaadbaGaemOAaOgabeaaaSqaaiabcIcaOiabigdaXiabcMcaPaaakiabdIha4naaDaaaleaacqWGnbqtdaWgaaadbaGaem4AaSgabeaaaSqaaiabcIcaOiabikdaYiabcMcaPaaakiabdIha4naaDaaaleaacqWGgbGrdaWgaaadbaGaemiBaWgabeaaaSqaaiabcIcaOiabikdaYiabcMcaPaaakmaaqafabaGaeiikaGIae8hTdq2aa0baaSqaaGqaciqb+PgaQzaafaaabaGaf4xAaKMbauaaaaGccqWFZoWzdaqhaaWcbaGafmiBaWMbauaaaeaacuWGRbWAgaqbaaaakiabcMcaPaWcbaGafmyAaKMbauaacqGGSaalcuWGQbGAgaqbaiabcYcaSiqbdUgaRzaafaGaeiilaWIafmiBaWMbauaaaeqaniabggHiLdGccqWG4baEdaqhaaWcbaGaemyta00aaSbaaWqaaiqbdMgaPzaafaaabeaaaSqaaiabcIcaOiabigdaXiabcMcaPaaakiabdIha4naaDaaaleaacqWGgbGrdaWgaaadbaGafmOAaOMbauaaaeqaaaWcbaGaeiikaGIaeGymaeJaeiykaKcaaOGaemiEaG3aa0baaSqaaiabd2eannaaBaaameaacuWGRbWAgaqbaaqabaaaleaacqGGOaakcqaIYaGmcqGGPaqkaaGccqWG4baEdaqhaaWcbaGaemOray0aaSbaaWqaaiqbdYgaSzaafaaabeaaaSqaaiabcIcaOiabikdaYiabcMcaPaaakiabc2faDbqaaiabg2da9maaqafabaGaemyrauKaeiikaGIaemiEaG3aa0baaSqaaiabd2eannaaBaaameaacqWGPbqAaeqaaaWcbaGaeiikaGIaeGymaeJaeiykaKcaaOGaemiEaG3aa0baaSqaaiabd2eannaaBaaameaacuWGPbqAgaqbaaqabaaaleaacqGGOaakcqaIXaqmcqGGPaqkaaGccqGGPaqkcqWGfbqrcqGGOaakcqWG4baEdaqhaaWcbaGaemOray0aaSbaaWqaaiabdQgaQbqabaaaleaacqGGOaakcqaIXaqmcqGGPaqkaaGccqWG4baEdaqhaaWcbaGaemOray0aaSbaaWqaaiqbdQgaQzaafaaabeaaaSqaaiabcIcaOiabigdaXiabcMcaPaaakiabcMcaPaWcbaGafmyAaKMbauaacqGGSaalcuWGQbGAgaqbaaqab0GaeyyeIuoakmaaqafabaGaeiikaGIae8hTdq2aa0baaSqaaiqb+PgaQzaafaaabaGaf4xAaKMbauaaaaGccqWFZoWzdaqhaaWcbaGafmiBaWMbauaaaeaacuWGRbWAgaqbaaaakiabcMcaPiabdweafjabcIcaOiabdIha4naaDaaaleaacqWGnbqtdaWgaaadbaGaem4AaSgabeaaaSqaaiabcIcaOiabikdaYiabcMcaPaaakiabdIha4naaDaaaleaacqWGnbqtdaWgaaadbaGafm4AaSMbauaaaeqaaaWcbaGaeiikaGIaeGOmaiJaeiykaKcaaOGaeiykaKcaleaacuWGRbWAgaqbaiabcYcaSiqbdYgaSzaafaaabeqdcqGHris5aOGaemyrauKaeiikaGIaemiEaG3aa0baaSqaaiabdAeagnaaBaaameaacqWGSbaBaeqaaaWcbaGaeiikaGIaeGOmaiJaeiykaKcaaOGaemiEaG3aa0baaSqaaiabdAeagnaaBaaameaacuWGSbaBgaqbaaqabaaaleaacqGGOaakcqaIYaGmcqGGPaqkaaGccqGGPaqkaeaacqGH9aqpdaaeqbqaaiabdweafjabcIcaOiabdIha4naaDaaaleaacqWGnbqtdaWgaaadbaGaemyAaKgabeaaaSqaaiabcIcaOiabigdaXiabcMcaPaaakiabdIha4naaDaaaleaacqWGnbqtdaWgaaadbaGafmyAaKMbauaaaeqaaaWcbaGaeiikaGIaeGymaeJaeiykaKcaaOGaeiykaKIaemyrauKaeiikaGIaemiEaG3aa0baaSqaaiabdAeagnaaBaaameaacqWGQbGAaeqaaaWcbaGaeiikaGIaeGymaeJaeiykaKcaaOGaemiEaG3aa0baaSqaaiabdAeagnaaBaaameaacuWGQbGAgaqbaaqabaaaleaacqGGOaakcqaIXaqmcqGGPaqkaaGccqGGPaqkaSqaaiqbdMgaPzaafaGaeiilaWIafmOAaOMbauaaaeqaniabggHiLdGccqGGOaakcqWF0oazdaqhaaWcbaGaf4NAaOMbauaaaeaacuGFPbqAgaqbaaaakiab=n7aNnaaDaaaleaacqWGSbaBaeaacqWGRbWAaaGccqGGPaqkcqWGXbqCdaahaaWcbeqaaiabdUgaRbaakiabdghaXnaaBaaaleaacqWGSbaBaeqaaOGaeyypa0JaeiikaGIae8hTdq2aa0baaSqaaiab+PgaQbqaaiab+LgaPbaakiab=n7aNnaaDaaaleaacqWGSbaBaeaacqWGRbWAaaGccqGGPaqkcqWGWbaCdaahaaWcbeqaaiabdMgaPbaakiabdchaWnaaBaaaleaacqWGQbGAaeqaaOGaemyCae3aaWbaaSqabeaacqWGRbWAaaGccqWGXbqCdaWgaaWcbaGaemiBaWgabeaaaaaa@50B1@

On the other hand

E [ ( G μ ) x M i ( 1 ) x F j ( 1 ) x M k ( 2 ) x F l ( 2 ) ] = E [ G ( z M i ( 1 ) p i ) ( x F j ( 1 ) p j ) ( z M k ( 2 ) q k ) ( z F l ( 2 ) q l ) ] = p i p j q k q l ( G j l i k G j . i k G . l i k G j l i . G j l . k + G .. i k + G j l .. + G j . i . + G . l . k + G j . . k + G . l i . G .. i . G .. . k G j . .. G . l .. + G .. .. ) MathType@MTEF@5@5@+=feaafiart1ev1aaatCvAUfKttLearuWrP9MDH5MBPbIqV92AaeXatLxBI9gBaebbnrfifHhDYfgasaacH8akY=wiFfYdH8Gipec8Eeeu0xXdbba9frFj0=OqFfea0dXdd9vqai=hGuQ8kuc9pgc9s8qqaq=dirpe0xb9q8qiLsFr0=vr0=vr0dc8meaabaqaciaacaGaaeqabaqabeGadaaakqaabeqaaiabdweafjabcUfaBjabcIcaOiabdEeahjabgkHiTGGaciab=X7aTjabcMcaPiabdIha4naaDaaaleaacqWGnbqtdaWgaaadbaGaemyAaKgabeaaaSqaaiabcIcaOiabigdaXiabcMcaPaaakiabdIha4naaDaaaleaacqWGgbGrdaWgaaadbaGaemOAaOgabeaaaSqaaiabcIcaOiabigdaXiabcMcaPaaakiabdIha4naaDaaaleaacqWGnbqtdaWgaaadbaGaem4AaSgabeaaaSqaaiabcIcaOiabikdaYiabcMcaPaaakiabdIha4naaDaaaleaacqWGgbGrdaWgaaadbaGaemiBaWgabeaaaSqaaiabcIcaOiabikdaYiabcMcaPaaakiabc2faDjabg2da9iabdweafjabcUfaBjabdEeahjabcIcaOiabdQha6naaDaaaleaacqWGnbqtdaWgaaadbaGaemyAaKgabeaaaSqaaiabcIcaOiabigdaXiabcMcaPaaakiabgkHiTiabdchaWnaaCaaaleqabaGaemyAaKgaaOGaeiykaKIaeiikaGIaemiEaG3aa0baaSqaaiabdAeagnaaBaaameaacqWGQbGAaeqaaaWcbaGaeiikaGIaeGymaeJaeiykaKcaaOGaeyOeI0IaemiCaa3aaSbaaSqaaiabdQgaQbqabaGccqGGPaqkcqGGOaakcqWG6bGEdaqhaaWcbaGaemyta00aaSbaaWqaaiabdUgaRbqabaaaleaacqGGOaakcqaIYaGmcqGGPaqkaaGccqGHsislcqWGXbqCdaahaaWcbeqaaiabdUgaRbaakiabcMcaPiabcIcaOiabdQha6naaDaaaleaacqWGgbGrdaWgaaadbaGaemiBaWgabeaaaSqaaiabcIcaOiabikdaYiabcMcaPaaakiabgkHiTiabdghaXnaaBaaaleaacqWGSbaBaeqaaOGaeiykaKIaeiyxa0fabaGaeyypa0JaemiCaa3aaWbaaSqabeaacqWGPbqAaaGccqWGWbaCdaWgaaWcbaGaemOAaOgabeaakiabdghaXnaaCaaaleqabaGaem4AaSgaaOGaemyCae3aaSbaaSqaaiabdYgaSbqabaGccqGGOaakcqWGhbWrdaqhaaWcbaGaemOAaOMaemiBaWgabaGaemyAaKMaem4AaSgaaOGaeyOeI0Iaem4raC0aa0baaSqaaiabdQgaQjabc6caUaqaaiabdMgaPjabdUgaRbaakiabgkHiTiabdEeahnaaDaaaleaacqGGUaGlcqWGSbaBaeaacqWGPbqAcqWGRbWAaaGccqGHsislcqWGhbWrdaqhaaWcbaGaemOAaOMaemiBaWgabaGaemyAaKMaeiOla4caaOGaeyOeI0Iaem4raC0aa0baaSqaaiabdQgaQjabdYgaSbqaaiabc6caUiabdUgaRbaakiabgUcaRiabdEeahnaaDaaaleaacqGGUaGlcqGGUaGlaeaacqWGPbqAcqWGRbWAaaGccqGHRaWkcqWGhbWrdaqhaaWcbaGaemOAaOMaemiBaWgabaGaeiOla4IaeiOla4caaaGcbaGaey4kaSIaem4raC0aa0baaSqaaiabdQgaQjabc6caUaqaaiabdMgaPjabc6caUaaakiabgUcaRiabdEeahnaaDaaaleaacqGGUaGlcqWGSbaBaeaacqGGUaGlcqWGRbWAaaGccqGHRaWkcqWGhbWrdaqhaaWcbaGaemOAaOMaeiOla4cabaGaeiOla4Iaem4AaSgaaOGaey4kaSIaem4raC0aa0baaSqaaiabc6caUiabdYgaSbqaaiabdMgaPjabc6caUaaakiabgkHiTiabdEeahnaaDaaaleaacqGGUaGlcqGGUaGlaeaacqWGPbqAcqGGUaGlaaGccqGHsislcqWGhbWrdaqhaaWcbaGaeiOla4IaeiOla4cabaGaeiOla4Iaem4AaSgaaOGaeyOeI0Iaem4raC0aa0baaSqaaiabdQgaQjabc6caUaqaaiabc6caUiabc6caUaaakiabgkHiTiabdEeahnaaDaaaleaacqGGUaGlcqWGSbaBaeaacqGGUaGlcqGGUaGlaaGccqGHRaWkcqWGhbWrdaqhaaWcbaGaeiOla4IaeiOla4cabaGaeiOla4IaeiOla4caaOGaeiykaKcaaaa@037C@

For i, j = 1, 2, ..., n1 and k, l = 1, 2, ..., n2, we have

( δ j i γ l k ) = G j l i k G j . i k G . l i k G j l i . G j l . k + G .. i k + G j l .. + G j . i . + G . l . k + G j . . k + G . l i . G .. i . G .. . k G j . .. G . l .. + G .. .. MathType@MTEF@5@5@+=feaafiart1ev1aaatCvAUfKttLearuWrP9MDH5MBPbIqV92AaeXatLxBI9gBaebbnrfifHhDYfgasaacH8akY=wiFfYdH8Gipec8Eeeu0xXdbba9frFj0=OqFfea0dXdd9vqai=hGuQ8kuc9pgc9s8qqaq=dirpe0xb9q8qiLsFr0=vr0=vr0dc8meaabaqaciaacaGaaeqabaqabeGadaaakeaacqGGOaakiiGacqWF0oazdaqhaaWcbaacbiGae4NAaOgabaGae4xAaKgaaOGae83SdC2aa0baaSqaaiabdYgaSbqaaiabdUgaRbaakiabcMcaPiabg2da9iabdEeahnaaDaaaleaacqWGQbGAcqWGSbaBaeaacqWGPbqAcqWGRbWAaaGccqGHsislcqWGhbWrdaqhaaWcbaGaemOAaOMaeiOla4cabaGaemyAaKMaem4AaSgaaOGaeyOeI0Iaem4raC0aa0baaSqaaiabc6caUiabdYgaSbqaaiabdMgaPjabdUgaRbaakiabgkHiTiabdEeahnaaDaaaleaacqWGQbGAcqWGSbaBaeaacqWGPbqAcqGGUaGlaaGccqGHsislcqWGhbWrdaqhaaWcbaGaemOAaOMaemiBaWgabaGaeiOla4Iaem4AaSgaaOGaey4kaSIaem4raC0aa0baaSqaaiabc6caUiabc6caUaqaaiabdMgaPjabdUgaRbaakiabgUcaRiabdEeahnaaDaaaleaacqWGQbGAcqWGSbaBaeaacqGGUaGlcqGGUaGlaaGccqGHRaWkcqWGhbWrdaqhaaWcbaGaemOAaOMaeiOla4cabaGaemyAaKMaeiOla4caaOGaey4kaSIaem4raC0aa0baaSqaaiabc6caUiabdYgaSbqaaiabc6caUiabdUgaRbaakiabgUcaRiabdEeahnaaDaaaleaacqWGQbGAcqGGUaGlaeaacqGGUaGlcqWGRbWAaaGccqGHRaWkcqWGhbWrdaqhaaWcbaGaeiOla4IaemiBaWgabaGaemyAaKMaeiOla4caaOGaeyOeI0Iaem4raC0aa0baaSqaaiabc6caUiabc6caUaqaaiabdMgaPjabc6caUaaakiabgkHiTiabdEeahnaaDaaaleaacqGGUaGlcqGGUaGlaeaacqGGUaGlcqWGRbWAaaGccqGHsislcqWGhbWrdaqhaaWcbaGaemOAaOMaeiOla4cabaGaeiOla4IaeiOla4caaOGaeyOeI0Iaem4raC0aa0baaSqaaiabc6caUiabdYgaSbqaaiabc6caUiabc6caUaaakiabgUcaRiabdEeahnaaDaaaleaacqGGUaGlcqGGUaGlaeaacqGGUaGlcqGGUaGlaaaaaa@A345@

B. Partition of genotypic variance in linkage equilibrium

Here we show that the genotypic variance V G of model (7) has the orthogonal partition (4) under Hardy-Weinberg, linkage and genotypic equilibria. First, note that the index variables x M i ( 1 ) MathType@MTEF@5@5@+=feaafiart1ev1aaatCvAUfKttLearuWrP9MDH5MBPbIqV92AaeXatLxBI9gBaebbnrfifHhDYfgasaacH8akY=wiFfYdH8Gipec8Eeeu0xXdbba9frFj0=OqFfea0dXdd9vqai=hGuQ8kuc9pgc9s8qqaq=dirpe0xb9q8qiLsFr0=vr0=vr0dc8meaabaqaciaacaGaaeqabaqabeGadaaakeaacqWG4baEdaqhaaWcbaGaemyta00aaSbaaWqaaiabdMgaPbqabaaaleaacqGGOaakcqaIXaqmcqGGPaqkaaaaaa@33AA@ , x F j ( 1 ) MathType@MTEF@5@5@+=feaafiart1ev1aaatCvAUfKttLearuWrP9MDH5MBPbIqV92AaeXatLxBI9gBaebbnrfifHhDYfgasaacH8akY=wiFfYdH8Gipec8Eeeu0xXdbba9frFj0=OqFfea0dXdd9vqai=hGuQ8kuc9pgc9s8qqaq=dirpe0xb9q8qiLsFr0=vr0=vr0dc8meaabaqaciaacaGaaeqabaqabeGadaaakeaacqWG4baEdaqhaaWcbaGaemOray0aaSbaaWqaaiabdQgaQbqabaaaleaacqGGOaakcqaIXaqmcqGGPaqkaaaaaa@339E@ , x M k ( 2 ) MathType@MTEF@5@5@+=feaafiart1ev1aaatCvAUfKttLearuWrP9MDH5MBPbIqV92AaeXatLxBI9gBaebbnrfifHhDYfgasaacH8akY=wiFfYdH8Gipec8Eeeu0xXdbba9frFj0=OqFfea0dXdd9vqai=hGuQ8kuc9pgc9s8qqaq=dirpe0xb9q8qiLsFr0=vr0=vr0dc8meaabaqaciaacaGaaeqabaqabeGadaaakeaacqWG4baEdaqhaaWcbaGaemyta00aaSbaaWqaaiabdUgaRbqabaaaleaacqGGOaakcqaIYaGmcqGGPaqkaaaaaa@33B0@ , x F l ( 2 ) MathType@MTEF@5@5@+=feaafiart1ev1aaatCvAUfKttLearuWrP9MDH5MBPbIqV92AaeXatLxBI9gBaebbnrfifHhDYfgasaacH8akY=wiFfYdH8Gipec8Eeeu0xXdbba9frFj0=OqFfea0dXdd9vqai=hGuQ8kuc9pgc9s8qqaq=dirpe0xb9q8qiLsFr0=vr0=vr0dc8meaabaqaciaacaGaaeqabaqabeGadaaakeaacqWG4baEdaqhaaWcbaGaemOray0aaSbaaWqaaiabdYgaSbqabaaaleaacqGGOaakcqaIYaGmcqGGPaqkaaaaaa@33A4@ have expectation zero. Second, the assumption of Hardy-Weinberg, linkage and genotypic equilibria mean that all alleles in different gametes and loci are independent so that, for example,

C o v ( x M i ( r ) , x F j ( r ) ) = E ( x M i ( r ) x F j ( r ) ) = E ( x M i ( r ) ) E ( x F j ( r ) ) = 0 MathType@MTEF@5@5@+=feaafiart1ev1aaatCvAUfKttLearuWrP9MDH5MBPbIqV92AaeXatLxBI9gBaebbnrfifHhDYfgasaacH8akY=wiFfYdH8Gipec8Eeeu0xXdbba9frFj0=OqFfea0dXdd9vqai=hGuQ8kuc9pgc9s8qqaq=dirpe0xb9q8qiLsFr0=vr0=vr0dc8meaabaqaciaacaGaaeqabaqabeGadaaakeaaieaacqWFdbWqcqWFVbWBcqWF2bGDcqWFOaakcqWG4baEdaqhaaWcbaGaemyta00aaSbaaWqaaiabdMgaPbqabaaaleaacqGGOaakcqWGYbGCcqGGPaqkaaGccqGGSaalcqWG4baEdaqhaaWcbaGaemOray0aaSbaaWqaaiabdQgaQbqabaaaleaacqGGOaakcqWGYbGCcqGGPaqkaaGccqWFPaqkcqGH9aqpcqWGfbqrcqWFOaakcqWG4baEdaqhaaWcbaGaemyta00aaSbaaWqaaiabdMgaPbqabaaaleaacqGGOaakcqWGYbGCcqGGPaqkaaGccqWG4baEdaqhaaWcbaGaemOray0aaSbaaWqaaiabdQgaQbqabaaaleaacqGGOaakcqWGYbGCcqGGPaqkaaGccqGGPaqkcqGH9aqpcqWGfbqrcqWFOaakcqWG4baEdaqhaaWcbaGaemyta00aaSbaaWqaaiabdMgaPbqabaaaleaacqGGOaakcqWGYbGCcqGGPaqkaaGccqGGPaqkcqWGfbqrcqGGOaakcqWG4baEdaqhaaWcbaGaemOray0aaSbaaWqaaiabdQgaQbqabaaaleaacqGGOaakcqWGYbGCcqGGPaqkaaGccqGGPaqkcqGH9aqpcqaIWaamaaa@6C63@

Thus the additive and dominance effects within a locus are orthogonal to each other because

C o v ( x M k ( r ) , x M i ( r ) , x F j ( r ) ) = E ( x M k ( r ) x M i ( r ) x F j ( r ) ) = E ( x M k ( r ) ) E ( x M i ( r ) ) E ( x F j ( r ) ) = 0 MathType@MTEF@5@5@+=feaafiart1ev1aaatCvAUfKttLearuWrP9MDH5MBPbIqV92AaeXatLxBI9gBaebbnrfifHhDYfgasaacH8akY=wiFfYdH8Gipec8Eeeu0xXdbba9frFj0=OqFfea0dXdd9vqai=hGuQ8kuc9pgc9s8qqaq=dirpe0xb9q8qiLsFr0=vr0=vr0dc8meaabaqaciaacaGaaeqabaqabeGadaaakeaaieaacqWFdbWqcqWFVbWBcqWF2bGDcqGGOaakcqWG4baEdaqhaaWcbaGaemyta00aaSbaaWqaaiabdUgaRbqabaaaleaacqGGOaakcqWGYbGCcqGGPaqkaaGccqGGSaalcqWG4baEdaqhaaWcbaGaemyta00aaSbaaWqaaiabdMgaPbqabaaaleaacqGGOaakcqWGYbGCcqGGPaqkaaGccqGGSaalcqWG4baEdaqhaaWcbaGaemOray0aaSbaaWqaaiabdQgaQbqabaaaleaacqGGOaakcqWGYbGCcqGGPaqkaaGccqGGPaqkcqGH9aqpcqWGfbqrcqGGOaakcqWG4baEdaqhaaWcbaGaemyta00aaSbaaWqaaiabdUgaRbqabaaaleaacqGGOaakcqWGYbGCcqGGPaqkaaGccqWG4baEdaqhaaWcbaGaemyta00aaSbaaWqaaiabdMgaPbqabaaaleaacqGGOaakcqWGYbGCcqGGPaqkaaGccqWG4baEdaqhaaWcbaGaemOray0aaSbaaWqaaiabdQgaQbqabaaaleaacqGGOaakcqWGYbGCcqGGPaqkaaGccqGGPaqkcqGH9aqpcqWGfbqrcqGGOaakcqWG4baEdaqhaaWcbaGaemyta00aaSbaaWqaaiabdUgaRbqabaaaleaacqGGOaakcqWGYbGCcqGGPaqkaaGccqGGPaqkcqWGfbqrcqGGOaakcqWG4baEdaqhaaWcbaGaemyta00aaSbaaWqaaiabdMgaPbqabaaaleaacqGGOaakcqWGYbGCcqGGPaqkaaGccqGGPaqkcqWGfbqrcqGGOaakcqWG4baEdaqhaaWcbaGaemOray0aaSbaaWqaaiabdQgaQbqabaaaleaacqGGOaakcqWGYbGCcqGGPaqkaaGccqGGPaqkcqGH9aqpcqaIWaamaaa@86AF@

for any 1 ≤ i, j, kn1 and locus r = 1 or 2. Similarly, the epistatic effects between loci are orthogonal to additive and dominance effects and also to other epistatic effects. Therefore, the total genotypic variance V G can be partitioned as

V G = V A 1 + V A 2 + V D 1 + V D 2 + V A 1 A 2 + V A 1 D 2 + V D 1 A 2 + V D 1 D 2 MathType@MTEF@5@5@+=feaafiart1ev1aaatCvAUfKttLearuWrP9MDH5MBPbIqV92AaeXatLxBI9gBaebbnrfifHhDYfgasaacH8akY=wiFfYdH8Gipec8Eeeu0xXdbba9frFj0=OqFfea0dXdd9vqai=hGuQ8kuc9pgc9s8qqaq=dirpe0xb9q8qiLsFr0=vr0=vr0dc8meaabaqaciaacaGaaeqabaqabeGadaaakeaacqWGwbGvdaWgaaWcbaGaem4raCeabeaakiabg2da9iabdAfawnaaBaaaleaacqWGbbqqdaWgaaadbaGaeGymaedabeaaaSqabaGccqGHRaWkcqWGwbGvdaWgaaWcbaGaemyqae0aaSbaaWqaaiabikdaYaqabaaaleqaaOGaey4kaSIaemOvay1aaSbaaSqaaiabdseaenaaBaaameaacqaIXaqmaeqaaaWcbeaakiabgUcaRiabdAfawnaaBaaaleaacqWGebardaWgaaadbaGaeGOmaidabeaaaSqabaGccqGHRaWkcqWGwbGvdaWgaaWcbaGaemyqae0aaSbaaWqaaiabigdaXaqabaWccqWGbbqqdaWgaaadbaGaeGOmaidabeaaaSqabaGccqGHRaWkcqWGwbGvdaWgaaWcbaGaemyqae0aaSbaaWqaaiabigdaXaqabaWccqWGebardaWgaaadbaGaeGOmaidabeaaaSqabaGccqGHRaWkcqWGwbGvdaWgaaWcbaGaemiraq0aaSbaaWqaaiabigdaXaqabaWccqWGbbqqdaWgaaadbaGaeGOmaidabeaaaSqabaGccqGHRaWkcqWGwbGvdaWgaaWcbaGaemiraq0aaSbaaWqaaiabigdaXaqabaWccqWGebardaWgaaadbaGaeGOmaidabeaaaSqabaaaaa@5C44@

with each component analyzed below.

• The additive variance: For locus 1,

as i = 1 n 1 α i p i = 0 MathType@MTEF@5@5@+=feaafiart1ev1aaatCvAUfKttLearuWrP9MDH5MBPbIqV92AaeXatLxBI9gBaebbnrfifHhDYfgasaacH8akY=wiFfYdH8Gipec8Eeeu0xXdbba9frFj0=OqFfea0dXdd9vqai=hGuQ8kuc9pgc9s8qqaq=dirpe0xb9q8qiLsFr0=vr0=vr0dc8meaabaqaciaacaGaaeqabaqabeGadaaakeaadaaeWbqaaGGaciab=f7aHnaaCaaaleqabaGaemyAaKgaaOGaemiCaa3aaWbaaSqabeaacqWGPbqAaaGccqGH9aqpcqaIWaamaSqaaiabdMgaPjabg2da9iabigdaXaqaaiabd6gaUnaaBaaameaacqaIXaqmaeqaaaqdcqGHris5aaaa@3CE8@ by the constrain condition (2). Similarly, for locus 2, we have V A 2 = k = 1 n 2 ( β k ) 2 q k + j = 1 n 2 ( β l ) 2 q l MathType@MTEF@5@5@+=feaafiart1ev1aaatCvAUfKttLearuWrP9MDH5MBPbIqV92AaeXatLxBI9gBaebbnrfifHhDYfgasaacH8akY=wiFfYdH8Gipec8Eeeu0xXdbba9frFj0=OqFfea0dXdd9vqai=hGuQ8kuc9pgc9s8qqaq=dirpe0xb9q8qiLsFr0=vr0=vr0dc8meaabaqaciaacaGaaeqabaqabeGadaaakeaacqWGwbGvdaWgaaWcbaGaemyqae0aaSbaaWqaaiabikdaYaqabaaaleqaaOGaeyypa0ZaaabCaeaacqGGOaakiiGacqWFYoGydaahaaWcbeqaaiabdUgaRbaakiabcMcaPmaaCaaaleqabaGaeGOmaidaaOGaemyCae3aaWbaaSqabeaacqWGRbWAaaGccqGHRaWkaSqaaiabdUgaRjabg2da9iabigdaXaqaaiabd6gaUnaaBaaameaacqaIYaGmaeqaaaqdcqGHris5aOWaaabCaeaacqGGOaakcqWFYoGydaWgaaWcbaGaemiBaWgabeaakiabcMcaPmaaCaaaleqabaGaeGOmaidaaOGaemyCae3aaSbaaSqaaiabdYgaSbqabaaabaGaemOAaOMaeyypa0JaeGymaedabaGaemOBa42aaSbaaWqaaiabikdaYaqabaaaniabggHiLdaaaa@5487@ .

• The dominance variance: For locus 1,

Similarly, for locus 2, we have V D 2 = k , l ( γ l k ) 2 q k q l MathType@MTEF@5@5@+=feaafiart1ev1aaatCvAUfKttLearuWrP9MDH5MBPbIqV92AaeXatLxBI9gBaebbnrfifHhDYfgasaacH8akY=wiFfYdH8Gipec8Eeeu0xXdbba9frFj0=OqFfea0dXdd9vqai=hGuQ8kuc9pgc9s8qqaq=dirpe0xb9q8qiLsFr0=vr0=vr0dc8meaabaqaciaacaGaaeqabaqabeGadaaakeaacqWGwbGvdaWgaaWcbaGaemiraq0aaSbaaWqaaiabikdaYaqabaaaleqaaOGaeyypa0ZaaabuaeaacqGGOaakiiGacqWFZoWzdaqhaaWcbaGaemiBaWgabaGaem4AaSgaaOGaeiykaKYaaWbaaSqabeaacqaIYaGmaaGccqWGXbqCdaahaaWcbeqaaiabdUgaRbaakiabdghaXnaaBaaaleaacqWGSbaBaeqaaaqaaiabdUgaRjabcYcaSiabdYgaSbqab0GaeyyeIuoaaaa@4489@ .

• The additive × additive variance:

V A 1 A 2 = V a r ( i , k ( α i β k ) x M i ( 1 ) x M k ( 2 ) ) + V a r ( i , l ( α i β l ) x M i ( 1 ) x F l ( 2 ) ) + V a r ( j , k ( α j β k ) x F j ( 1 ) x M k ( 2 ) ) + V a r ( j , l ( α j β l ) x F j ( 1 ) x F l ( 2 ) ) = i , k p i q k ( α i β k ) 2 + j , l p j q l ( α j β l ) 2 + i , l p i q l ( α i β l ) 2 + j , k p j q k ( α j β k ) 2 MathType@MTEF@5@5@+=feaafiart1ev1aaatCvAUfKttLearuWrP9MDH5MBPbIqV92AaeXatLxBI9gBaebbnrfifHhDYfgasaacH8akY=wiFfYdH8Gipec8Eeeu0xXdbba9frFj0=OqFfea0dXdd9vqai=hGuQ8kuc9pgc9s8qqaq=dirpe0xb9q8qiLsFr0=vr0=vr0dc8meaabaqaciaacaGaaeqabaqabeGadaaakqGaeeqaaupabaGaemOvay1aaSbaaSqaaiabdgeabnaaBaaameaacqaIXaqmaeqaaSGaemyqae0aaSbaaWqaaiabikdaYaqabaaaleqaaOGaeyypa0dcbaGae8NvayLae8xyaeMae8NCaiNae8hkaGYaaabuaeaacqGGOaakiiGacqGFXoqydaahaaWcbeqaaiabdMgaPbaakiab+j7aInaaCaaaleqabaGaem4AaSgaaOGaeiykaKIaemiEaG3aa0baaSqaaiabd2eannaaBaaameaacqWGPbqAaeqaaaWcbaGaeiikaGIaeGymaeJaeiykaKcaaOGaemiEaG3aa0baaSqaaiabd2eannaaBaaameaacqWGRbWAaeqaaaWcbaGaeiikaGIaeGOmaiJaeiykaKcaaOGaeiykaKcaleaacqWGPbqAcqGGSaalcqWGRbWAaeqaniabggHiLdGccqGHRaWkcqWFwbGvcqWFHbqycqWFYbGCcqWFOaakdaaeqbqaaiabcIcaOiab+f7aHnaaCaaaleqabaGaemyAaKgaaOGae4NSdi2aaSbaaSqaaiabdYgaSbqabaGccqGGPaqkcqWG4baEdaqhaaWcbaGaemyta00aaSbaaWqaaiabdMgaPbqabaaaleaacqGGOaakcqaIXaqmcqGGPaqkaaGccqWG4baEdaqhaaWcbaGaemOray0aaSbaaWqaaiabdYgaSbqabaaaleaacqGGOaakcqaIYaGmcqGGPaqkaaGccqGGPaqkaSqaaiabdMgaPjabcYcaSiabdYgaSbqab0GaeyyeIuoaaOqaaiaaxMaacqGHRaWkcqWFwbGvcqWFHbqycqWFYbGCcqWFOaakdaaeqbqaaiabcIcaOiab+f7aHnaaBaaaleaacqWGQbGAaeqaaOGae4NSdi2aaWbaaSqabeaacqWGRbWAaaGccqGGPaqkcqWG4baEdaqhaaWcbaGaemOray0aaSbaaWqaaiabdQgaQbqabaaaleaacqGGOaakcqaIXaqmcqGGPaqkaaGccqWG4baEdaqhaaWcbaGaemyta00aaSbaaWqaaiabdUgaRbqabaaaleaacqGGOaakcqaIYaGmcqGGPaqkaaGccqGGPaqkaSqaaiabdQgaQjabcYcaSiabdUgaRbqab0GaeyyeIuoakiabgUcaRiab=zfawjab=fgaHjab=jhaYjab=HcaOmaaqafabaGaeiikaGIae4xSde2aaSbaaSqaaiabdQgaQbqabaGccqGFYoGydaWgaaWcbaGaemiBaWgabeaakiabcMcaPiabdIha4naaDaaaleaacqWGgbGrdaWgaaadbaGaemOAaOgabeaaaSqaaiabcIcaOiabigdaXiabcMcaPaaakiabdIha4naaDaaaleaacqWGgbGrdaWgaaadbaGaemiBaWgabeaaaSqaaiabcIcaOiabikdaYiabcMcaPaaakiabcMcaPaWcbaGaemOAaOMaeiilaWIaemiBaWgabeqdcqGHris5aaGcbaGaeyypa0ZaaabuaeaacqWGWbaCdaahaaWcbeqaaiabdMgaPbaakiabdghaXnaaCaaaleqabaGaem4AaSgaaOGaeiikaGIae4xSde2aaWbaaSqabeaacqWGPbqAaaGccqGFYoGydaahaaWcbeqaaiabdUgaRbaakiabcMcaPmaaCaaaleqabaGaeGOmaidaaOGaey4kaSYaaabuaeaacqWGWbaCdaWgaaWcbaGaemOAaOgabeaakiabdghaXnaaBaaaleaacqWGSbaBaeqaaOGaeiikaGIae4xSde2aaSbaaSqaaiabdQgaQbqabaGccqGFYoGydaWgaaWcbaGaemiBaWgabeaakiabcMcaPmaaCaaaleqabaGaeGOmaidaaaqaaiabdQgaQjabcYcaSiabdYgaSbqab0GaeyyeIuoakiabgUcaRaWcbaGaemyAaKMaeiilaWIaem4AaSgabeqdcqGHris5aOWaaabuaeaacqWGWbaCdaahaaWcbeqaaiabdMgaPbaakiabdghaXnaaBaaaleaacqWGSbaBaeqaaOGaeiikaGIae4xSde2aaWbaaSqabeaacqWGPbqAaaGccqGFYoGydaWgaaWcbaGaemiBaWgabeaakiabcMcaPmaaCaaaleqabaGaeGOmaidaaOGaey4kaScaleaacqWGPbqAcqGGSaalcqWGSbaBaeqaniabggHiLdGcdaaeqbqaaiabdchaWnaaBaaaleaacqWGQbGAaeqaaOGaemyCae3aaWbaaSqabeaacqWGRbWAaaGccqGGOaakcqGFXoqydaWgaaWcbaGaemOAaOgabeaakiab+j7aInaaCaaaleqabaGaem4AaSgaaOGaeiykaKYaaWbaaSqabeaacqaIYaGmaaaabaGaemOAaOMaeiilaWIaem4AaSgabeqdcqGHris5aaaaaa@151D@

• The additive × dominance variance:

V A 1 D 2 = V a r ( i , k , l ( α i γ l k ) x M i ( 1 ) x M k ( 2 ) x F l ( 2 ) ) + V a r ( j , k , l ( α j γ l k ) x F j ( 1 ) x M k ( 2 ) x F l ( 2 ) ) = i , k , l p i q k q l ( α i γ l k ) 2 + j , k , l p j q k q l ( α j γ l k ) 2 MathType@MTEF@5@5@+=feaafiart1ev1aaatCvAUfKttLearuWrP9MDH5MBPbIqV92AaeXatLxBI9gBaebbnrfifHhDYfgasaacH8akY=wiFfYdH8Gipec8Eeeu0xXdbba9frFj0=OqFfea0dXdd9vqai=hGuQ8kuc9pgc9s8qqaq=dirpe0xb9q8qiLsFr0=vr0=vr0dc8meaabaqaciaacaGaaeqabaqabeGadaaakqaaeeqaaiabdAfawnaaBaaaleaacqWGbbqqdaWgaaadbaGaeGymaedabeaaliabdseaenaaBaaameaacqaIYaGmaeqaaaWcbeaakiabg2da9Gqaaiab=zfawjab=fgaHjab=jhaYjab=HcaOmaaqafabaGaeiikaGccciGae4xSde2aaWbaaSqabeaacqWGPbqAaaGccqGFZoWzdaqhaaWcbaGaemiBaWgabaGaem4AaSgaaOGaeiykaKcaleaaieGacqqFPbqAcqqFSaalcqqFRbWAcqqFSaalcqqFSbaBaeqaniabggHiLdGccqWG4baEdaqhaaWcbaGaemyta00aaSbaaWqaaiabdMgaPbqabaaaleaacqGGOaakcqaIXaqmcqGGPaqkaaGccqWG4baEdaqhaaWcbaGaemyta00aaSbaaWqaaiabdUgaRbqabaaaleaacqGGOaakcqaIYaGmcqGGPaqkaaGccqWG4baEdaqhaaWcbaGaemOray0aaSbaaWqaaiabdYgaSbqabaaaleaacqGGOaakcqaIYaGmcqGGPaqkaaGccqGGPaqkcqGHRaWkcqWFwbGvcqWFHbqycqWFYbGCcqWFOaakdaaeqbqaaiabcIcaOiab+f7aHnaaBaaaleaacqWGQbGAaeqaaOGae43SdC2aa0baaSqaaiabdYgaSbqaaiabdUgaRbaakiabcMcaPaWcbaGae0NAaOMae0hlaWIae03AaSMae0hlaWIae0hBaWgabeqdcqGHris5aOGaemiEaG3aa0baaSqaaiabdAeagnaaBaaameaacqWGQbGAaeqaaaWcbaGaeiikaGIaeGymaeJaeiykaKcaaOGaemiEaG3aa0baaSqaaiabd2eannaaBaaameaacqWGRbWAaeqaaaWcbaGaeiikaGIaeGOmaiJaeiykaKcaaOGaemiEaG3aa0baaSqaaiabdAeagnaaBaaameaacqWGSbaBaeqaaaWcbaGaeiikaGIaeGOmaiJaeiykaKcaaOGaeiykaKcabaGaeyypa0ZaaabuaeaacqWGWbaCdaahaaWcbeqaaiabdMgaPbaakiabdghaXnaaCaaaleqabaGaem4AaSgaaOGaemyCae3aaSbaaSqaaiabdYgaSbqabaGccqGGOaakcqGFXoqydaahaaWcbeqaaiabdMgaPbaakiab+n7aNnaaDaaaleaacqWGSbaBaeaacqWGRbWAaaGccqGGPaqkdaahaaWcbeqaaiabikdaYaaaaeaacqqFPbqAcqqFSaalcqqFRbWAcqqFSaalcqqFSbaBaeqaniabggHiLdGccqGHRaWkdaaeqbqaaiabdchaWnaaBaaaleaacqWGQbGAaeqaaOGaemyCae3aaWbaaSqabeaacqWGRbWAaaGccqWGXbqCdaWgaaWcbaGaemiBaWgabeaakiabcIcaOiab+f7aHnaaBaaaleaacqWGQbGAaeqaaOGae43SdC2aa0baaSqaaiabdYgaSbqaaiabdUgaRbaakiabcMcaPmaaCaaaleqabaGaeGOmaidaaaqaaiab9PgaQjab9XcaSiab9TgaRjab9XcaSiab9XgaSbqab0GaeyyeIuoaaaaa@C568@

Similarly, the dominance × additive variance is V D 1 A 2 = i , j , k p i p j q k ( δ j i β k ) 2 + i , j , l p i p j q l ( δ j i β l ) 2 MathType@MTEF@5@5@+=feaafiart1ev1aaatCvAUfKttLearuWrP9MDH5MBPbIqV92AaeXatLxBI9gBaebbnrfifHhDYfgasaacH8akY=wiFfYdH8Gipec8Eeeu0xXdbba9frFj0=OqFfea0dXdd9vqai=hGuQ8kuc9pgc9s8qqaq=dirpe0xb9q8qiLsFr0=vr0=vr0dc8meaabaqaciaacaGaaeqabaqabeGadaaakeaacqWGwbGvdaWgaaWcbaGaemiraq0aaSbaaWqaaiabigdaXaqabaWccqWGbbqqdaWgaaadbaGaeGOmaidabeaaaSqabaGccqGH9aqpdaaeqbqaaiabdchaWnaaCaaaleqabaGaemyAaKgaaOGaemiCaa3aaSbaaSqaaiabdQgaQbqabaGccqWGXbqCdaahaaWcbeqaaiabdUgaRbaakiabcIcaOGGaciab=r7aKnaaDaaaleaaieGacqGFQbGAaeaacqGFPbqAaaGccqWFYoGydaahaaWcbeqaaiabdUgaRbaakiabcMcaPmaaCaaaleqabaGaeGOmaidaaaqaaiab+LgaPjab+XcaSiab+PgaQjab+XcaSiab+TgaRbqab0GaeyyeIuoakiabgUcaRmaaqafabaGaemiCaa3aaWbaaSqabeaacqWGPbqAaaGccqWGWbaCdaWgaaWcbaGaemOAaOgabeaakiabdghaXnaaBaaaleaacqWGSbaBaeqaaOGaeiikaGIae8hTdq2aa0baaSqaaiab+PgaQbqaaiab+LgaPbaakiab=j7aInaaBaaaleaacqWGSbaBaeqaaOGaeiykaKYaaWbaaSqabeaacqaIYaGmaaaabaGae4xAaKMae4hlaWIae4NAaOMae4hlaWIae4hBaWgabeqdcqGHris5aaaa@6B42@ .

• The dominance × dominance variance:

C. Partition of genotypic variance in linkage disequilibrium

We present the partition of the genotypic variance based on model (7) under the assumption of Hardy-Weinberg equilibrium but linkage disequilibrium.

• The additive variance:

V A 1 = i = 1 n 1 p i ( α i ) 2 + j = 1 n 1 p j ( α j ) 2 , V A 2 = k = 1 n 2 q k ( β k ) 2 + j = 1 n 2 q l ( β l ) 2 MathType@MTEF@5@5@+=feaafiart1ev1aaatCvAUfKttLearuWrP9MDH5MBPbIqV92AaeXatLxBI9gBaebbnrfifHhDYfgasaacH8akY=wiFfYdH8Gipec8Eeeu0xXdbba9frFj0=OqFfea0dXdd9vqai=hGuQ8kuc9pgc9s8qqaq=dirpe0xb9q8qiLsFr0=vr0=vr0dc8meaabaqaciaacaGaaeqabaqabeGadaaakeaacqWGwbGvdaWgaaWcbaGaemyqae0aaSbaaWqaaiabigdaXaqabaaaleqaaOGaeyypa0ZaaabCaeaacqWGWbaCdaahaaWcbeqaaiabdMgaPbaakiabcIcaOGGaciab=f7aHnaaCaaaleqabaGaemyAaKgaaOGaeiykaKYaaWbaaSqabeaacqaIYaGmaaGccqGHRaWkaSqaaiabdMgaPjabg2da9iabigdaXaqaaiabd6gaUnaaBaaameaacqaIXaqmaeqaaaqdcqGHris5aOWaaabCaeaacqWGWbaCdaWgaaWcbaGaemOAaOgabeaakiabcIcaOiab=f7aHnaaBaaaleaacqWGQbGAaeqaaOGaeiykaKYaaWbaaSqabeaacqaIYaGmaaGccqGGSaalcqqGGaaicqWGwbGvdaWgaaWcbaGaemyqae0aaSbaaWqaaiabikdaYaqabaaaleqaaOGaeyypa0ZaaabCaeaacqWGXbqCdaahaaWcbeqaaiabdUgaRbaakiabcIcaOiab=j7aInaaCaaaleqabaGaem4AaSgaaOGaeiykaKYaaWbaaSqabeaacqaIYaGmaaGccqGHRaWkaSqaaiabdUgaRjabg2da9iabigdaXaqaaiabd6gaUnaaBaaameaacqaIYaGmaeqaaaqdcqGHris5aOWaaabCaeaacqWGXbqCdaWgaaWcbaGaemiBaWgabeaakiabcIcaOiab=j7aInaaBaaaleaacqWGSbaBaeqaaOGaeiykaKYaaWbaaSqabeaacqaIYaGmaaaabaGaemOAaOMaeyypa0JaeGymaedabaGaemOBa42aaSbaaWqaaiabikdaYaqabaaaniabggHiLdaaleaacqWGQbGAcqGH9aqpcqaIXaqmaeaacqWGUbGBdaWgaaadbaGaeGymaedabeaaa0GaeyyeIuoaaaa@7DF0@

• The dominance variance:

V D 1 = i , j ( δ j i ) 2 p i p j , V D 2 = k , l ( γ l k ) 2 q k q l MathType@MTEF@5@5@+=feaafiart1ev1aaatCvAUfKttLearuWrP9MDH5MBPbIqV92AaeXatLxBI9gBaebbnrfifHhDYfgasaacH8akY=wiFfYdH8Gipec8Eeeu0xXdbba9frFj0=OqFfea0dXdd9vqai=hGuQ8kuc9pgc9s8qqaq=dirpe0xb9q8qiLsFr0=vr0=vr0dc8meaabaqaciaacaGaaeqabaqabeGadaaakeaacqWGwbGvdaWgaaWcbaGaemiraq0aaSbaaWqaaiabigdaXaqabaaaleqaaOGaeyypa0ZaaabuaeaacqGGOaakiiGacqWF0oazdaqhaaWcbaGaemOAaOgabaGaemyAaKgaaOGaeiykaKYaaWbaaSqabeaacqaIYaGmaaGccqWGWbaCdaahaaWcbeqaaiabdMgaPbaakiabdchaWnaaBaaaleaacqWGQbGAaeqaaOGaeiilaWIaaGPaVlaaykW7caaMc8UaemOvay1aaSbaaSqaaiabdseaenaaBaaameaacqaIYaGmaeqaaaWcbeaakiabg2da9aWcbaGaemyAaKMaeiilaWIaemOAaOgabeqdcqGHris5aOWaaabuaeaacqGGOaakcqWFZoWzdaqhaaWcbaGaemiBaWgabaGaem4AaSgaaOGaeiykaKYaaWbaaSqabeaacqaIYaGmaaGccqWGXbqCdaahaaWcbeqaaiabdUgaRbaakiabdghaXnaaBaaaleaacqWGSbaBaeqaaaqaaiabdUgaRjabcYcaSiabdYgaSbqab0GaeyyeIuoaaaa@61DA@

• The additive × additive variance:

V A 1 A 2 = i , k ( p i q k + D .. i k ) ( α i β k ) 2 [ i , k ( α i β k ) D .. i k ] 2 + j , l ( p j q l + D j l .. ) ( α j β l ) 2 [ j , l ( α j β l ) D j l .. ] 2 + i , l p i q l ( α i β l ) 2 + j , k p j q k ( α j β k ) 2 + 2 i , j , k , l ( α i β k ) ( α j β l ) D j l .. D .. i k + 2 i , j , k , l ( α i β l ) ( α j β k ) D j l .. D .. i k + 2 ( i , k ( α i β k ) D .. i k ) ( j , l ( α j β l ) D j l .. ) MathType@MTEF@5@5@+=feaafiart1ev1aaatCvAUfKttLearuWrP9MDH5MBPbIqV92AaeXatLxBI9gBaebbnrfifHhDYfgasaacH8akY=wiFfYdH8Gipec8Eeeu0xXdbba9frFj0=OqFfea0dXdd9vqai=hGuQ8kuc9pgc9s8qqaq=dirpe0xb9q8qiLsFr0=vr0=vr0dc8meaabaqaciaacaGaaeqabaqabeGadaaakeaafaqaaeWacaaabaGaemOvay1aaSbaaSqaaiabdgeabnaaBaaameaacqaIXaqmaeqaaSGaemyqae0aaSbaaWqaaiabikdaYaqabaaaleqaaOGaeyypa0dabaWaaabuaeaacqGGOaakcqWGWbaCdaahaaWcbeqaaiabdMgaPbaakiabdghaXnaaCaaaleqabaGaem4AaSgaaOGaey4kaSIaemiraq0aa0baaSqaaiabc6caUiabc6caUaqaaiabdMgaPjabdUgaRbaakiabcMcaPiabcIcaOGGaciab=f7aHnaaCaaaleqabaGaemyAaKgaaOGae8NSdi2aaWbaaSqabeaacqWGRbWAaaGccqGGPaqkdaahaaWcbeqaaiabikdaYaaakiabgkHiTiabcUfaBnaaqafabaGaeiikaGIae8xSde2aaWbaaSqabeaacqWGPbqAaaGccqWFYoGydaahaaWcbeqaaiabdUgaRbaakiabcMcaPaWcbaGaemyAaKMaeiilaWIaem4AaSgabeqdcqGHris5aaWcbaGaemyAaKMaeiilaWIaem4AaSgabeqdcqGHris5aOGaemiraq0aa0baaSqaaiabc6caUiabc6caUaqaaiabdMgaPjabdUgaRbaakiabc2faDnaaCaaaleqabaGaeGOmaidaaOGaey4kaSYaaabuaeaacqGGOaakcqWGWbaCdaWgaaWcbaGaemOAaOgabeaakiabdghaXnaaBaaaleaacqWGSbaBaeqaaOGaey4kaSIaemiraq0aa0baaSqaaiabdQgaQjabdYgaSbqaaiabc6caUiabc6caUaaakiabcMcaPiabcIcaOiab=f7aHnaaBaaaleaacqWGQbGAaeqaaOGae8NSdi2aaSbaaSqaaiabdYgaSbqabaGccqGGPaqkdaahaaWcbeqaaiabikdaYaaaaeaacqWGQbGAcqGGSaalcqWGSbaBaeqaniabggHiLdaakeaaaeaacqGHsislcqGGBbWwdaaeqbqaaiabcIcaOiab=f7aHnaaBaaaleaacqWGQbGAaeqaaOGae8NSdi2aaSbaaSqaaiabdYgaSbqabaGccqGGPaqkcqWGebardaqhaaWcbaGaemOAaOMaemiBaWgabaGaeiOla4IaeiOla4caaOGaeiyxa01aaWbaaSqabeaacqaIYaGmaaGccqGHRaWkdaaeqbqaaiabdchaWnaaCaaaleqabaGaemyAaKgaaOGaemyCae3aaSbaaSqaaiabdYgaSbqabaGccqGGOaakcqWFXoqydaahaaWcbeqaaiabdMgaPbaakiab=j7aInaaBaaaleaaieGacqGFSbaBaeqaaOGaeiykaKYaaWbaaSqabeaacqaIYaGmaaGccqGHRaWkdaaeqbqaaiabdchaWnaaBaaaleaacqWGQbGAaeqaaOGaemyCae3aaWbaaSqabeaacqWGRbWAaaGccqGGOaakcqWFXoqydaWgaaWcbaGaemOAaOgabeaakiab=j7aInaaCaaaleqabaGaem4AaSgaaOGaeiykaKYaaWbaaSqabeaacqaIYaGmaaGccqGHRaWkcqaIYaGmaSqaaiabdQgaQjabcYcaSiabdUgaRbqab0GaeyyeIuoakmaaqafabaGaeiikaGIae8xSde2aaWbaaSqabeaacqWGPbqAaaGccqWFYoGydaahaaWcbeqaaiabdUgaRbaakiabcMcaPiabcIcaOiab=f7aHnaaBaaaleaacqWGQbGAaeqaaOGae8NSdi2aaSbaaSqaaiabdYgaSbqabaGccqGGPaqkcqWGebardaqhaaWcbaGaemOAaOMaemiBaWgabaGaeiOla4IaeiOla4caaOGaemiraq0aa0baaSqaaiabc6caUiabc6caUaqaaiabdMgaPjabdUgaRbaaaeaacqWGPbqAcqGGSaalcqWGQbGAcqGGSaalcqWGRbWAcqGGSaalcqWGSbaBaeqaniabggHiLdaaleaacqWGPbqAcqGGSaalcqWGSbaBaeqaniabggHiLdaaleaacqWGQbGAcqGGSaalcqWGSbaBaeqaniabggHiLdaakeaaaeaacqGHRaWkcqaIYaGmdaaeqbqaaiabcIcaOiab=f7aHnaaCaaaleqabaGaemyAaKgaaOGae8NSdi2aaSbaaSqaaiabdYgaSbqabaGccqGGPaqkcqGGOaakcqWFXoqydaWgaaWcbaGaemOAaOgabeaakiab=j7aInaaCaaaleqabaGaem4AaSgaaOGaeiykaKIaemiraq0aa0baaSqaaiabdQgaQjabdYgaSbqaaiabc6caUiabc6caUaaakiabdseaenaaDaaaleaacqGGUaGlcqGGUaGlaeaacqWGPbqAcqWGRbWAaaaabaGaemyAaKMaeiilaWIaemOAaOMaeiilaWIaem4AaSMaeiilaWIaemiBaWgabeqdcqGHris5aOGaey4kaSIaeGOmaiJaeiikaGYaaabuaeaacqGGOaakcqWFXoqydaahaaWcbeqaaiabdMgaPbaakiab=j7aInaaCaaaleqabaGaem4AaSgaaOGaeiykaKIaemiraq0aa0baaSqaaiabc6caUiabc6caUaqaaiabdMgaPjabdUgaRbaakiabcMcaPaWcbaGaemyAaKMaeiilaWIaem4AaSgabeqdcqGHris5aOGaeiikaGYaaabuaeaacqGGOaakcqWFXoqydaWgaaWcbaGaemOAaOgabeaakiab=j7aInaaBaaaleaacqWGSbaBaeqaaOGaeiykaKIaemiraq0aa0baaSqaaiabdQgaQjabdYgaSbqaaiabc6caUiabc6caUaaakiabcMcaPaWcbaGaemOAaOMaeiilaWIaemiBaWgabeqdcqGHris5aaaaaaa@474A@

• The additive × dominance variance:

V A 1 D 2 = i , k , l q l ( p i q k + D .. i k ) ( α i γ l k ) 2 + j , k , l q k ( p j q l + D j l .. ) ( α j γ l k ) 2 + 2 i , j , k , l ( α i γ l k ) ( α j γ l k ) D j l .. D .. i k MathType@MTEF@5@5@+=feaafiart1ev1aaatCvAUfKttLearuWrP9MDH5MBPbIqV92AaeXatLxBI9gBaebbnrfifHhDYfgasaacH8akY=wiFfYdH8Gipec8Eeeu0xXdbba9frFj0=OqFfea0dXdd9vqai=hGuQ8kuc9pgc9s8qqaq=dirpe0xb9q8qiLsFr0=vr0=vr0dc8meaabaqaciaacaGaaeqabaqabeGadaaakeaacqWGwbGvdaWgaaWcbaGaemyqae0aaSbaaWqaaiabigdaXaqabaWccqWGebardaWgaaadbaGaeGOmaidabeaaaSqabaGccqGH9aqpdaaeqbqaaiabdghaXnaaBaaaleaacqWGSbaBaeqaaOGaeiikaGIaemiCaa3aaWbaaSqabeaacqWGPbqAaaGccqWGXbqCdaahaaWcbeqaaiabdUgaRbaakiabgUcaRiabdseaenaaDaaaleaacqGGUaGlcqGGUaGlaeaacqWGPbqAcqWGRbWAaaGccqGGPaqkaSqaaiabdMgaPjabcYcaSiabdUgaRjabcYcaSiabdYgaSbqab0GaeyyeIuoakiabcIcaOGGaciab=f7aHnaaCaaaleqabaGaemyAaKgaaOGae83SdC2aa0baaSqaaiabdYgaSbqaaiabdUgaRbaakiabcMcaPmaaCaaaleqabaGaeGOmaidaaOGaey4kaSYaaabuaeaacqWGXbqCdaahaaWcbeqaaiabdUgaRbaakiabcIcaOiabdchaWnaaBaaaleaacqWGQbGAaeqaaOGaemyCae3aaSbaaSqaaiabdYgaSbqabaGccqGHRaWkcqWGebardaqhaaWcbaGaemOAaOMaemiBaWgabaGaeiOla4IaeiOla4caaOGaeiykaKcaleaacqWGQbGAcqGGSaalcqWGRbWAcqGGSaalcqWGSbaBaeqaniabggHiLdGccqGGOaakcqWFXoqydaWgaaWcbaGaemOAaOgabeaakiab=n7aNnaaDaaaleaacqWGSbaBaeaacqWGRbWAaaGccqGGPaqkdaahaaWcbeqaaiabikdaYaaakiabgUcaRiabikdaYmaaqafabaGaeiikaGIae8xSde2aaWbaaSqabeaacqWGPbqAaaGccqWFZoWzdaqhaaWcbaGaemiBaWgabaGaem4AaSgaaOGaeiykaKcaleaacqWGPbqAcqGGSaalcqWGQbGAcqGGSaalcqWGRbWAcqGGSaalcqWGSbaBaeqaniabggHiLdGccqGGOaakcqWFXoqydaWgaaWcbaGaemOAaOgabeaakiab=n7aNnaaDaaaleaacqWGSbaBaeaacqWGRbWAaaGccqGGPaqkcqWGebardaqhaaWcbaGaemOAaOMaemiBaWgabaGaeiOla4IaeiOla4caaOGaemiraq0aa0baaSqaaiabc6caUiabc6caUaqaaiabdMgaPjabdUgaRbaaaaa@A71F@

• The dominance × additive variance:

V D 1 A 2 = i , j , k p j ( p i q k + D .. i k ) ( δ j i β k ) 2 + i , j , l p i ( p j q l + D j l .. ) ( δ j i β l ) 2 + 2 i , j , k , l ( δ j i β k ) ( δ j i β l ) D j l .. D .. i k MathType@MTEF@5@5@+=feaafiart1ev1aaatCvAUfKttLearuWrP9MDH5MBPbIqV92AaeXatLxBI9gBaebbnrfifHhDYfgasaacH8akY=wiFfYdH8Gipec8Eeeu0xXdbba9frFj0=OqFfea0dXdd9vqai=hGuQ8kuc9pgc9s8qqaq=dirpe0xb9q8qiLsFr0=vr0=vr0dc8meaabaqaciaacaGaaeqabaqabeGadaaakeaacqWGwbGvdaWgaaWcbaGaemiraq0aaSbaaWqaaiabigdaXaqabaWccqWGbbqqdaWgaaadbaGaeGOmaidabeaaaSqabaGccqGH9aqpdaaeqbqaaiabdchaWnaaBaaaleaacqWGQbGAaeqaaOGaeiikaGIaemiCaa3aaWbaaSqabeaacqWGPbqAaaGccqWGXbqCdaahaaWcbeqaaiabdUgaRbaakiabgUcaRiabdseaenaaDaaaleaacqGGUaGlcqGGUaGlaeaacqWGPbqAcqWGRbWAaaGccqGGPaqkcqGGOaakiiGacqWF0oazdaqhaaWcbaGaemOAaOgabaGaemyAaKgaaOGae8NSdi2aaWbaaSqabeaacqWGRbWAaaGccqGGPaqkdaahaaWcbeqaaiabikdaYaaakiabgUcaRaWcbaGaemyAaKMaeiilaWIaemOAaOMaeiilaWIaem4AaSgabeqdcqGHris5aOWaaabuaeaacqWGWbaCdaahaaWcbeqaaiabdMgaPbaakiabcIcaOiabdchaWnaaBaaaleaacqWGQbGAaeqaaOGaemyCae3aaSbaaSqaaiabdYgaSbqabaGccqGHRaWkcqWGebardaqhaaWcbaGaemOAaOMaemiBaWgabaGaeiOla4IaeiOla4caaOGaeiykaKIaeiikaGIae8hTdq2aa0baaSqaaiabdQgaQbqaaiabdMgaPbaakiab=j7aInaaBaaaleaacqWGSbaBaeqaaOGaeiykaKYaaWbaaSqabeaacqaIYaGmaaGccqGHRaWkcqaIYaGmaSqaaiabdMgaPjabcYcaSiabdQgaQjabcYcaSiabdYgaSbqab0GaeyyeIuoakmaaqafabaGaeiikaGIae8hTdq2aa0baaSqaaiabdQgaQbqaaiabdMgaPbaakiab=j7aInaaCaaaleqabaGaem4AaSgaaOGaeiykaKcaleaacqWGPbqAcqGGSaalcqWGQbGAcqGGSaalcqWGRbWAcqGGSaalcqWGSbaBaeqaniabggHiLdGccqGGOaakcqWF0oazdaqhaaWcbaGaemOAaOgabaGaemyAaKgaaOGae8NSdi2aaSbaaSqaaiabdYgaSbqabaGccqGGPaqkcqWGebardaqhaaWcbaGaemOAaOMaemiBaWgabaGaeiOla4IaeiOla4caaOGaemiraq0aa0baaSqaaiabc6caUiabc6caUaqaaiabdMgaPjabdUgaRbaaaaa@A6FB@

• The dominance × dominance variance:

V D 1 D 2 = i , j , k , l ( δ j i γ l k ) 2 ( D .. i k + p i q k ) ( D j l .. + p j q l ) MathType@MTEF@5@5@+=feaafiart1ev1aaatCvAUfKttLearuWrP9MDH5MBPbIqV92AaeXatLxBI9gBaebbnrfifHhDYfgasaacH8akY=wiFfYdH8Gipec8Eeeu0xXdbba9frFj0=OqFfea0dXdd9vqai=hGuQ8kuc9pgc9s8qqaq=dirpe0xb9q8qiLsFr0=vr0=vr0dc8meaabaqaciaacaGaaeqabaqabeGadaaakeaacqWGwbGvdaWgaaWcbaGaemiraq0aaSbaaWqaaiabigdaXaqabaWccqWGebardaWgaaadbaGaeGOmaidabeaaaSqabaGccqGH9aqpdaaeqbqaaiabcIcaOGGaciab=r7aKnaaDaaaleaacqWGQbGAaeaacqWGPbqAaaGccqWFZoWzdaqhaaWcbaGaemiBaWgabaGaem4AaSgaaOGaeiykaKYaaWbaaSqabeaacqaIYaGmaaGccqGGOaakcqWGebardaqhaaWcbaGaeiOla4IaeiOla4cabaGaemyAaKMaem4AaSgaaOGaey4kaSIaemiCaa3aaWbaaSqabeaacqWGPbqAaaGccqWGXbqCdaahaaWcbeqaaiabdUgaRbaakiabcMcaPiabcIcaOiabdseaenaaDaaaleaacqWGQbGAcqWGSbaBaeaacqGGUaGlcqGGUaGlaaGccqGHRaWkcqWGWbaCdaWgaaWcbaGaemOAaOgabeaakiabdghaXnaaBaaaleaacqWGSbaBaeqaaOGaeiykaKcaleaacqWGPbqAcqGGSaalcqWGQbGAcqGGSaalcqWGRbWAcqGGSaalcqWGSbaBaeqaniabggHiLdaaaa@6695@

• The covariances related to additive and dominance effects:

C o v ( A 1 , A 2 ) = i , k ( α i β k ) D .. i k + j , l ( α j β l ) D j l .. C o v ( D 1 , D 2 ) = i , j , k , l ( δ j i ) ( γ l k ) D j l .. D .. i k C o v ( A 1 , D 1 ) = C o v ( A 1 , D 2 ) = C o v ( A 2 , D 1 ) = C o v ( A 2 , D 2 ) = 0 MathType@MTEF@5@5@+=feaafiart1ev1aaatCvAUfKttLearuWrP9MDH5MBPbIqV92AaeXatLxBI9gBaebbnrfifHhDYfgasaacH8akY=wiFfYdH8Gipec8Eeeu0xXdbba9frFj0=OqFfea0dXdd9vqai=hGuQ8kuc9pgc9s8qqaq=dirpe0xb9q8qiLsFr0=vr0=vr0dc8meaabaqaciaacaGaaeqabaqabeGadaaakqaabeqaaGqaaiab=neadjab=9gaVjab=zha2jab=HcaOiabdgeabnaaBaaaleaacqaIXaqmaeqaaOGae8hlaWIaemyqae0aaSbaaSqaaiabikdaYaqabaGccqWFPaqkcqGH9aqpdaaeqbqaaiabcIcaOGGaciab+f7aHnaaCaaaleqabaGaemyAaKgaaOGae4NSdi2aaWbaaSqabeaacqWGRbWAaaGccqGGPaqkcqWGebardaqhaaWcbaGaeiOla4IaeiOla4cabaGaemyAaKMaem4AaSgaaaqaaiabdMgaPjabcYcaSiabdUgaRbqab0GaeyyeIuoakiab=bcaGiab=TcaRmaaqafabaGaeiikaGIae4xSde2aaSbaaSqaaiabdQgaQbqabaGccqGFYoGydaWgaaWcbaGaemiBaWgabeaakiabcMcaPiabdseaenaaDaaaleaacqWGQbGAcqWGSbaBaeaacqGGUaGlcqGGUaGlaaaabaGaemOAaOMaeiilaWIaemiBaWgabeqdcqGHris5aaGcbaGae83qamKae83Ba8Mae8NDayNae8hkaGccbiGae0hraq0aaSbaaSqaaiab=fdaXaqabaGccqGGSaalcqWGebardaWgaaWcbaGaeGOmaidabeaakiabcMcaPiabg2da9maaqafabaGaeiikaGIae4hTdq2aa0baaSqaaiabdQgaQbqaaiabdMgaPbaakiabcMcaPaWcbaGaemyAaKMaeiilaWIaemOAaOMaeiilaWIaem4AaSMaeiilaWIaemiBaWgabeqdcqGHris5aOGaeiikaGIae43SdC2aa0baaSqaaiabdYgaSbqaaiabdUgaRbaakiabcMcaPiabdseaenaaDaaaleaacqWGQbGAcqWGSbaBaeaacqGGUaGlcqGGUaGlaaGccqWGebardaqhaaWcbaGaeiOla4IaeiOla4cabaGaemyAaKMaem4AaSgaaaGcbaGae83qamKae83Ba8Mae8NDayNae8hkaGIae0xqae0aaSbaaSqaaiab=fdaXaqabaGccqGGSaalcqWGebardaWgaaWcbaGaeGymaedabeaakiabcMcaPiabg2da9iab=neadjab=9gaVjab=zha2jab=HcaOiabdgeabnaaBaaaleaacqaIXaqmaeqaaOGaeiilaWIaemiraq0aaSbaaSqaaiabikdaYaqabaGccqGGPaqkcqGH9aqpcqWFdbWqcqWFVbWBcqWF2bGDcqWFOaakcqWGbbqqdaWgaaWcbaGaeGOmaidabeaakiab=XcaSiab9reaenaaBaaaleaacqWFXaqmaeqaaOGae8xkaKIaeyypa0Jae83qamKae83Ba8Mae8NDayNaeiikaGIaemyqae0aaSbaaSqaaiabikdaYaqabaGccqGGSaalcqWGebardaWgaaWcbaGaeGOmaidabeaakiabcMcaPiabg2da9iabicdaWaaaaa@BFE5@

• The covariances related to additive × additive effects:

C o v ( A 1 , A 1 A 2 ) = i , k ( α i ) ( α i β k ) D .. i k + j , l ( α j ) ( α j β l ) D j l .. C o v ( A 2 , A 1 A 2 ) = i , k ( β k ) ( α i β k ) D .. i k + j , l ( β l ) ( α j β l ) D j l .. C o v ( D 1 , A 1 A 2 ) = i , j , k p j ( δ j i ) ( α j β k ) D .. i k + i , j , l p i ( δ j i ) ( α i β l ) D j l .. C o v ( D 2 , A 1 A 2 ) = i , k , l q l ( α i β l ) ( γ l k ) D .. i k + j , k , l q k ( α j β k ) ( γ l k ) D j l .. MathType@MTEF@5@5@+=feaafiart1ev1aaatCvAUfKttLearuWrP9MDH5MBPbIqV92AaeXatLxBI9gBaebbnrfifHhDYfgasaacH8akY=wiFfYdH8Gipec8Eeeu0xXdbba9frFj0=OqFfea0dXdd9vqai=hGuQ8kuc9pgc9s8qqaq=dirpe0xb9q8qiLsFr0=vr0=vr0dc8meaabaqaciaacaGaaeqabaqabeGadaaakqaabeqaaGqaaiab=neadjab=9gaVjab=zha2jabcIcaOiabdgeabnaaBaaaleaacqaIXaqmaeqaaOGaeiilaWIaemyqae0aaSbaaSqaaiabigdaXaqabaGccqWGbbqqdaWgaaWcbaGaeGOmaidabeaakiabcMcaPiabg2da9maaqafabaGaeiikaGccciGae4xSde2aaWbaaSqabeaacqWGPbqAaaGccqGGPaqkcqGGOaakcqGFXoqydaahaaWcbeqaaiabdMgaPbaakiab+j7aInaaCaaaleqabaGaem4AaSgaaOGaeiykaKIaemiraq0aa0baaSqaaiabc6caUiabc6caUaqaaiabdMgaPjabdUgaRbaakiabgUcaRmaaqafabaGaeiikaGIae4xSde2aaSbaaSqaaiabdQgaQbqabaGccqGGPaqkcqGGOaakcqGFXoqydaWgaaWcbaGaemOAaOgabeaaaeaacqWGQbGAcqGGSaalcqWGSbaBaeqaniabggHiLdGccqGFYoGydaWgaaWcbaGaemiBaWgabeaakiabcMcaPiabdseaenaaDaaaleaacqWGQbGAcqWGSbaBaeaacqGGUaGlcqGGUaGlaaaabaGaemyAaKMaeiilaWIaem4AaSgabeqdcqGHris5aaGcbaGae83qamKae83Ba8Mae8NDayNaeiikaGIaemyqae0aaSbaaSqaaiabikdaYaqabaGccqGGSaalcqWGbbqqdaWgaaWcbaGaeGymaedabeaakiabdgeabnaaBaaaleaacqaIYaGmaeqaaOGaeiykaKIaeyypa0ZaaabuaeaacqGGOaakcqGFYoGydaahaaWcbeqaaiabdUgaRbaakiabcMcaPiabcIcaOiab+f7aHnaaCaaaleqabaGaemyAaKgaaOGae4NSdi2aaWbaaSqabeaacqWGRbWAaaGccqGGPaqkcqWGebardaqhaaWcbaGaeiOla4IaeiOla4cabaGaemyAaKMaem4AaSgaaOGaey4kaSYaaabuaeaacqGGOaakcqGFYoGydaWgaaWcbaGaemiBaWgabeaakiabcMcaPiabcIcaOiab+f7aHnaaBaaaleaacqWGQbGAaeqaaaqaaiabdQgaQjabcYcaSiabdYgaSbqab0GaeyyeIuoakiab+j7aInaaBaaaleaacqWGSbaBaeqaaOGaeiykaKIaemiraq0aa0baaSqaaiabdQgaQjabdYgaSbqaaiabc6caUiabc6caUaaaaeaacqWGPbqAcqGGSaalcqWGRbWAaeqaniabggHiLdaakeaacqWFdbWqcqWFVbWBcqWF2bGDcqGGOaakcqWGebardaWgaaWcbaGaeGymaedabeaakiabcYcaSiabdgeabnaaBaaaleaacqaIXaqmaeqaaOGaemyqae0aaSbaaSqaaiabikdaYaqabaGccqGGPaqkcqGH9aqpdaaeqbqaaiabdchaWnaaBaaaleaacqWGQbGAaeqaaOGaeiikaGIae4hTdq2aa0baaSqaaiabdQgaQbqaaiabdMgaPbaakiabcMcaPiabcIcaOiab+f7aHnaaBaaaleaacqWGQbGAaeqaaOGae4NSdi2aaWbaaSqabeaacqWGRbWAaaGccqGGPaqkcqWGebardaqhaaWcbaGaeiOla4IaeiOla4cabaGaemyAaKMaem4AaSgaaOGaey4kaSYaaabuaeaacqWGWbaCdaahaaWcbeqaaiabdMgaPbaakiabcIcaOiab+r7aKnaaDaaaleaacqWGQbGAaeaacqWGPbqAaaGccqGGPaqkcqGGOaakcqGFXoqydaahaaWcbeqaaiabdMgaPbaaaeaacqWGPbqAcqGGSaalcqWGQbGAcqGGSaalcqWGSbaBaeqaniabggHiLdGccqGFYoGydaWgaaWcbaGaemiBaWgabeaakiabcMcaPiabdseaenaaDaaaleaacqWGQbGAcqWGSbaBaeaacqGGUaGlcqGGUaGlaaaabaGaemyAaKMaeiilaWIaemOAaOMaeiilaWIaem4AaSgabeqdcqGHris5aaGcbaGae83qamKae83Ba8Mae8NDayNaeiikaGIaemiraq0aaSbaaSqaaiabikdaYaqabaGccqGGSaalcqWGbbqqdaWgaaWcbaGaeGymaedabeaakiabdgeabnaaBaaaleaacqaIYaGmaeqaaOGaeiykaKIaeyypa0ZaaabuaeaacqWGXbqCdaWgaaWcbaGaemiBaWgabeaakiabcIcaOiab+f7aHnaaCaaaleqabaGaemyAaKgaaOGae4NSdi2aaSbaaSqaaiabdYgaSbqabaGccqGGPaqkcqGGOaakcqGFZoWzdaqhaaWcbaGaemiBaWgabaGaem4AaSgaaOGaeiykaKIaemiraq0aa0baaSqaaiabc6caUiabc6caUaqaaiabdMgaPjabdUgaRbaakiabgUcaRmaaqafabaGaemyCae3aaWbaaSqabeaacqWGRbWAaaGccqGGOaakcqGFXoqydaWgaaWcbaGaemOAaOgabeaaaeaacqWGQbGAcqGGSaalcqWGRbWAcqGGSaalcqWGSbaBaeqaniabggHiLdGccqGFYoGydaahaaWcbeqaaiabdUgaRbaakiabcMcaPiabcIcaOiab+n7aNnaaDaaaleaacqWGSbaBaeaacqWGRbWAaaGccqGGPaqkcqWGebardaqhaaWcbaGaemOAaOMaemiBaWgabaGaeiOla4IaeiOla4caaaqaaiabdMgaPjabcYcaSiabdUgaRjabcYcaSiabdYgaSbqab0GaeyyeIuoaaaaa@4688@

The covariances related to additive × dominance and dominance × additive effects:

C o v ( A 1 , A 1 D 2 ) = i , j , k , l [ ( α i ) ( α j γ l k ) + ( α j ) ( α i γ l k ) ] D j l .. D .. i k C o v ( A 2 , A 1 D 2 ) = i , k , l q l ( β l ) ( α i γ l k ) D .. i k + j , k , l q k ( β k ) ( α j γ l k ) D j l .. C o v ( A 1 , D 1 A 2 ) = i , j , k p j ( α j ) ( δ j i β k ) D .. i k + i , j , l p i ( α i ) ( δ j i β l ) D j l .. C o v ( A 2 , D 1 A 2 ) = i , j , k , l [ ( β k ) ( δ j i β l ) + ( β l ) ( δ j i β k ) ] D j l .. D .. i k C o v ( D 1 , A 1 D 2 ) = i , j , k , l ( δ j i ) [ ( α i γ l k ) + ( α j γ l k ) ] D j l .. D .. i k C o v ( D 2 , A 1 D 2 ) = i , k , l q l ( γ l k ) ( α i γ l k ) D .. i k + j , k , l q k ( γ l k ) ( α j γ l k ) D j l .. C o v ( D 1 , D 1 A 2 ) = i , j , k p j ( δ j i ) ( δ j i β k ) D .. i k + i , j , l p i ( δ j i ) ( δ j i β l ) D j l .. C o v ( D 2 , D 1 A 2 ) = i , j , k , l ( γ l k ) [ ( δ j i β k ) + ( δ j i β l ) ] D j l .. D .. i k C o v ( A 1 A 2 , A 1 D 2 ) = i , k , l q l ( α i β l ) ( α i γ l k ) D .. i k + j , k , l q k ( α j β k ) ( α j γ l k ) D j l .. + i , j , k , l [ ( α i β k ) ( α j γ l k ) + ( α i β l ) ( α j γ l k ) + ( α j β k ) ( α i γ l k ) + ( α j β l ) ( α i γ l k ) ] D j l .. D .. i k Cov ( A 1 , A 2 , D 1 A 2 ) = i , j , k p j ( α j β k ) ( δ j i β k ) D .. i k + i , j , l p i ( α i β l ) ( δ j i β l ) D j l .. + i , j , k , l [ ( α i β k ) ( δ j i β l ) + ( α j β k ) ( δ j i β l ) + ( α i β l ) ( δ j i β k ) + ( α j β l ) ( δ j i β k ) ] D j l .. D .. i k C o v ( A 1 D 2 , D 1 A 2 ) = i , j , k , l [ ( α i γ l k ) ( δ j i β k ) ( D .. i k + p i q k ) D j l .. + ( α i γ l k ) ( δ j i β l ) D j l .. D .. i k + ( α j γ l k ) ( δ j i β k ) D j l .. D .. i k + ( α j γ l k ) ( δ j i β l ) ( D j l .. + p j q l ) D .. i k ] MathType@MTEF@5@5@+=feaafiart1ev1aaatCvAUfKttLearuWrP9MDH5MBPbIqV92AaeXatLxBI9gBaebbnrfifHhDYfgasaacH8akY=wiFfYdH8Gipec8Eeeu0xXdbba9frFj0=OqFfea0dXdd9vqai=hGuQ8kuc9pgc9s8qqaq=dirpe0xb9q8qiLsFr0=vr0=vr0dc8meaabaqaciaacaGaaeqabaqabeGadaaakeaafaqadeGddaaaaaaabaacbaGae83qamKae83Ba8Mae8NDayNaeiikaGIaemyqae0aaSbaaSqaaiabigdaXaqabaGccqGGSaalcqWGbbqqdaWgaaWcbaGaeGymaedabeaakiabdseaenaaBaaaleaacqaIYaGmaeqaaOGaeiykaKcabaGaeyypa0dabaWaaabuaeaacqGGBbWwcqGGOaakiiGacqGFXoqydaahaaWcbeqaaiabdMgaPbaakiabcMcaPiabcIcaOiab+f7aHnaaBaaaleaacqWGQbGAaeqaaOGae43SdC2aa0baaSqaaGqaciab9XgaSbqaaiab9TgaRbaakiabcMcaPiabgUcaRiabcIcaOiab+f7aHnaaBaaaleaacqWGQbGAaeqaaOGaeiykaKIaeiikaGIae4xSde2aaWbaaSqabeaacqWGPbqAaaGccqaHZoWzdaqhaaWcbaGaemiBaWgabaGaem4AaSgaaOGaeiykaKIaeiyxa0Laemiraq0aa0baaSqaaiabdQgaQjabdYgaSbqaaiabc6caUiabc6caUaaaaeaacqWGPbqAcqGGSaalcqWGQbGAcqGGSaalcqWGRbWAcqGGSaalcqWGSbaBaeqaniabggHiLdGccqWGebardaqhaaWcbaGaeiOla4IaeiOla4cabaGaemyAaKMaem4AaSgaaaGcbaGae83qamKae83Ba8Mae8NDayNaeiikaGIaemyqae0aaSbaaSqaaiabikdaYaqabaGccqGGSaalcqWGbbqqdaWgaaWcbaGaeGymaedabeaakiabdseaenaaBaaaleaacqaIYaGmaeqaaOGaeiykaKcabaGaeyypa0dabaWaaabuaeaacqWGXbqCdaWgaaWcbaGaemiBaWgabeaakiabcIcaOiab+j7aInaaBaaaleaacqWGSbaBaeqaaOGaeiykaKIaeiikaGIae4xSde2aaWbaaSqabeaacqWGPbqAaaGccqGFZoWzdaqhaaWcbaGae0hBaWgabaGae03AaSgaaOGaeiykaKIaemiraq0aa0baaSqaaiabc6caUiabc6caUaqaaiabdMgaPjabdUgaRbaakiabgUcaRmaaqafabaGaemyCae3aaWbaaSqabeaacqWGRbWAaaGccqGGOaakcqGFYoGydaahaaWcbeqaaiabdUgaRbaakiabcMcaPiabcIcaOiab+f7aHnaaBaaaleaacqWGQbGAaeqaaOGae43SdC2aa0baaSqaaiab9XgaSbqaaiab9TgaRbaakiabcMcaPaWcbaGaemOAaOMaeiilaWIaem4AaSMaeiilaWIaemiBaWgabeqdcqGHris5aOGaemiraq0aa0baaSqaaiabdQgaQjabdYgaSbqaaiabc6caUiabc6caUaaaaeaacqWGPbqAcqGGSaalcqWGRbWAcqGGSaalcqWGSbaBaeqaniabggHiLdaakeaacqWFdbWqcqWFVbWBcqWF2bGDcqGGOaakcqWGbbqqdaWgaaWcbaGaeGymaedabeaakiabcYcaSiabdseaenaaBaaaleaacqaIXaqmaeqaaOGaemyqae0aaSbaaSqaaiabikdaYaqabaGccqGGPaqkaeaacqGH9aqpaeaadaaeqbqaaiabdchaWnaaBaaaleaacqWGQbGAaeqaaOGaeiikaGIae4xSde2aaSbaaSqaaiabdQgaQbqabaGccqGGPaqkcqGGOaakcqGF0oazdaqhaaWcbaGaemOAaOgabaGaemyAaKgaaOGae4NSdi2aaWbaaSqabeaacqWGRbWAaaGccqGGPaqkcqWGebardaqhaaWcbaGaeiOla4IaeiOla4cabaGaemyAaKMaem4AaSgaaOGaey4kaSYaaabuaeaacqWGWbaCdaahaaWcbeqaaiabdMgaPbaakiabcIcaOiab+f7aHnaaCaaaleqabaGaemyAaKgaaOGaeiykaKIaeiikaGIae4hTdq2aa0baaSqaaiabdQgaQbqaaiabdMgaPbaakiab+j7aInaaBaaaleaacqWGSbaBaeqaaOGaeiykaKcaleaacqWGPbqAcqGGSaalcqWGQbGAcqGGSaalcqWGSbaBaeqaniabggHiLdGccqWGebardaqhaaWcbaGaemOAaOMaemiBaWgabaGaeiOla4IaeiOla4caaaqaaiabdMgaPjabcYcaSiabdQgaQjabcYcaSiabdUgaRbqab0GaeyyeIuoaaOqaaiab=neadjab=9gaVjab=zha2jabcIcaOiabdgeabnaaBaaaleaacqaIYaGmaeqaaOGaeiilaWIaemiraq0aaSbaaSqaaiabigdaXaqabaGccqWGbbqqdaWgaaWcbaGaeGOmaidabeaakiabcMcaPaqaaiabg2da9aqaamaaqafabaGaei4waSLaeiikaGIae4NSdi2aaWbaaSqabeaacqWGRbWAaaGccqGGPaqkcqGGOaakcqGF0oazdaqhaaWcbaGaemOAaOgabaGaemyAaKgaaOGae4NSdi2aaSbaaSqaaiabdYgaSbqabaGccqGGPaqkcqGHRaWkcqGGOaakcqGFYoGydaWgaaWcbaGaemiBaWgabeaakiabcMcaPiabcIcaOiab+r7aKnaaDaaaleaacqWGQbGAaeaacqWGPbqAaaGccqGFYoGydaahaaWcbeqaaiabdUgaRbaakiabcMcaPiabc2faDjabdseaenaaDaaaleaacqWGQbGAcqWGSbaBaeaacqGGUaGlcqGGUaGlaaaabaGaemyAaKMaeiilaWIaemOAaOMaeiilaWIaem4AaSMaeiilaWIaemiBaWgabeqdcqGHris5aOGaemiraq0aa0baaSqaaiabc6caUiabc6caUaqaaiabdMgaPjabdUgaRbaaaOqaaiab=neadjab=9gaVjab=zha2jabcIcaOiabdseaenaaBaaaleaacqaIXaqmaeqaaOGaeiilaWIaemyqae0aaSbaaSqaaiabigdaXaqabaGccqWGebardaWgaaWcbaGaeGOmaidabeaakiabcMcaPaqaaiabg2da9aqaamaaqafabaGaeiikaGIae4hTdq2aa0baaSqaaiabdQgaQbqaaiabdMgaPbaakiabcMcaPiabcUfaBjabcIcaOiab+f7aHnaaCaaaleqabaGaemyAaKgaaOGae43SdC2aa0baaSqaaiab9XgaSbqaaiab9TgaRbaakiabcMcaPiabgUcaRiabcIcaOiab+f7aHnaaBaaaleaacqWGQbGAaeqaaOGae43SdC2aa0baaSqaaiab9XgaSbqaaiab9TgaRbaakiabcMcaPiabc2faDjabdseaenaaDaaaleaacqWGQbGAcqWGSbaBaeaacqGGUaGlcqGGUaGlaaaabaGaemyAaKMaeiilaWIaemOAaOMaeiilaWIaem4AaSMaeiilaWIaemiBaWgabeqdcqGHris5aOGaemiraq0aa0baaSqaaiabc6caUiabc6caUaqaaiabdMgaPjabdUgaRbaaaOqaaiab=neadjab=9gaVjab=zha2jabcIcaOiabdseaenaaBaaaleaacqaIYaGmaeqaaOGaeiilaWIaemyqae0aaSbaaSqaaiabigdaXaqabaGccqWGebardaWgaaWcbaGaeGOmaidabeaakiabcMcaPaqaaiabg2da9aqaamaaqafabaGaemyCae3aaSbaaSqaaiabdYgaSbqabaGccqGGOaakcqGFZoWzdaqhaaWcbaGae0hBaWgabaGae03AaSgaaOGaeiykaKIaeiikaGIae4xSde2aaWbaaSqabeaacqqFPbqAaaGccqGFZoWzdaqhaaWcbaGae0hBaWgabaGae03AaSgaaOGaeiykaKcaleaacqWGPbqAcqGGSaalcqWGRbWAcqGGSaalcqWGSbaBaeqaniabggHiLdGccqWGebardaqhaaWcbaGaeiOla4IaeiOla4cabaGaemyAaKMaem4AaSgaaOGaey4kaSYaaabuaeaacqWGXbqCdaahaaWcbeqaaiabdUgaRbaakiabcIcaOiab+n7aNnaaDaaaleaacqqFSbaBaeaacqqFRbWAaaGccqGGPaqkcqGGOaakcqGFXoqydaWgaaWcbaGaemOAaOgabeaakiab+n7aNnaaDaaaleaacqqFSbaBaeaacqqFRbWAaaGccqGGPaqkaSqaaiabdQgaQjabcYcaSiabdUgaRjabcYcaSiabdYgaSbqab0GaeyyeIuoakiabdseaenaaDaaaleaacqWGQbGAcqWGSbaBaeaacqGGUaGlcqGGUaGlaaaakeaacqWFdbWqcqWFVbWBcqWF2bGDcqGGOaakcqWGebardaWgaaWcbaGaeGymaedabeaakiabcYcaSiabdseaenaaBaaaleaacqaIXaqmaeqaaOGaemyqae0aaSbaaSqaaiabikdaYaqabaGccqGGPaqkaeaacqGH9aqpaeaadaaeqbqaaiabdchaWnaaBaaaleaacqWGQbGAaeqaaOGaeiikaGIae4hTdq2aa0baaSqaaiabdQgaQbqaaiabdMgaPbaakiabcMcaPiabcIcaOiab+r7aKnaaDaaaleaacqWGQbGAaeaacqWGPbqAaaGccqGFYoGydaahaaWcbeqaaiabdUgaRbaakiabcMcaPaWcbaGaemyAaKMaeiilaWIaemOAaOMaeiilaWIaem4AaSgabeqdcqGHris5aOGaemiraq0aa0baaSqaaiabc6caUiabc6caUaqaaiabdMgaPjabdUgaRbaakiabgUcaRmaaqafabaGaemiCaa3aaWbaaSqabeaacqWGPbqAaaGccqGGOaakcqGF0oazdaqhaaWcbaGaemOAaOgabaGaemyAaKgaaOGaeiykaKIaeiikaGIae4hTdq2aa0baaSqaaiabdQgaQbqaaiabdMgaPbaakiab+j7aInaaBaaaleaacqWGSbaBaeqaaOGaeiykaKcaleaacqWGPbqAcqGGSaalcqWGQbGAcqGGSaalcqWGSbaBaeqaniabggHiLdGccqWGebardaqhaaWcbaGaemOAaOMaemiBaWgabaGaeiOla4IaeiOla4caaaGcbaGae83qamKae83Ba8Mae8NDayNaeiikaGIaemiraq0aaSbaaSqaaiabikdaYaqabaGccqGGSaalcqWGebardaWgaaWcbaGaeGymaedabeaakiabdgeabnaaBaaaleaacqaIYaGmaeqaaOGaeiykaKcabaGaeyypa0dabaWaaabuaeaacqGGOaakcqGFZoWzdaqhaaWcbaGae0hBaWgabaGae03AaSgaaOGaeiykaKIaei4waSLaeiikaGIae4hTdq2aa0baaSqaaiabdQgaQbqaaiabdMgaPbaakiab+j7aInaaCaaaleqabaGaem4AaSgaaOGaeiykaKIaey4kaScaleaacqWGPbqAcqGGSaalcqWGQbGAcqGGSaalcqWGRbWAcqGGSaalcqWGSbaBaeqaniabggHiLdGccqGGOaakcqGF0oazdaqhaaWcbaGaemOAaOgabaGaemyAaKgaaOGae4NSdi2aaSbaaSqaaiabdYgaSbqabaGccqGGPaqkcqGGDbqxcqWGebardaqhaaWcbaGaemOAaOMaemiBaWgabaGaeiOla4IaeiOla4caaOGaemiraq0aa0baaSqaaiabc6caUiabc6caUaqaaiabdMgaPjabdUgaRbaaaOqaaiab=neadjab=9gaVjab=zha2jabcIcaOiabdgeabnaaBaaaleaacqaIXaqmaeqaaOGaemyqae0aaSbaaSqaaiabikdaYaqabaGccqGGSaalcqWGbbqqdaWgaaWcbaGaeGymaedabeaakiabdseaenaaBaaaleaacqaIYaGmaeqaaOGaeiykaKcabaGaeyypa0dabaWaaabuaeaacqWGXbqCdaWgaaWcbaGaemiBaWgabeaakiabcIcaOiab+f7aHnaaCaaaleqabaGaemyAaKgaaOGae4NSdi2aaSbaaSqaaiabdYgaSbqabaGccqGGPaqkcqGGOaakcqGFXoqydaahaaWcbeqaaiabdMgaPbaakiab+n7aNnaaDaaaleaacqqFSbaBaeaacqqFRbWAaaGccqGGPaqkaSqaaiabdMgaPjabcYcaSiabdUgaRjabcYcaSiabdYgaSbqab0GaeyyeIuoakiabdseaenaaDaaaleaacqGGUaGlcqGGUaGlaeaacqWGPbqAcqWGRbWAaaGccqGHRaWkdaaeqbqaaiabdghaXnaaCaaaleqabaGaem4AaSgaaOGaeiikaGIae4xSde2aaSbaaSqaaiabdQgaQbqabaGccqGFYoGydaahaaWcbeqaaiabdUgaRbaakiabcMcaPiabcIcaOiab+f7aHnaaBaaaleaacqWGQbGAaeqaaOGae43SdC2aa0baaSqaaiab9XgaSbqaaiab9TgaRbaakiabcMcaPaWcbaGaemOAaOMaeiilaWIaem4AaSMaeiilaWIaemiBaWgabeqdcqGHris5aOGaemiraq0aa0baaSqaaiabdQgaQjabdYgaSbqaaiabc6caUiabc6caUaaaaOqaaaqaaaqaaiabgUcaRmaaqafabaGaei4waSLaeiikaGIae4xSde2aaWbaaSqabeaacqWGPbqAaaGccqGFYoGydaahaaWcbeqaaiabdUgaRbaakiabcMcaPiabcIcaOiab+f7aHnaaBaaaleaacqWGQbGAaeqaaOGae43SdC2aa0baaSqaaiab9XgaSbqaaiab9TgaRbaakiabcMcaPaWcbaGaemyAaKMaeiilaWIaemOAaOMaeiilaWIaem4AaSMaeiilaWIaemiBaWgabeqdcqGHris5aOGaey4kaSIaeiikaGIae4xSde2aaWbaaSqabeaacqWGPbqAaaGccqGFYoGydaWgaaWcbaGaemiBaWgabeaakiabcMcaPiabcIcaOiab+f7aHnaaBaaaleaacqWGQbGAaeqaaOGae43SdC2aa0baaSqaaiab9XgaSbqaaiab9TgaRbaakiabcMcaPiabgUcaRiabcIcaOiab+f7aHnaaBaaaleaacqWGQbGAaeqaaOGae4NSdi2aaWbaaSqabeaacqWGRbWAaaGccqGGPaqkcqGGOaakcqGFXoqydaahaaWcbeqaaiabdMgaPbaakiab+n7aNnaaDaaaleaacqqFSbaBaeaacqqFRbWAaaGccqGGPaqkcqGHRaWkcqGGOaakcqGFXoqydaWgaaWcbaGaemOAaOgabeaakiab+j7aInaaBaaaleaacqWGSbaBaeqaaOGaeiykaKIaeiikaGIae4xSde2aaWbaaSqabeaacqWGPbqAaaGccqGFZoWzdaqhaaWcbaGae0hBaWgabaGae03AaSgaaOGaeiykaKIaeiyxa0Laemiraq0aa0baaSqaaiabdQgaQjabdYgaSbqaaiabc6caUiabc6caUaaakiabdseaenaaDaaaleaacqGGUaGlcqGGUaGlaeaacqWGPbqAcqWGRbWAaaaakeaacqqGdbWqcqqGVbWBcqqG2bGDcqGGOaakcqWGbbqqdaWgaaWcbaGaeGymaedabeaakiabcYcaSiabdgeabnaaBaaaleaacqaIYaGmaeqaaOGaeiilaWIaemiraq0aaSbaaSqaaiabigdaXaqabaGccqWGbbqqdaWgaaWcbaGaeGOmaidabeaakiabcMcaPaqaaiabg2da9aqaamaaqafabaGaemiCaa3aaSbaaSqaaiabdQgaQbqabaGccqGGOaakcqGFXoqydaWgaaWcbaGaemOAaOgabeaaaeaacqWGPbqAcqGGSaalcqWGQbGAcqGGSaalcqWGRbWAaeqaniabggHiLdGccqGFYoGydaahaaWcbeqaaiabdUgaRbaakiabcMcaPiabcIcaOiab+r7aKnaaDaaaleaacqWGQbGAaeaacqWGPbqAaaGccqGFYoGydaahaaWcbeqaaiabdUgaRbaakiabcMcaPiabdseaenaaDaaaleaacqGGUaGlcqGGUaGlaeaacqWGPbqAcqWGRbWAaaGccqGHRaWkdaaeqbqaaiabdchaWnaaCaaaleqabaGaemyAaKgaaOGaeiikaGcaleaacqWGPbqAcqGGSaalcqWGQbGAcqGGSaalcqWGSbaBaeqaniabggHiLdGccqGFXoqydaahaaWcbeqaaiabdMgaPbaakiab+j7aInaaBaaaleaacqWGSbaBaeqaaOGaeiykaKIaeiikaGIae4hTdq2aa0baaSqaaiabdQgaQbqaaiabdMgaPbaakiab+j7aInaaBaaaleaacqWGSbaBaeqaaOGaeiykaKIaemiraq0aa0baaSqaaiabdQgaQjabdYgaSbqaaiabc6caUiabc6caUaaaaOqaaaqaaaqaaiabgUcaRmaaqafabaGaei4waSLaeiikaGcaleaacqWGPbqAcqGGSaalcqWGQbGAcqGGSaalcqWGRbWAcqGGSaalcqWGSbaBaeqaniabggHiLdGccqGFXoqydaahaaWcbeqaaiabdMgaPbaakiab+j7aInaaCaaaleqabaGaem4AaSgaaOGaeiykaKIaeiikaGIae4hTdq2aa0baaSqaaiabdQgaQbqaaiabdMgaPbaakiab+j7aIjabdYgaSjabcMcaPiabgUcaRiabcIcaOiab+f7aHnaaBaaaleaacqWGQbGAaeqaaOGae4NSdi2aaWbaaSqabeaacqWGRbWAaaGccqGGPaqkcqGGOaakcqGF0oazdaqhaaWcbaGaemOAaOgabaGaemyAaKgaaOGae4NSdi2aaSbaaSqaamXvP5wqSXMqHnxAJn0BKvguHDwzZbqegyvzYrwyUfgaiqGacaaFSbaabeaakiabcMcaPiabgUcaRiabcIcaOiab+f7aHnaaCaaaleqabaGaemyAaKgaaOGae4NSdi2aaSbaaSqaaiabdYgaSbqabaGccqGGPaqkcqGGOaakcqGF0oazdaqhaaWcbaGaemOAaOgabaGaemyAaKgaaOGae4NSdi2aaWbaaSqabeaacqWGRbWAaaGccqGGPaqkcqGHRaWkcqGGOaakcqGFXoqydaWgaaWcbaGaemOAaOgabeaakiab+j7aInaaBaaaleaacqWGSbaBaeqaaOGaeiykaKIaeiikaGIae4hTdq2aa0baaSqaaiabdQgaQbqaaiabdMgaPbaakiab+j7aInaaCaaaleqabaGaem4AaSgaaOGaeiykaKIaeiyxa0Laemiraq0aa0baaSqaaiabdQgaQjabdYgaSbqaaiabc6caUiabc6caUaaakiabdseaenaaDaaaleaacqGGUaGlcqGGUaGlaeaacqWGPbqAcqWGRbWAaaaakeaacqWFdbWqcqWFVbWBcqWF2bGDcqGGOaakcqWGbbqqdaWgaaWcbaGaeGymaedabeaakiabdseaenaaBaaaleaacqaIYaGmaeqaaOGaeiilaWIaemiraq0aaSbaaSqaaiabigdaXaqabaGccqWGbbqqdaWgaaWcbaGaeGOmaidabeaakiabcMcaPaqaaiabg2da9aqaamaaqafabaGaei4waSLaeiikaGIae4xSde2aaWbaaSqabeaacqWGPbqAaaGccqGFZoWzdaqhaaWcbaGae0hBaWgabaGae03AaSgaaOGaeiykaKcaleaacqWGPbqAcqGGSaalcqWGQbGAcqGGSaalcqWGRbWAcqGGSaalcqWGSbaBaeqaniabggHiLdGccqGGOaakcqGF0oazdaqhaaWcbaGaemOAaOgabaGaemyAaKgaaOGae4NSdi2aaWbaaSqabeaacqWGRbWAaaGccqGGPaqkcqGGOaakcqWGebardaqhaaWcbaGaeiOla4IaeiOla4cabaGaemyAaKMaem4AaSgaaOGaey4kaSIaemiCaa3aaWbaaSqabeaacqWGPbqAaaGccqWGXbqCdaahaaWcbeqaaiabdUgaRbaakiabcMcaPiabdseaenaaDaaaleaacqWGQbGAcqWGSbaBaeaacqGGUaGlcqGGUaGlaaGccqGHRaWkcqGGOaakcqGFXoqydaahaaWcbeqaaiabdMgaPbaakiab+n7aNnaaDaaaleaacqqFSbaBaeaacqqFRbWAaaGccqGGPaqkcqGGOaakcqGF0oazdaqhaaWcbaGaemOAaOgabaGaemyAaKgaaOGae4NSdi2aaSbaaSqaaiabdYgaSbqabaGccqGGPaqkcqWGebardaqhaaWcbaGaemOAaOMaemiBaWgabaGaeiOla4IaeiOla4caaOGaemiraq0aa0baaSqaaiabc6caUiabc6caUaqaaiabdMgaPjabdUgaRbaaaOqaaaqaaaqaaiabgUcaRiabcIcaOiab+f7aHnaaBaaaleaacqWGQbGAaeqaaOGae43SdC2aa0baaSqaaiab9XgaSbqaaiab9TgaRbaakiabcMcaPiabcIcaOiab+r7aKnaaDaaaleaacqWGQbGAaeaacqWGPbqAaaGccqGFYoGydaahaaWcbeqaaiabdUgaRbaakiabcMcaPiabdseaenaaDaaaleaacqWGQbGAcqWGSbaBaeaacqGGUaGlcqGGUaGlaaGccqWGebardaqhaaWcbaGaeiOla4IaeiOla4cabaGaemyAaKMaem4AaSgaaOGaey4kaSIaeiikaGIae4xSde2aaSbaaSqaaiabdQgaQbqabaGccqGFZoWzdaqhaaWcbaGae0hBaWgabaGae03AaSgaaOGaeiykaKIaeiikaGIae4hTdq2aa0baaSqaaiabdQgaQbqaaiabdMgaPbaakiab+j7aInaaBaaaleaacqWGSbaBaeqaaOGaeiykaKIaeiikaGIaemiraq0aa0baaSqaaiabdQgaQjabdYgaSbqaaiabc6caUiabc6caUaaakiabgUcaRiabdchaWnaaBaaaleaacqWGQbGAaeqaaOGaemyCae3aaSbaaSqaaiabdYgaSbqabaGccqGGPaqkcqWGebardaqhaaWcbaGaeiOla4IaeiOla4cabaGaemyAaKMaem4AaSgaaOGaeiyxa0faaaaa@9453@

• The covariances related to dominance × dominance effects:

C o v ( A 1 , D 1 D 2 ) = i , j , k , l ( δ j i γ l k ) ( α i + α j ) D j l .. D .. i k C o v ( A 2 , D 1 D 2 ) = i , j , k , l ( δ j i γ l k ) ( β k + β l ) D j l .. D .. i k C o v ( D 1 , D 1 D 2 ) = i , j , k , l ( δ j i γ l k ) ( δ j i ) D j l .. D .. i k C o v ( D 2 , D 1 D 2 ) = i , j , k , l ( δ j i γ l k ) ( γ l k ) D j l .. D .. i k C o v ( A 1 A 2 , D 1 D 2 ) = ( i , k ( α i β k ) D .. i k + j , l ( α j β l ) D j l .. ) ( i , j , k , l ( δ j i γ l k ) D j l .. D .. i k ) + i , j , k , l ( δ j i γ l k ) { [ ( α i β k ) + ( α i β l ) + ( α j β k ) + ( α j β l ) ] D j l .. D .. i k + ( α i β k ) p i q k D j l .. + ( α j β l ) p j q l D .. i k } C o v ( A 1 D 2 , D 1 D 2 ) = i , j , k , l ( δ j i γ l k ) [ ( α i γ l k ) ( D .. i k + p i q k ) D j l .. + ( α j γ l k ) ( D j l .. + p j q l ) D .. i k ] C o v ( D 1 A 2 , D 1 D 2 ) = i , j , k , l ( δ j i γ l k ) [ ( δ j i β k ) ( D .. i k + p i q k ) D j l .. + ( δ j i β l ) ( D j l .. + p j q l ) D .. i k ] MathType@MTEF@5@5@+=feaafiart1ev1aaatCvAUfKttLearuWrP9MDH5MBPbIqV92AaeXatLxBI9gBaebbnrfifHhDYfgasaacH8akY=wiFfYdH8Gipec8Eeeu0xXdbba9frFj0=OqFfea0dXdd9vqai=hGuQ8kuc9pgc9s8qqaq=dirpe0xb9q8qiLsFr0=vr0=vr0dc8meaabaqaciaacaGaaeqabaqabeGadaaakqGaeeqaaOmabaacbaGae83qamKae83Ba8Mae8NDayNaeiikaGIaemyqae0aaSbaaSqaaiabigdaXaqabaGccqGGSaalcqWGebardaWgaaWcbaGaeGymaedabeaakiabdseaenaaBaaaleaacqaIYaGmaeqaaOGaeiykaKIaeyypa0ZaaabuaeaacqGGOaakiiGacqGF0oazdaqhaaWcbaGaemOAaOgabaGaemyAaKgaaOGae43SdC2aa0baaSqaaiabdYgaSbqaaiabdUgaRbaakiabcMcaPiabcIcaOiab+f7aHnaaCaaaleqabaGaemyAaKgaaOGaey4kaSIae4xSde2aaSbaaSqaaiabdQgaQbqabaGccqGGPaqkcqWGebardaqhaaWcbaGaemOAaOMaemiBaWgabaGaeiOla4IaeiOla4caaOGaemiraq0aa0baaSqaaiabc6caUiabc6caUaqaaiabdMgaPjabdUgaRbaaaeaacqWGPbqAcqGGSaalcqWGQbGAcqGGSaalcqWGRbWAcqGGSaalcqWGSbaBaeqaniabggHiLdaakeaacqWFdbWqcqWFVbWBcqWF2bGDcqGGOaakcqWGbbqqdaWgaaWcbaGaeGOmaidabeaakiabcYcaSiabdseaenaaBaaaleaacqaIXaqmaeqaaOGaemiraq0aaSbaaSqaaiabikdaYaqabaGccqGGPaqkcqGH9aqpdaaeqbqaaiabcIcaOiab+r7aKnaaDaaaleaacqWGQbGAaeaacqWGPbqAaaGccqGFZoWzdaqhaaWcbaGaemiBaWgabaGaem4AaSgaaOGaeiykaKIaeiikaGIae4NSdi2aaWbaaSqabeaacqWGRbWAaaGccqGHRaWkcqGFYoGydaWgaaWcbaGaemiBaWgabeaakiabcMcaPiabdseaenaaDaaaleaacqWGQbGAcqWGSbaBaeaacqGGUaGlcqGGUaGlaaGccqWGebardaqhaaWcbaGaeiOla4IaeiOla4cabaGaemyAaKMaem4AaSgaaaqaaiabdMgaPjabcYcaSiabdQgaQjabcYcaSiabdUgaRjabcYcaSiabdYgaSbqab0GaeyyeIuoaaOqaaiab=neadjab=9gaVjab=zha2jabcIcaOiabdseaenaaBaaaleaacqaIXaqmaeqaaOGaeiilaWIaemiraq0aaSbaaSqaaiabigdaXaqabaGccqWGebardaWgaaWcbaGaeGOmaidabeaakiabcMcaPiabg2da9maaqafabaGaeiikaGIae4hTdq2aa0baaSqaaiabdQgaQbqaaiabdMgaPbaakiab+n7aNnaaDaaaleaacqWGSbaBaeaacqWGRbWAaaGccqGGPaqkcqGGOaakcqGF0oazdaqhaaWcbaGaemOAaOgabaGaemyAaKgaaOGaeiykaKIaemiraq0aa0baaSqaaiabdQgaQjabdYgaSbqaaiabc6caUiabc6caUaaakiabdseaenaaDaaaleaacqGGUaGlcqGGUaGlaeaacqWGPbqAcqWGRbWAaaaabaGaemyAaKMaeiilaWIaemOAaOMaeiilaWIaem4AaSMaeiilaWIaemiBaWgabeqdcqGHris5aaGcbaGae83qamKae83Ba8Mae8NDayNaeiikaGIaemiraq0aaSbaaSqaaiabikdaYaqabaGccqGGSaalcqWGebardaWgaaWcbaGaeGymaedabeaakiabdseaenaaBaaaleaacqaIYaGmaeqaaOGaeiykaKIaeyypa0ZaaabuaeaacqGGOaakcqGF0oazdaqhaaWcbaGaemOAaOgabaGaemyAaKgaaOGae43SdC2aa0baaSqaaiabdYgaSbqaaiabdUgaRbaakiabcMcaPiabcIcaOiab+n7aNnaaDaaaleaacqWGSbaBaeaacqWGRbWAaaGccqGGPaqkcqWGebardaqhaaWcbaGaemOAaOMaemiBaWgabaGaeiOla4IaeiOla4caaOGaemiraq0aa0baaSqaaiabc6caUiabc6caUaqaaiabdMgaPjabdUgaRbaaaeaacqWGPbqAcqGGSaalcqWGQbGAcqGGSaalcqWGRbWAcqGGSaalcqWGSbaBaeqaniabggHiLdaakeaacqWFdbWqcqWFVbWBcqWF2bGDcqGGOaakcqWGbbqqdaWgaaWcbaGaeGymaedabeaakiabdgeabnaaBaaaleaacqaIYaGmaeqaaOGaeiilaWIaemiraq0aaSbaaSqaaiabigdaXaqabaGccqWGebardaWgaaWcbaGaeGOmaidabeaakiabcMcaPiabg2da9iabgkHiTmaabmaabaWaaabuaeaacqGGOaakcqGFXoqydaahaaWcbeqaaiabdMgaPbaakiab+j7aInaaCaaaleqabaGaem4AaSgaaOGaeiykaKIaemiraq0aa0baaSqaaiabc6caUiabc6caUaqaaiabdMgaPjabdUgaRbaakiabgUcaRmaaqafabaGaeiikaGIae4xSde2aaSbaaSqaaiabdQgaQbqabaGccqGFYoGydaWgaaWcbaGaemiBaWgabeaakiabcMcaPiabdseaenaaDaaaleaacqWGQbGAcqWGSbaBaeaacqGGUaGlcqGGUaGlaaaabaGaemOAaOMaeiilaWIaemiBaWgabeqdcqGHris5aaWcbaGaemyAaKMaeiilaWIaem4AaSgabeqdcqGHris5aaGccaGLOaGaayzkaaWaaeWaaeaadaaeqbqaaiabcIcaOiab+r7aKnaaDaaaleaacqWGQbGAaeaacqWGPbqAaaGccqGFZoWzdaqhaaWcbaGaemiBaWgabaGaem4AaSgaaOGaeiykaKIaemiraq0aa0baaSqaaiabdQgaQjabdYgaSbqaaiabc6caUiabc6caUaaakiabdseaenaaDaaaleaacqGGUaGlcqGGUaGlaeaacqWGPbqAcqWGRbWAaaaabaGaemyAaKMaeiilaWIaemOAaOMaeiilaWIaem4AaSMaeiilaWIaemiBaWgabeqdcqGHris5aaGccaGLOaGaayzkaaGaey4kaSYaaabuaeaacqGGOaakcqGF0oazdaqhaaWcbaGaemOAaOgabaGaemyAaKgaaOGae43SdC2aa0baaSqaaiabdYgaSbqaaiabdUgaRbaakiabcMcaPaWcbaGaemyAaKMaeiilaWIaemOAaOMaeiilaWIaem4AaSMaeiilaWIaemiBaWgabeqdcqGHris5aOWaaiqaaeaacqGGBbWwcqGGOaakcqGFXoqydaahaaWcbeqaaiabdMgaPbaakiab+j7aInaaCaaaleqabaGaem4AaSgaaOGaeiykaKcacaGL7baaaeaacaWLjaWaaiGaaeaacqGHRaWkcqGGOaakcqGFXoqydaahaaWcbeqaaiabdMgaPbaakiab+j7aInaaBaaaleaacqWGSbaBaeqaaOGaeiykaKIaey4kaSIaeiikaGIae4xSde2aaSbaaSqaaiabdQgaQbqabaGccqGFYoGydaahaaWcbeqaaiabdUgaRbaakiabcMcaPiabgUcaRiabcIcaOiab+f7aHnaaBaaaleaacqWGQbGAaeqaaOGae4NSdi2aaSbaaSqaaiabdYgaSbqabaGccqGGPaqkcqGGDbqxcqWGebardaqhaaWcbaGaemOAaOMaemiBaWgabaGaeiOla4IaeiOla4caaOGaemiraq0aa0baaSqaaiabc6caUiabc6caUaqaaiabdMgaPjabdUgaRbaakiabgUcaRiabcIcaOiab+f7aHnaaCaaaleqabaGaemyAaKgaaOGae4NSdi2aaWbaaSqabeaacqWGRbWAaaGccqGGPaqkcqWGWbaCdaahaaWcbeqaaiabdMgaPbaakiabdghaXnaaCaaaleqabaGaem4AaSgaaOGaemiraq0aa0baaSqaaiabdQgaQjabdYgaSbqaaiabc6caUiabc6caUaaakiabgUcaRiabcIcaOiab+f7aHnaaBaaaleaacqWGQbGAaeqaaOGae4NSdi2aaSbaaSqaaiabdYgaSbqabaGccqGGPaqkcqWGWbaCdaWgaaWcbaGaemOAaOgabeaakiabdghaXnaaBaaaleaacqWGSbaBaeqaaOGaemiraq0aa0baaSqaaiabc6caUiabc6caUaqaaiabdMgaPjabdUgaRbaaaOGaayzFaaaabaGae83qamKae83Ba8Mae8NDayNaeiikaGIaemyqae0aaSbaaSqaaiabigdaXaqabaGccqWGebardaWgaaWcbaGaeGOmaidabeaakiabcYcaSiabdseaenaaBaaaleaacqaIXaqmaeqaaOGaemiraq0aaSbaaSqaaiabikdaYaqabaGccqGGPaqkcqGH9aqpdaaeqbqaaiabcIcaOiab+r7aKnaaDaaaleaacqWGQbGAaeaacqWGPbqAaaGccqGFZoWzdaqhaaWcbaGaemiBaWgabaGaem4AaSgaaOGaeiykaKIaei4waSfaleaacqWGPbqAcqGGSaalcqWGQbGAcqGGSaalcqWGRbWAcqGGSaalcqWGSbaBaeqaniabggHiLdGccqGGOaakcqGFXoqydaahaaWcbeqaaiabdMgaPbaakiab+n7aNnaaDaaaleaacqWGSbaBaeaacqWGRbWAaaGccqGGPaqkcqGGOaakcqWGebardaqhaaWcbaGaeiOla4IaeiOla4cabaGaemyAaKMaem4AaSgaaOGaey4kaSIaemiCaa3aaWbaaSqabeaacqWGPbqAaaGccqWGXbqCdaahaaWcbeqaaiabdUgaRbaakiabcMcaPiabdseaenaaDaaaleaacqWGQbGAcqWGSbaBaeaacqGGUaGlcqGGUaGlaaGccqGHRaWkcqGGOaakcqGFXoqydaWgaaWcbaGaemOAaOgabeaakiab+n7aNnaaDaaaleaacqWGSbaBaeaacqWGRbWAaaGccqGGPaqkcqGGOaakcqWGebardaqhaaWcbaGaemOAaOMaemiBaWgabaGaeiOla4IaeiOla4caaOGaey4kaSIaemiCaa3aaSbaaSqaaiabdQgaQbqabaGccqWGXbqCdaWgaaWcbaGaemiBaWgabeaakiabcMcaPiabdseaenaaDaaaleaacqGGUaGlcqGGUaGlaeaacqWGPbqAcqWGRbWAaaGccqGGDbqxaeaacqWFdbWqcqWFVbWBcqWF2bGDcqGGOaakcqWGebardaWgaaWcbaGaeGymaedabeaakiabdgeabnaaBaaaleaacqaIYaGmaeqaaOGaeiilaWIaemiraq0aaSbaaSqaaiabigdaXaqabaGccqWGebardaWgaaWcbaGaeGOmaidabeaakiabcMcaPiabg2da9maaqafabaGaeiikaGIae4hTdq2aa0baaSqaaiabdQgaQbqaaiabdMgaPbaakiab+n7aNnaaDaaaleaacqWGSbaBaeaacqWGRbWAaaGccqGGPaqkcqGGBbWwaSqaaiabdMgaPjabcYcaSiabdQgaQjabcYcaSiabdUgaRjabcYcaSiabdYgaSbqab0GaeyyeIuoakiabcIcaOiab+r7aKnaaDaaaleaacqWGQbGAaeaacqWGPbqAaaGccqGFYoGydaahaaWcbeqaaiabdUgaRbaakiabcMcaPiabcIcaOiabdseaenaaDaaaleaacqGGUaGlcqGGUaGlaeaacqWGPbqAcqWGRbWAaaGccqGHRaWkcqWGWbaCdaahaaWcbeqaaiabdMgaPbaakiabdghaXnaaCaaaleqabaGaem4AaSgaaOGaeiykaKIaemiraq0aa0baaSqaaiabdQgaQjabdYgaSbqaaiabc6caUiabc6caUaaakiabgUcaRiabcIcaOiab+r7aKnaaDaaaleaacqWGQbGAaeaacqWGPbqAaaGccqGFYoGydaWgaaWcbaGaemiBaWgabeaakiabcMcaPiabcIcaOiabdseaenaaDaaaleaacqWGQbGAcqWGSbaBaeaacqGGUaGlcqGGUaGlaaGccqGHRaWkcqWGWbaCdaWgaaWcbaGaemOAaOgabeaakiabdghaXnaaBaaaleaacqWGSbaBaeqaaOGaeiykaKIaemiraq0aa0baaSqaaiabc6caUiabc6caUaqaaiabdMgaPjabdUgaRbaakiabc2faDbaaaa@9F47@

D. Partition of genotypic variance in F2 population with linkage disequilibrium

Detail of each component of equation (19) for F2 population is presented here.

• The additive variance:

V A = 1 2 r = 1 m a r 2 + 2 r s a r a s D r s MathType@MTEF@5@5@+=feaafiart1ev1aaatCvAUfKttLearuWrP9MDH5MBPbIqV92AaeXatLxBI9gBaebbnrfifHhDYfgasaacH8akY=wiFfYdH8Gipec8Eeeu0xXdbba9frFj0=OqFfea0dXdd9vqai=hGuQ8kuc9pgc9s8qqaq=dirpe0xb9q8qiLsFr0=vr0=vr0dc8meaabaqaciaacaGaaeqabaqabeGadaaakeaacqWGwbGvdaWgaaWcbaGaemyqaeeabeaakiabg2da9maalaaabaGaeGymaedabaGaeGOmaidaamaaqahabaGaemyyae2aa0baaSqaaiabdkhaYbqaaiabikdaYaaakiabgUcaRiabikdaYmaaqafabaGaemyyae2aaSbaaSqaaiabdkhaYbqabaGccqWGHbqydaWgaaWcbaGaem4CamhabeaakiabdseaenaaBaaaleaacqWGYbGCcqWGZbWCaeqaaaqaaiabdkhaYjabgcMi5kabdohaZbqab0GaeyyeIuoaaSqaaiabdkhaYjabg2da9iabigdaXaqaaiabd2gaTbqdcqGHris5aaaa@4F89@

• The dominance variance:

V D = 1 4 r = 1 m d r 2 + 4 r s d r d s D r s 2 MathType@MTEF@5@5@+=feaafiart1ev1aaatCvAUfKttLearuWrP9MDH5MBPbIqV92AaeXatLxBI9gBaebbnrfifHhDYfgasaacH8akY=wiFfYdH8Gipec8Eeeu0xXdbba9frFj0=OqFfea0dXdd9vqai=hGuQ8kuc9pgc9s8qqaq=dirpe0xb9q8qiLsFr0=vr0=vr0dc8meaabaqaciaacaGaaeqabaqabeGadaaakeaacqWGwbGvdaWgaaWcbaGaemiraqeabeaakiabg2da9maalaaabaGaeGymaedabaGaeGinaqdaamaaqahabaGaemizaq2aa0baaSqaaiabdkhaYbqaaiabikdaYaaakiabgUcaRiabisda0maaqafabaGaemizaq2aaSbaaSqaaiabdkhaYbqabaGccqWGKbazdaWgaaWcbaGaem4CamhabeaakiabdseaenaaDaaaleaacqWGYbGCcqWGZbWCaeaacqaIYaGmaaaabaGaemOCaiNaeyiyIKRaem4CamhabeqdcqGHris5aaWcbaGaemOCaiNaeyypa0JaeGymaedabaGaemyBa0ganiabggHiLdaaaa@509C@

• The additive × additive variance:

V A A = 1 4 r < s ( a a ) r s 2 + r s s ( a a ) r s ( a a ) r s D s s + 1 2 r s r s ( a a ) r s ( a a ) r s ( D r r s s + D r s D r s + D r r D s s D r s D r s ) MathType@MTEF@5@5@+=feaafiart1ev1aaatCvAUfKttLearuWrP9MDH5MBPbIqV92AaeXatLxBI9gBaebbnrfifHhDYfgasaacH8akY=wiFfYdH8Gipec8Eeeu0xXdbba9frFj0=OqFfea0dXdd9vqai=hGuQ8kuc9pgc9s8qqaq=dirpe0xb9q8qiLsFr0=vr0=vr0dc8meaabaqaciaacaGaaeqabaqabeGadaaakqaaeeqaaiabdAfawnaaBaaaleaacqWGbbqqcqWGbbqqaeqaaOGaeyypa0ZaaSaaaeaacqaIXaqmaeaacqaI0aanaaWaaabuaeaacqGGOaakcqWGHbqycqWGHbqycqGGPaqkdaqhaaWcbaGaemOCaiNaem4CamhabaGaeGOmaidaaOGaey4kaSYaaabuaeaacqGGOaakcqWGHbqycqWGHbqycqGGPaqkdaWgaaWcbaGaemOCaiNaem4CamhabeaakiabcIcaOiabdggaHjabdggaHjabcMcaPmaaBaaaleaacqWGYbGCcuWGZbWCgaqbaaqabaGccqWGebardaWgaaWcbaGaem4CamNafm4CamNbauaaaeqaaaqaaiabdkhaYjabgcMi5kabdohaZjabgcMi5kqbdohaZzaafaaabeqdcqGHris5aaWcbaGaemOCaiNaeyipaWJaem4CamhabeqdcqGHris5aaGcbaGaey4kaSYaaSaaaeaacqaIXaqmaeaacqaIYaGmaaWaaabuaeaacqGGOaakcqWGHbqycqWGHbqycqGGPaqkdaWgaaWcbaGaemOCaiNaem4CamhabeaakiabcIcaOiabdggaHjabdggaHjabcMcaPmaaBaaaleaacuWGYbGCgaqbaiqbdohaZzaafaaabeaakiabcIcaOiabdseaenaaBaaaleaacqWGYbGCcuWGYbGCgaqbaiabdohaZjqbdohaZzaafaaabeaakiabgUcaRiabdseaenaaBaaaleaacqWGYbGCcuWGZbWCgaqbaaqabaGccqWGebardaWgaaWcbaGafmOCaiNbauaacqWGZbWCaeqaaaqaaiabdkhaYjabgcMi5kabdohaZjabgcMi5kqbdkhaYzaafaGaeyiyIKRafm4CamNbauaaaeqaniabggHiLdGccqGHRaWkcqWGebardaWgaaWcbaGaemOCaiNafmOCaiNbauaaaeqaaOGaemiraq0aaSbaaSqaaiabdohaZjqbdohaZzaafaaabeaakiabgkHiTiabdseaenaaBaaaleaacqWGYbGCcqWGZbWCaeqaaOGaemiraq0aaSbaaSqaaiqbdkhaYzaafaGafm4CamNbauaaaeqaaOGaeiykaKcaaaa@A2C4@

• The additive × dominance variance:

V A D = 1 8 r s ( a d ) r s 2 + 1 2 r s ( a d ) r s ( a d ) s r D r s + 2 r s s ( a d ) r s [ ( a d ) r s D s s 2 + ( a d ) s s D s s D r s + ( a d ) s r D r s D s s + 1 4 ( a d ) s s D r s ] + 8 r s r s ( a d ) r s ( a d ) r s D r s r s D s s MathType@MTEF@5@5@+=feaafiart1ev1aaatCvAUfKttLearuWrP9MDH5MBPbIqV92AaeXatLxBI9gBaebbnrfifHhDYfgasaacH8akY=wiFfYdH8Gipec8Eeeu0xXdbba9frFj0=OqFfea0dXdd9vqai=hGuQ8kuc9pgc9s8qqaq=dirpe0xb9q8qiLsFr0=vr0=vr0dc8meaabaqaciaacaGaaeqabaqabeGadaaakeaafaqabeGabaaabaGaemOvay1aaSbaaSqaaiabdgeabjabdseaebqabaGccqGH9aqpdaWcaaqaaiabigdaXaqaaiabiIda4aaadaaeqbqaaiabcIcaOiabdggaHjabdsgaKjabcMcaPmaaDaaaleaacqWGYbGCcqWGZbWCaeaacqaIYaGmaaaabaGaemOCaiNaeyiyIKRaem4CamhabeqdcqGHris5aOGaey4kaSYaaSaaaeaacqaIXaqmaeaacqaIYaGmaaWaaabuaeaacqGGOaakcqWGHbqycqWGKbazcqGGPaqkdaWgaaWcbaGaemOCaiNaem4CamhabeaakiabcIcaOiabdggaHjabdsgaKjabcMcaPmaaBaaaleaacqWGZbWCcqWGYbGCaeqaaOGaemiraq0aaSbaaSqaaiabdkhaYjabdohaZbqabaaabaGaemOCaiNaeyiyIKRaem4CamhabeqdcqGHris5aOGaey4kaSIaeGOmaiZaaabuaeaacqGGOaakcqWGHbqycqWGKbazcqGGPaqkdaWgaaWcbaGaemOCaiNaem4CamhabeaaaeaacqWGYbGCcqGHGjsUcqWGZbWCcqGHGjsUcuWGZbWCgaqbaaqab0GaeyyeIuoakmaadeaabaGaeiikaGIaemyyaeMaemizaqMaeiykaKYaaSbaaSqaaiabdkhaYjqbdohaZzaafaaabeaakiabdseaenaaDaaaleaacqWGZbWCcuWGZbWCgaqbaaqaaiabikdaYaaakiabgUcaRiabcIcaOiabdggaHjabdsgaKjabcMcaPmaaBaaaleaacqWGZbWCcuWGZbWCgaqbaaqabaGccqWGebardaWgaaWcbaGaem4CamNafm4CamNbauaaaeqaaOGaemiraq0aaSbaaSqaaiabdkhaYjqbdohaZzaafaaabeaaaOGaay5waaaabaWaamGaaeaacqGHRaWkcqGGOaakcqWGHbqycqWGKbazcqGGPaqkdaWgaaWcbaGafm4CamNbauaacqWGYbGCaeqaaOGaemiraq0aaSbaaSqaaiabdkhaYjabdohaZbqabaGccqWGebardaWgaaWcbaGaem4CamNafm4CamNbauaaaeqaaOGaey4kaSYaaSaaaeaacqaIXaqmaeaacqaI0aanaaGaeiikaGIaemyyaeMaemizaqMaeiykaKYaaSbaaSqaaiqbdohaZzaafaGaem4CamhabeaakiabdseaenaaBaaaleaacqWGYbGCcuWGZbWCgaqbaaqabaaakiaaw2faaiabgUcaRiabiIda4maaqafabaGaeiikaGIaemyyaeMaemizaqMaeiykaKYaaSbaaSqaaiabdkhaYjabdohaZbqabaGccqGGOaakcqWGHbqycqWGKbazcqGGPaqkdaWgaaWcbaGafmOCaiNbauaacuWGZbWCgaqbaaqabaGccqWGebardaWgaaWcbaGaemOCaiNaem4CamNafmOCaiNbauaacuWGZbWCgaqbaaqabaGccqWGebardaWgaaWcbaGaem4CamNafm4CamNbauaaaeqaaaqaaiabdkhaYjabgcMi5kabdohaZjabgcMi5kqbdkhaYzaafaGaeyiyIKRafm4CamNbauaaaeqaniabggHiLdaaaaaa@D978@

• The dominance × dominance variance:

V D D = r < s ( d d ) r s 2 ( 1 16 16 D r s 4 ) + r s s ' ( d d ) r s ( d d ) r s ' ( D s s ' 2 16 D r s 2 D r s ' 2 ) + 4 r s r ' s ' ( d d ) r s ( d d ) r ' s ' ( D r s r ' s ' 2 D r s 2 D r ' s ' 2 ) MathType@MTEF@5@5@+=feaafiart1ev1aqatCvAUfeBSjuyZL2yd9gzLbvyNv2CaerbwvMCKfMBHbqedmvETj2BSbqee0evGueE0jxyaibaieYdOi=BH8vipeYdI8qiW7rqqrFfpeea0xe9Lq=Jc9vqaqpepm0xbbG8FasPYRqj0=yi0lXdbba9pGe9qqFf0dXdHuk9fr=xfr=xfrpiWZqaaeaabiGaaiaacaqabeaabeqacmaaaOabceqabaaNdeaaaeaacaWGwbWaaSbaaSqaaiaadseacaWGebaabeaakiabg2da9maaqafabaGaaiikaiaadsgacaWGKbGaaiykamaaDaaaleaacaWGYbGaam4CaaqaaiaaikdaaaGccaGGOaWaaSaaaeaacaaIXaaabaGaaGymaiaaiAdaaaGaeyOeI0IaaGymaiaaiAdacaWGebWaa0baaSqaaiaadkhacaWGZbaabaGaaGinaaaakiaacMcaaSqaaiaadkhacqGH8aapcaWGZbaabeqdcqGHris5aOGaey4kaSYaaabuaeaacaGGOaGaamizaiaadsgacaGGPaWaaSbaaSqaaiaadkhacaWGZbaabeaakiaacIcacaWGKbGaamizaiaacMcadaWgaaWcbaGaamOCaiaadohacaGGNaaabeaakiaacIcacaWGebWaa0baaSqaaiaadohacaWGZbGaai4jaaqaaiaaikdaaaGccqGHsislcaaIXaGaaGOnaiaadseadaqhaaWcbaGaamOCaiaadohaaeaacaaIYaaaaOGaamiramaaDaaaleaacaWGYbGaam4CaiaacEcaaeaacaaIYaaaaOGaaiykaaWcbaGaamOCaiabgcMi5kaadohacqGHGjsUcaWGZbGaai4jaaqab0GaeyyeIuoaaOqaaiaaxMaacqGHRaWkcaaI0aWaaabuaeaacaGGOaGaamizaiaadsgacaGGPaWaaSbaaSqaaiaadkhacaWGZbaabeaakiaacIcacaWGKbGaamizaiaacMcadaWgaaWcbaGaamOCaiaacEcacaWGZbGaai4jaaqabaGccaGGOaGaamiramaaDaaaleaacaWGYbGaam4CaiaadkhacaGGNaGaam4CaiaacEcaaeaacaaIYaaaaaqaaiaadkhacqGHGjsUcaWGZbGaeyiyIKRaamOCaiaacEcacqGHGjsUcaWGZbGaai4jaaqab0GaeyyeIuoakiabgkHiTiaadseadaqhaaWcbaGaamOCaiaadohaaeaacaaIYaaaaOGaamiramaaDaaaleaacaWGYbGaai4jaiaadohacaGGNaaabaGaaGOmaaaakiaacMcaaaaa@9B45@

• The covariances: Cov(A, D) = Cov(A, AA) = Cov(A, DD) = Cov(D, AD) = Cov(D, DD) = Cov(AA, AD) = Cov(AD, DD) = 0, and

Cov ( A , A D ) = r s a r D r s [ 4 ( a d ) r s D r s + ( a d ) s r ] 4 r s r ' a r ' ( a d ) r s D r s D r ' s Cov ( D , A A ) = r < s ( d r + d s ) ( a a ) r s D r s 4 r s r ' d r ' ( a a ) r s D r r ' D r ' s Cov ( A A , D D ) = r < s ( a a ) r s ( d d ) r s ( 1 2 D r s 8 D r s 3 ) + r s s ' ( a a ) r s ( d d ) r s ' ( 2 D r s ' D s s ' 8 D r s D r s ' 2 ) + 2 r s r ' s ' ( a a ) r s ( d d ) r ' s ' ( D r s r ' s ' D r ' s ' D r s D r ' s ' 2 ) MathType@MTEF@5@5@+=feaafiart1ev1aaatCvAUfKttLearuWrP9MDH5MBPbIqV92AaeXatLxBI9gBaebbfv3ySLgzGueE0jxyaibaieYdOi=BH8vipeYdI8qiW7rqqrFfpeea0xe9Lq=Jc9vqaqpepm0xbbG8FasPYRqj0=yi0lXdbba9pGe9qqFf0dXdHuk9fr=xfr=xfrpiWZqaaeaabiGaaiaacaqabeaabeqacmaaaOabcqqabaG2aeaacqqGdbWqcqqGVbWBcqqG2bGDcqGGOaakcqWGbbqqcqGGSaalcqWGbbqqcqWGebarcqGGPaqkcqGH9aqpcqGHsisldaaeqbqaaiabdggaHnaaBaaaleaacqWGYbGCaeqaaOGaemiraq0aaSbaaSqaaiabdkhaYjabdohaZbqabaaabaGaemOCaiNaeyiyIKRaem4CamhabeqdcqGHris5aOWaamWaaeaacqaI0aancqGGOaakcqWGHbqycqWGKbazcqGGPaqkdaWgaaWcbaGaemOCaiNaem4CamhabeaakiabdseaenaaBaaaleaacqWGYbGCcqWGZbWCaeqaaOGaey4kaSIaeiikaGIaemyyaeMaemizaqMaeiykaKYaaSbaaSqaaiabdohaZjabdkhaYbqabaaakiaawUfacaGLDbaacqGHsislcqaI0aandaaeqbqaaiabdggaHnaaBaaaleaacqWGYbGCcqGGNaWjaeqaaOGaeiikaGIaemyyaeMaemizaqMaeiykaKYaaSbaaSqaaiabdkhaYjabdohaZbqabaGccqWGebardaWgaaWcbaGaemOCaiNaem4CamhabeaakiabdseaenaaBaaaleaacqWGYbGCcqGGNaWjcqWGZbWCaeqaaaqaaiabdkhaYjabgcMi5kabdohaZjabgcMi5kabdkhaYjabcEcaNaqab0GaeyyeIuoaaOqaaiabboeadjabb+gaVjabbAha2jabcIcaOiabdseaejabcYcaSiabdgeabjabdgeabjabcMcaPiabg2da9iabgkHiTmaaqafabaGaeiikaGIaemizaq2aaSbaaSqaaiabdkhaYbqabaGccqGHRaWkcqWGKbazdaWgaaWcbaGaem4CamhabeaakiabcMcaPiabcIcaOiabdggaHjabdggaHjabcMcaPmaaBaaaleaacqWGYbGCcqWGZbWCaeqaaOGaemiraq0aaSbaaSqaaiabdkhaYjabdohaZbqabaGccqGHsislaSqaaiabdkhaYjabgYda8iabdohaZbqab0GaeyyeIuoakiabisda0maaqafabaGaemizaq2aaSbaaSqaaiabdkhaYjabcEcaNaqabaGccqGGOaakcqWGHbqycqWGHbqycqGGPaqkdaWgaaWcbaGaemOCaiNaem4CamhabeaakiabdseaenaaBaaaleaacqWGYbGCcqWGYbGCcqGGNaWjaeqaaOGaemiraq0aaSbaaSqaaiabdkhaYjabcEcaNiabdohaZbqabaaabaGaemOCaiNaeyiyIKRaem4CamNaeyiyIKRaemOCaiNaei4jaCcabeqdcqGHris5aaGcbaGaee4qamKaee4Ba8MaeeODayNaeiikaGIaemyqaeKaemyqaeKaeiilaWIaemiraqKaemiraqKaeiykaKIaeyypa0ZaaabuaeaacqGGOaakcqWGHbqycqWGHbqycqGGPaqkdaWgaaWcbaGaemOCaiNaem4CamhabeaaaeaacqWGYbGCcqGH8aapcqWGZbWCaeqaniabggHiLdGccqGGOaakcqWGKbazcqWGKbazcqGGPaqkdaWgaaWcbaGaemOCaiNaem4CamhabeaakiabcIcaOmaalaaabaGaeGymaedabaGaeGOmaidaaiabdseaenaaBaaaleaacqWGYbGCcqWGZbWCaeqaaOGaeyOeI0IaeGioaGJaemiraq0aa0baaSqaaiabdkhaYjabdohaZbqaaiabiodaZaaakiabcMcaPiabgUcaRmaaqafabaGaeiikaGIaemyyaeMaemyyaeMaeiykaKYaaSbaaSqaaiabdkhaYjabdohaZbqabaaabaGaemOCaiNaeyiyIKRaem4CamNaeyiyIKRaem4CamNaei4jaCcabeqdcqGHris5aOGaeiikaGIaemizaqMaemizaqMaeiykaKYaaSbaaSqaaiabdkhaYjabdohaZjabcEcaNaqabaGccqGGOaakcqaIYaGmcqWGebardaWgaaWcbaGaemOCaiNaem4CamNaei4jaCcabeaakiabdseaenaaBaaaleaacqWGZbWCcqWGZbWCcqGGNaWjaeqaaOGaeyOeI0IaeGioaGJaemiraq0aaSbaaSqaaiabdkhaYjabdohaZbqabaGccqWGebardaqhaaWcbaGaemOCaiNaem4CamNaei4jaCcabaGaeGOmaidaaOGaeiykaKcabaGaaCzcaiabgUcaRiabikdaYmaaqafabaGaeiikaGIaemyyaeMaemyyaeMaeiykaKYaaSbaaSqaaiabdkhaYjabdohaZbqabaaabaGaemOCaiNaeyiyIKRaem4CamNaeyiyIKRaemOCaiNaei4jaCIaeyiyIKRaem4CamNaei4jaCcabeqdcqGHris5aOGaeiikaGIaemizaqMaemizaqMaeiykaKYaaSbaaSqaaiabdkhaYjabcEcaNiabdohaZjabcEcaNaqabaGccqGGOaakcqWGebardaWgaaWcbaGaemOCaiNaem4CamNaemOCaiNaei4jaCIaem4CamNaei4jaCcabeaakiabdseaenaaBaaaleaacqWGYbGCcqGGNaWjcqWGZbWCcqGGNaWjaeqaaOGaeyOeI0Iaemiraq0aaSbaaSqaaiabdkhaYjabdohaZbqabaGccqWGebardaqhaaWcbaGaemOCaiNaei4jaCIaem4CamNaei4jaCcabaGaeGOmaidaaOGaeiykaKcaaaa@684A@

where (aa) sr = (aa) rs and (dd) sr = (dd) rs for r <s.

In this presentation, we utilized the assumption of no crossing-over interference which results in the third order linkage disequilibrium of three loci being zero, i.e. Drss'= 0. It may be instructive to show this result.

D r s t = E ( x r x s x t ) = E ( ( z r p r ) ( z s p s ) ( z t p t ) ) = E ( z r z s z t p r z s z t z r p s z t z r z s p t + p r p s z t + p r z s p t + z r p s p t p r p s p t ) = E ( z r z s z t 1 2 z s z t 1 2 z r z t 1 2 z r z s + 1 4 ) MathType@MTEF@5@5@+=feaafiart1ev1aaatCvAUfKttLearuWrP9MDH5MBPbIqV92AaeXatLxBI9gBaebbfv3ySLgzGueE0jxyaibaieYdOi=BH8vipeYdI8qiW7rqqrFfpeea0xe9Lq=Jc9vqaqpepm0xbbG8FasPYRqj0=yi0lXdbba9pGe9qqFf0dXdHuk9fr=xfr=xfrpiWZqaaeaabiGaaiaacaqabeaabeqacmaaaOabaqqabaGaemiraq0aaSbaaSqaaiabdkhaYjabdohaZjabdsha0bqabaGccqGH9aqpcqWGfbqrcqGGOaakcqWG4baEdaWgaaWcbaGaemOCaihabeaakiabdIha4naaBaaaleaacqWGZbWCaeqaaOGaemiEaG3aaSbaaSqaaiabdsha0bqabaGccqGGPaqkcqGH9aqpcqWGfbqrcqGGOaakcqGGOaakcqWG6bGEdaWgaaWcbaGaemOCaihabeaakiabgkHiTiabdchaWnaaBaaaleaacqWGYbGCaeqaaOGaeiykaKIaeiikaGIaemOEaO3aaSbaaSqaaiabdohaZbqabaGccqGHsislcqWGWbaCdaWgaaWcbaGaem4CamhabeaakiabcMcaPiabcIcaOiabdQha6naaBaaaleaacqWG0baDaeqaaOGaeyOeI0IaemiCaa3aaSbaaSqaaiabdsha0bqabaGccqGGPaqkcqGGPaqkaeaacqGH9aqpcqWGfbqrcqGGOaakcqWG6bGEdaWgaaWcbaGaemOCaihabeaakiabdQha6naaBaaaleaacqWGZbWCaeqaaOGaemOEaO3aaSbaaSqaaiabdsha0bqabaGccqGHsislcqWGWbaCdaWgaaWcbaGaemOCaihabeaakiabdQha6naaBaaaleaacqWGZbWCaeqaaOGaemOEaO3aaSbaaSqaaiabdsha0bqabaGccqGHsislcqWG6bGEdaWgaaWcbaGaemOCaihabeaakiabdchaWnaaBaaaleaacqWGZbWCaeqaaOGaemOEaO3aaSbaaSqaaiabdsha0bqabaGccqGHsislcqWG6bGEdaWgaaWcbaGaemOCaihabeaakiabdQha6naaBaaaleaacqWGZbWCaeqaaOGaemiCaa3aaSbaaSqaaiabdsha0bqabaGccqGHRaWkcqWGWbaCdaWgaaWcbaGaemOCaihabeaakiabdchaWnaaBaaaleaacqWGZbWCaeqaaOGaemOEaO3aaSbaaSqaaiabdsha0bqabaGccqGHRaWkcqWGWbaCdaWgaaWcbaGaemOCaihabeaakiabdQha6naaBaaaleaacqWGZbWCaeqaaOGaemiCaa3aaSbaaSqaaiabdsha0bqabaGccqGHRaWkcqWG6bGEdaWgaaWcbaGaemOCaihabeaakiabdchaWnaaBaaaleaacqWGZbWCaeqaaOGaemiCaa3aaSbaaSqaaiabdsha0bqabaGccqGHsislcqWGWbaCdaWgaaWcbaGaemOCaihabeaakiabdchaWnaaBaaaleaacqWGZbWCaeqaaOGaemiCaa3aaSbaaSqaaiabdsha0bqabaGccqGGPaqkaeaacqGH9aqpcqWGfbqrcqGGOaakcqWG6bGEdaWgaaWcbaGaemOCaihabeaakiabdQha6naaBaaaleaacqWGZbWCaeqaaOGaemOEaO3aaSbaaSqaaiabdsha0bqabaGccqGHsisldaWcaaqaaiabigdaXaqaaiabikdaYaaacqWG6bGEdaWgaaWcbaGaem4CamhabeaakiabdQha6naaBaaaleaacqWG0baDaeqaaOGaeyOeI0YaaSaaaeaacqaIXaqmaeaacqaIYaGmaaGaemOEaO3aaSbaaSqaaiabdkhaYbqabaGccqWG6bGEdaWgaaWcbaGaemiDaqhabeaakiabgkHiTmaalaaabaGaeGymaedabaGaeGOmaidaaiabdQha6naaBaaaleaacqWGYbGCaeqaaOGaemOEaO3aaSbaaSqaaiabdohaZbqabaGccqGHRaWkdaWcaaqaaiabigdaXaqaaiabisda0aaacqGGPaqkaaaa@DF34@

Let r1 be the recombination frequency between loci r and s, r2 be that between s and t, and r12 be that between r and t. Under the assumption of no crossing-over interference, for loci r, s, t in this order, we have E(z r z s z t ) = 1 2 MathType@MTEF@5@5@+=feaafiart1ev1aaatCvAUfKttLearuWrP9MDH5MBPbIqV92AaeXatLxBI9gBaebbfv3ySLgzGueE0jxyaibaieYdOi=BH8vipeYdI8qiW7rqqrFfpeea0xe9Lq=Jc9vqaqpepm0xbbG8FasPYRqj0=yi0lXdbba9pGe9qqFf0dXdHuk9fr=xfr=xfrpiWZqaaeaabiGaaiaacaqabeaabeqacmaaaOqaamaalaaabaGaeGymaedabaGaeGOmaidaaaaa@3053@ (1 - r1)(1 - r2), E(z r z s ) = 1 2 MathType@MTEF@5@5@+=feaafiart1ev1aaatCvAUfKttLearuWrP9MDH5MBPbIqV92AaeXatLxBI9gBaebbfv3ySLgzGueE0jxyaibaieYdOi=BH8vipeYdI8qiW7rqqrFfpeea0xe9Lq=Jc9vqaqpepm0xbbG8FasPYRqj0=yi0lXdbba9pGe9qqFf0dXdHuk9fr=xfr=xfrpiWZqaaeaabiGaaiaacaqabeaabeqacmaaaOqaamaalaaabaGaeGymaedabaGaeGOmaidaaaaa@3053@ (1 - r1), E(z s z t ) = 1 2 MathType@MTEF@5@5@+=feaafiart1ev1aaatCvAUfKttLearuWrP9MDH5MBPbIqV92AaeXatLxBI9gBaebbfv3ySLgzGueE0jxyaibaieYdOi=BH8vipeYdI8qiW7rqqrFfpeea0xe9Lq=Jc9vqaqpepm0xbbG8FasPYRqj0=yi0lXdbba9pGe9qqFf0dXdHuk9fr=xfr=xfrpiWZqaaeaabiGaaiaacaqabeaabeqacmaaaOqaamaalaaabaGaeGymaedabaGaeGOmaidaaaaa@3053@ (1 - r2), and E(z r z t ) = 1 2 MathType@MTEF@5@5@+=feaafiart1ev1aaatCvAUfKttLearuWrP9MDH5MBPbIqV92AaeXatLxBI9gBaebbfv3ySLgzGueE0jxyaibaieYdOi=BH8vipeYdI8qiW7rqqrFfpeea0xe9Lq=Jc9vqaqpepm0xbbG8FasPYRqj0=yi0lXdbba9pGe9qqFf0dXdHuk9fr=xfr=xfrpiWZqaaeaabiGaaiaacaqabeaabeqacmaaaOqaamaalaaabaGaeGymaedabaGaeGOmaidaaaaa@3053@ (1 - r12). Since the assumption of no crossing-over interferene implies r12 = r1 + r2 - 2r1r2, thus D rst = 0.

E. Partition of genotypic variance for the general two-allele model with linkage disequilibrium

Detail of each component of equation (19) for the general two-allele model is presented here.

• The additive variance:

V A = 2 r = 1 m p r ( 1 p r ) a r 2 + 2 r s a r a s D r s MathType@MTEF@5@5@+=feaafiart1ev1aaatCvAUfKttLearuWrP9MDH5MBPbIqV92AaeXatLxBI9gBaebbfv3ySLgzGueE0jxyaibaieYdOi=BH8vipeYdI8qiW7rqqrFfpeea0xe9Lq=Jc9vqaqpepm0xbbG8FasPYRqj0=yi0lXdbba9pGe9qqFf0dXdHuk9fr=xfr=xfrpiWZqaaeaabiGaaiaacaqabeaabeqacmaaaOqaaiabdAfawnaaBaaaleaacqWGbbqqaeqaaOGaeyypa0JaeGOmaiZaaabCaeaacqWGWbaCdaWgaaWcbaGaemOCaihabeaakiabcIcaOiabigdaXiabgkHiTiabdchaWnaaBaaaleaacqWGYbGCaeqaaOGaeiykaKIaemyyae2aa0baaSqaaiabdkhaYbqaaiabikdaYaaaaeaacqWGYbGCcqGH9aqpcqaIXaqmaeaacqWGTbqBa0GaeyyeIuoakiabgUcaRiabikdaYmaaqafabaGaemyyae2aaSbaaSqaaiabdkhaYbqabaGccqWGHbqydaWgaaWcbaGaem4CamhabeaakiabdseaenaaBaaaleaacqWGYbGCcqWGZbWCaeqaaaqaaiabdkhaYjabgcMi5kabdohaZbqab0GaeyyeIuoaaaa@59DA@

• The dominance variance:

V D = r = 1 m p r 2 ( 1 p r ) 2 d r 2 + r s d r d s D r s 2 MathType@MTEF@5@5@+=feaafiart1ev1aaatCvAUfKttLearuWrP9MDH5MBPbIqV92AaeXatLxBI9gBaebbfv3ySLgzGueE0jxyaibaieYdOi=BH8vipeYdI8qiW7rqqrFfpeea0xe9Lq=Jc9vqaqpepm0xbbG8FasPYRqj0=yi0lXdbba9pGe9qqFf0dXdHuk9fr=xfr=xfrpiWZqaaeaabiGaaiaacaqabeaabeqacmaaaOqaaiabdAfawnaaBaaaleaacqWGebaraeqaaOGaeyypa0ZaaabCaeaacqWGWbaCdaqhaaWcbaGaemOCaihabaGaeGOmaidaaOGaeiikaGIaeGymaeJaeyOeI0IaemiCaa3aaSbaaSqaaiabdkhaYbqabaGccqGGPaqkdaahaaWcbeqaaiabikdaYaaakiabdsgaKnaaDaaaleaacqWGYbGCaeaacqaIYaGmaaaabaGaemOCaiNaeyypa0JaeGymaedabaGaemyBa0ganiabggHiLdGccqGHRaWkdaaeqbqaaiabdsgaKnaaBaaaleaacqWGYbGCaeqaaOGaemizaq2aaSbaaSqaaiabdohaZbqabaGccqWGebardaqhaaWcbaGaemOCaiNaem4CamhabaGaeGOmaidaaaqaaiabdkhaYjabgcMi5kabdohaZbqab0GaeyyeIuoaaaa@5B1D@

• The additive × additive variance:

V A A = 2 r < s ( a a ) r s 2 [ ( 1 2 p r ) ( 1 2 p s ) D r s + 2 p r ( 1 p r ) p s ( 1 p s ) ] + 2 r s s ' ( a a ) r s ( a a ) r s ' [ ( 1 2 p r ) D r s s ' + 2 p r ( 1 p r ) D s s ' ] + 1 2 r s r ' s ' ( a a ) r s ( a a ) r ' s ' ( D r r ' s s ' + D r s ' D r ' s + D r r ' D s s ' D r s D r ' s ' ) MathType@MTEF@5@5@+=feaafiart1ev1aaatCvAUfKttLearuWrP9MDH5MBPbIqV92AaeXatLxBI9gBaebbfv3ySLgzGueE0jxyaibaieYdOi=BH8vipeYdI8qiW7rqqrFfpeea0xe9Lq=Jc9vqaqpepm0xbbG8FasPYRqj0=yi0lXdbba9pGe9qqFf0dXdHuk9fr=xfr=xfrpiWZqaaeaabiGaaiaacaqabeaabeqacmaaaOabaqqabaGaemOvay1aaSbaaSqaaiabdgeabjabdgeabbqabaGccqGH9aqpcqaIYaGmdaaeqbqaaiabcIcaOiabdggaHjabdggaHjabcMcaPmaaDaaaleaacqWGYbGCcqWGZbWCaeaacqaIYaGmaaaabaGaemOCaiNaeyipaWJaem4CamhabeqdcqGHris5aOWaamWaaeaacqGGOaakcqaIXaqmcqGHsislcqaIYaGmcqWGWbaCdaWgaaWcbaGaemOCaihabeaakiabcMcaPiabcIcaOiabigdaXiabgkHiTiabikdaYiabdchaWnaaBaaaleaacqWGZbWCaeqaaOGaeiykaKIaemiraq0aaSbaaSqaaiabdkhaYjabdohaZbqabaGccqGHRaWkcqaIYaGmcqWGWbaCdaWgaaWcbaGaemOCaihabeaakiabcIcaOiabigdaXiabgkHiTiabdchaWnaaBaaaleaacqWGYbGCaeqaaOGaeiykaKIaemiCaa3aaSbaaSqaaiabdohaZbqabaGccqGGOaakcqaIXaqmcqGHsislcqWGWbaCdaWgaaWcbaGaem4CamhabeaakiabcMcaPaGaay5waiaaw2faaaqaaiabgUcaRiabikdaYmaaqafabaGaeiikaGIaemyyaeMaemyyaeMaeiykaKYaaSbaaSqaaiabdkhaYjabdohaZbqabaGccqGGOaakcqWGHbqycqWGHbqycqGGPaqkdaWgaaWcbaGaemOCaiNaem4CamNaei4jaCcabeaaaeaacqWGYbGCcqGHGjsUcqWGZbWCcqGHGjsUcqWGZbWCcqGGNaWjaeqaniabggHiLdGcdaWadaqaaiabcIcaOiabigdaXiabgkHiTiabikdaYiabdchaWnaaBaaaleaacqWGYbGCaeqaaOGaeiykaKIaemiraq0aaSbaaSqaaiabdkhaYjabdohaZjabdohaZjabcEcaNaqabaGccqGHRaWkcqaIYaGmcqWGWbaCdaWgaaWcbaGaemOCaihabeaakiabcIcaOiabigdaXiabgkHiTiabdchaWnaaBaaaleaacqWGYbGCaeqaaOGaeiykaKIaemiraq0aaSbaaSqaaiabdohaZjabdohaZjabcEcaNaqabaaakiaawUfacaGLDbaaaeaacqGHRaWkdaWcaaqaaiabigdaXaqaaiabikdaYaaadaaeqbqaaiabcIcaOiabdggaHjabdggaHjabcMcaPmaaBaaaleaacqWGYbGCcqWGZbWCaeqaaOGaeiikaGIaemyyaeMaemyyaeMaeiykaKYaaSbaaSqaaiabdkhaYjabcEcaNiabdohaZjabcEcaNaqabaaabaGaemOCaiNaeyiyIKRaem4CamNaeyiyIKRaemOCaiNaei4jaCIaeyiyIKRaem4CamNaei4jaCcabeqdcqGHris5aOGaeiikaGIaemiraq0aaSbaaSqaaiabdkhaYjabdkhaYjabcEcaNiabdohaZjabdohaZjabcEcaNaqabaGccqGHRaWkcqWGebardaWgaaWcbaGaemOCaiNaem4CamNaei4jaCcabeaakiabdseaenaaBaaaleaacqWGYbGCcqGGNaWjcqWGZbWCaeqaaOGaey4kaSIaemiraq0aaSbaaSqaaiabdkhaYjabdkhaYjabcEcaNaqabaGccqWGebardaWgaaWcbaGaem4CamNaem4CamNaei4jaCcabeaakiabgkHiTiabdseaenaaBaaaleaacqWGYbGCcqWGZbWCaeqaaOGaemiraq0aaSbaaSqaaiabdkhaYjabcEcaNiabdohaZjabcEcaNaqabaGccqGGPaqkaaaa@F5EC@

The additive × dominance variance:

V A D = 2 r s ( a d ) r s 2 [ ( 1 2 p s ) 2 D r s 2 + ( 1 2 p r ) ( 1 2 p s ) p s ( 1 p s ) D r s + p r ( 1 p r ) p s 2 ( 1 p s ) 2 ] + 2 r s ( a d ) r s ( a d ) s r D r s [ 2 ( 1 2 p r ) ( 1 2 p s ) D r s + p r ( 1 p r ) p s ( 1 p s ) ] + 2 r s s ' ( a d ) r s { ( a d ) r s ' [ D r s s ' 2 + ( 1 2 p r ) D r s s ' D s s ' + p r ( 1 p r ) D s s ' 2 ] + ( a d ) s s ' [ 2 ( 1 2 p s ) D r s s ' D s s ' + p s ( 1 p s ) D s s ' D r s ' ] + ( a d ) s ' r [ 2 ( 1 2 p r ) D r s s ' D r s + p r ( 1 p r ) D r s D s s ' ] + ( a d ) s ' s [ ( 1 2 p s ) 2 D r s D s s ' + ( 1 2 p s ) p s ( 1 p s ) D r s s ' + p s 2 ( 1 p s ) 2 D r s ' ] } + 2 r s r ' s ' ( a d ) r s ( a d ) r ' s ' ( D r s r ' s ' D s s ' + D r s s ' D s r ' s ' ) MathType@MTEF@5@5@+=feaafiart1ev1aaatCvAUfKttLearuWrP9MDH5MBPbIqV92AaeXatLxBI9gBaebbfv3ySLgzGueE0jxyaibaieYdOi=BH8vipeYdI8qiW7rqqrFfpeea0xe9Lq=Jc9vqaqpepm0xbbG8FasPYRqj0=yi0lXdbba9pGe9qqFf0dXdHuk9fr=xfr=xfrpiWZqaaeaabiGaaiaacaqabeaabeqacmaaaOabaeqabaGaemOvay1aaSbaaSqaaiabdgeabjabdseaebqabaGccqGH9aqpcqaIYaGmdaaeqbqaaiabcIcaOiabdggaHjabdsgaKjabcMcaPmaaDaaaleaacqWGYbGCcqWGZbWCaeaacqaIYaGmaaGcdaWadaqaaiabcIcaOiabigdaXiabgkHiTiabikdaYiabdchaWnaaBaaaleaacqWGZbWCaeqaaOGaeiykaKYaaWbaaSqabeaacqaIYaGmaaGccqWGebardaqhaaWcbaGaemOCaiNaem4CamhabaGaeGOmaidaaOGaey4kaSIaeiikaGIaeGymaeJaeyOeI0IaeGOmaiJaemiCaa3aaSbaaSqaaiabdkhaYbqabaGccqGGPaqkcqGGOaakcqaIXaqmcqGHsislcqaIYaGmcqWGWbaCdaWgaaWcbaGaem4CamhabeaakiabcMcaPiabdchaWnaaBaaaleaacqWGZbWCaeqaaOGaeiikaGIaeGymaeJaeyOeI0IaemiCaa3aaSbaaSqaaiabdohaZbqabaGccqGGPaqkcqWGebardaWgaaWcbaGaemOCaiNaem4CamhabeaakiabgUcaRiabdchaWnaaBaaaleaacqWGYbGCaeqaaOGaeiikaGIaeGymaeJaeyOeI0IaemiCaa3aaSbaaSqaaiabdkhaYbqabaGccqGGPaqkcqWGWbaCdaqhaaWcbaGaem4CamhabaGaeGOmaidaaOGaeiikaGIaeGymaeJaeyOeI0IaemiCaa3aaSbaaSqaaiabdohaZbqabaGccqGGPaqkdaahaaWcbeqaaiabikdaYaaaaOGaay5waiaaw2faaaWcbaGaemOCaiNaeyiyIKRaem4CamhabeqdcqGHris5aaGcbaGaaCzcaiabgUcaRiabikdaYmaaqafabaGaeiikaGIaemyyaeMaemizaqMaeiykaKYaaSbaaSqaaiabdkhaYjabdohaZbqabaGccqGGOaakcqWGHbqycqWGKbazcqGGPaqkdaWgaaWcbaGaem4CamNaemOCaihabeaakiabdseaenaaBaaaleaacqWGYbGCcqWGZbWCaeqaaaqaaiabdkhaYjabgcMi5kabdohaZbqab0GaeyyeIuoakmaadmaabaGaeGOmaiJaeiikaGIaeGymaeJaeyOeI0IaeGOmaiJaemiCaa3aaSbaaSqaaiabdkhaYbqabaGccqGGPaqkcqGGOaakcqaIXaqmcqGHsislcqaIYaGmcqWGWbaCdaWgaaWcbaGaem4CamhabeaakiabcMcaPiabdseaenaaBaaaleaacqWGYbGCcqWGZbWCaeqaaOGaey4kaSIaemiCaa3aaSbaaSqaaiabdkhaYbqabaGccqGGOaakcqaIXaqmcqGHsislcqWGWbaCdaWgaaWcbaGaemOCaihabeaakiabcMcaPiabdchaWnaaBaaaleaacqWGZbWCaeqaaOGaeiikaGIaeGymaeJaeyOeI0IaemiCaa3aaSbaaSqaaiabdohaZbqabaGccqGGPaqkaiaawUfacaGLDbaaaeaacaWLjaGaey4kaSIaeGOmaiZaaabuaeaacqGGOaakcqWGHbqycqWGKbazcqGGPaqkdaWgaaWcbaGaemOCaiNaem4CamhabeaaaeaacqWGYbGCcqGHGjsUcqWGZbWCcqGHGjsUcqWGZbWCcqGGNaWjaeqaniabggHiLdGcdaGabaqaaiabcIcaOiabdggaHjabdsgaKjabcMcaPmaaBaaaleaacqWGYbGCcqWGZbWCcqGGNaWjaeqaaOWaamWaaeaacqWGebardaqhaaWcbaGaemOCaiNaem4CamNaem4CamNaei4jaCcabaGaeGOmaidaaOGaey4kaSIaeiikaGIaeGymaeJaeyOeI0IaeGOmaiJaemiCaa3aaSbaaSqaaiabdkhaYbqabaGccqGGPaqkcqWGebardaWgaaWcbaGaemOCaiNaem4CamNaem4CamNaei4jaCcabeaakiabdseaenaaBaaaleaacqWGZbWCcqWGZbWCcqGGNaWjaeqaaOGaey4kaSIaemiCaa3aaSbaaSqaaiabdkhaYbqabaGccqGGOaakcqaIXaqmcqGHsislcqWGWbaCdaWgaaWcbaGaemOCaihabeaakiabcMcaPiabdseaenaaDaaaleaacqWGZbWCcqWGZbWCcqGGNaWjaeaacqaIYaGmaaaakiaawUfacaGLDbaaaiaawUhaaaqaaiaaxMaacqGHRaWkcqGGOaakcqWGHbqycqWGKbazcqGGPaqkdaWgaaWcbaGaem4CamNaem4CamNaei4jaCcabeaakmaadmaabaGaeGOmaiJaeiikaGIaeGymaeJaeyOeI0IaeGOmaiJaemiCaa3aaSbaaSqaaiabdohaZbqabaGccqGGPaqkcqWGebardaWgaaWcbaGaemOCaiNaem4CamNaem4CamNaei4jaCcabeaakiabdseaenaaBaaaleaacqWGZbWCcqWGZbWCcqGGNaWjaeqaaOGaey4kaSIaemiCaa3aaSbaaSqaaiabdohaZbqabaGccqGGOaakcqaIXaqmcqGHsislcqWGWbaCdaWgaaWcbaGaem4CamhabeaakiabcMcaPiabdseaenaaBaaaleaacqWGZbWCcqWGZbWCcqGGNaWjaeqaaOGaemiraq0aaSbaaSqaaiabdkhaYjabdohaZjabcEcaNaqabaaakiaawUfacaGLDbaaaeaacaWLjaGaey4kaSIaeiikaGIaemyyaeMaemizaqMaeiykaKYaaSbaaSqaaiabdohaZjabcEcaNiabdkhaYbqabaGcdaWadaqaaiabikdaYiabcIcaOiabigdaXiabgkHiTiabikdaYiabdchaWnaaBaaaleaacqWGYbGCaeqaaOGaeiykaKIaemiraq0aaSbaaSqaaiabdkhaYjabdohaZjabdohaZjabcEcaNaqabaGccqWGebardaWgaaWcbaGaemOCaiNaem4CamhabeaakiabgUcaRiabdchaWnaaBaaaleaacqWGYbGCaeqaaOGaeiikaGIaeGymaeJaeyOeI0IaemiCaa3aaSbaaSqaaiabdkhaYbqabaGccqGGPaqkcqWGebardaWgaaWcbaGaemOCaiNaem4CamhabeaakiabdseaenaaBaaaleaacqWGZbWCcqWGZbWCcqGGNaWjaeqaaaGccaGLBbGaayzxaaaabaWaaiGaaeaacaWLjaGaey4kaSIaeiikaGIaemyyaeMaemizaqMaeiykaKYaaSbaaSqaaiabdohaZjabcEcaNiabdohaZbqabaGcdaWadaqaaiabcIcaOiabigdaXiabgkHiTiabikdaYiabdchaWnaaBaaaleaacqWGZbWCaeqaaOGaeiykaKYaaWbaaSqabeaacqaIYaGmaaGccqWGebardaWgaaWcbaGaemOCaiNaem4CamhabeaakiabdseaenaaBaaaleaacqWGZbWCcqWGZbWCcqGGNaWjaeqaaOGaey4kaSIaeiikaGIaeGymaeJaeyOeI0IaeGOmaiJaemiCaa3aaSbaaSqaaiabdohaZbqabaGccqGGPaqkcqWGWbaCdaWgaaWcbaGaem4CamhabeaakiabcIcaOiabigdaXiabgkHiTiabdchaWnaaBaaaleaacqWGZbWCaeqaaOGaeiykaKIaemiraq0aaSbaaSqaaiabdkhaYjabdohaZjabdohaZjabcEcaNaqabaGccqGHRaWkcqWGWbaCdaqhaaWcbaGaem4CamhabaGaeGOmaidaaOGaeiikaGIaeGymaeJaeyOeI0IaemiCaa3aaSbaaSqaaiabdohaZbqabaGccqGGPaqkdaahaaWcbeqaaiabikdaYaaakiabdseaenaaBaaaleaacqWGYbGCcqWGZbWCcqGGNaWjaeqaaaGccaGLBbGaayzxaaaacaGL9baaaeaacaWLjaGaey4kaSIaeGOmaiZaaabuaeaacqGGOaakcqWGHbqycqWGKbazcqGGPaqkdaWgaaWcbaGaemOCaiNaem4CamhabeaakiabcIcaOiabdggaHjabdsgaKjabcMcaPmaaBaaaleaacqWGYbGCcqGGNaWjcqWGZbWCcqGGNaWjaeqaaOGaeiikaGIaemiraq0aaSbaaSqaaiabdkhaYjabdohaZjabdkhaYjabcEcaNiabdohaZjabcEcaNaqabaGccqWGebardaWgaaWcbaGaem4CamNaem4CamNaei4jaCcabeaakiabgUcaRiabdseaenaaBaaaleaacqWGYbGCcqWGZbWCcqWGZbWCcqGGNaWjaeqaaOGaemiraq0aaSbaaSqaaiabdohaZjabdkhaYjabcEcaNiabdohaZjabcEcaNaqabaGccqGGPaqkaSqaaiabdkhaYjabgcMi5kabdohaZjabgcMi5kabdkhaYjabcEcaNiabgcMi5kabdohaZjabcEcaNaqab0GaeyyeIuoaaaaa@07AE@

• The dominance × dominance variance:

V D D = r < s ( d d ) r s 2 { [ ( 1 2 p r ) ( 1 2 p s ) D r s + p r ( 1 p r ) p s ( 1 p s ) ] 2 D r s 4 } + r s s ' ( d d ) r s ( d d ) r s ' { [ ( 1 2 p r ) D r s s ' + p r ( 1 p r ) D s s ' ] 2 D r s 2 D r s ' 2 } + 1 4 r s r ' s ' ( d d ) r s ( d d ) r ' s ' ( D r s r ' s ' 2 D r s 2 D r ' s ' 2 ) MathType@MTEF@5@5@+=feaafiart1ev1aaatCvAUfKttLearuWrP9MDH5MBPbIqV92AaeXatLxBI9gBaebbfv3ySLgzGueE0jxyaibaieYdOi=BH8vipeYdI8qiW7rqqrFfpeea0xe9Lq=Jc9vqaqpepm0xbbG8FasPYRqj0=yi0lXdbba9pGe9qqFf0dXdHuk9fr=xfr=xfrpiWZqaaeaabiGaaiaacaqabeaabeqacmaaaOqaauaabaqadmaaaeaacqWGwbGvdaWgaaWcbaGaemiraqKaemiraqeabeaaaOqaaiabg2da9aqaamaaqafabaGaeiikaGIaemizaqMaemizaqMaeiykaKYaa0baaSqaaiabdkhaYjabdohaZbqaaiabikdaYaaaaeaacqWGYbGCcqGH8aapcqWGZbWCaeqaniabggHiLdGcdaGadaqaamaadmaabaGaeiikaGIaeGymaeJaeyOeI0IaeGOmaiJaemiCaa3aaSbaaSqaaiabdkhaYbqabaGccqGGPaqkcqGGOaakcqaIXaqmcqGHsislcqaIYaGmcqWGWbaCdaWgaaWcbaGaem4CamhabeaakiabcMcaPiabdseaenaaBaaaleaacqWGYbGCcqWGZbWCaeqaaOGaey4kaSIaemiCaa3aaSbaaSqaaiabdkhaYbqabaGccqGGOaakcqaIXaqmcqGHsislcqWGWbaCdaWgaaWcbaGaemOCaihabeaakiabcMcaPiabdchaWnaaBaaaleaacqWGZbWCaeqaaOGaeiikaGIaeGymaeJaeyOeI0IaemiCaa3aaSbaaSqaaiabdohaZbqabaGccqGGPaqkaiaawUfacaGLDbaadaahaaWcbeqaaiabikdaYaaakiabgkHiTiabdseaenaaDaaaleaacqWGYbGCcqWGZbWCaeaacqaI0aanaaaakiaawUhacaGL9baaaeaaaeaaaeaacqGHRaWkdaaeqbqaaiabcIcaOiabdsgaKjabdsgaKjabcMcaPmaaBaaaleaacqWGYbGCcqWGZbWCaeqaaOGaeiikaGIaemizaqMaemizaqMaeiykaKYaaSbaaSqaaiabdkhaYjabdohaZjabcEcaNaqabaaabaGaemOCaiNaeyiyIKRaem4CamNaeyiyIKRaem4CamNaei4jaCcabeqdcqGHris5aOWaaiWaaeaadaWadaqaaiabcIcaOiabigdaXiabgkHiTiabikdaYiabdchaWnaaBaaaleaacqWGYbGCaeqaaOGaeiykaKIaemiraq0aaSbaaSqaaiabdkhaYjabdohaZjabdohaZjabcEcaNaqabaGccqGHRaWkcqWGWbaCdaWgaaWcbaGaemOCaihabeaakiabcIcaOiabigdaXiabgkHiTiabdchaWnaaBaaaleaacqWGYbGCaeqaaOGaeiykaKIaemiraq0aaSbaaSqaaiabdohaZjabdohaZjabcEcaNaqabaaakiaawUfacaGLDbaadaahaaWcbeqaaiabikdaYaaakiabgkHiTiabdseaenaaDaaaleaacqWGYbGCcqWGZbWCaeaacqaIYaGmaaGccqWGebardaqhaaWcbaGaemOCaiNaem4CamNaei4jaCcabaGaeGOmaidaaaGccaGL7bGaayzFaaaabaaabaaabaGaey4kaSYaaSaaaeaacqaIXaqmaeaacqaI0aanaaWaaabuaeaacqGGOaakcqWGKbazcqWGKbazcqGGPaqkdaWgaaWcbaGaemOCaiNaem4CamhabeaakiabcIcaOiabdsgaKjabdsgaKjabcMcaPmaaBaaaleaacqWGYbGCcqGGNaWjcqWGZbWCcqGGNaWjaeqaaaqaaiabdkhaYjabgcMi5kabdohaZjabgcMi5kabdkhaYjabcEcaNiabgcMi5kabdohaZjabcEcaNaqab0GaeyyeIuoakiabcIcaOiabdseaenaaDaaaleaacqWGYbGCcqWGZbWCcqWGYbGCcqGGNaWjcqWGZbWCcqGGNaWjaeaacqaIYaGmaaGccqGHsislcqWGebardaqhaaWcbaGaemOCaiNaem4CamhabaGaeGOmaidaaOGaemiraq0aa0baaSqaaiabdkhaYjabcEcaNiabdohaZjabcEcaNaqaaiabikdaYaaakiabcMcaPaaaaaa@F856@

• The covariances:

Cov ( A , D ) = 0 Cov ( A , A A ) = 2 r < s ( a a ) r s D r s [ ( 1 2 p r ) a r + ( 1 2 p s ) a s ] + r s r ' a r ' ( a a ) r s D r ' r s Cov ( A , A D ) = 2 r s a r D r s [ ( a d ) r s D r s + p r ( 1 p r ) ( a d ) s r ] + 2 r s r ' a r ' ( a d ) r s D r s D r ' s Cov ( A , D D ) = 2 r < s ( d d ) r s D r s 2 [ ( 1 2 p r ) a r + ( 1 2 p s ) a s ] + 2 r s r ' a r ' ( d d ) r s D r s r ' D r s Cov ( D , A A ) = 2 r < s ( a a ) r s D r s [ p r ( 1 p r ) d r + p s ( 1 p s ) d s ] + 2 r s r ' d r ' ( a a ) r s D r r ' D r ' s Cov ( D , A D ) = 2 r s d r D r s ( 1 2 p r ) [ D r s ( a d ) r s + p r ( 1 p r ) ( a d ) s r ] + 2 r s r ' d r ' ( a d ) r s D r ' r s D r ' s C o v ( D , D D ) = r < s ( d d ) r s D r s 2 [ ( 1 2 p r ) 2 d r + ( 1 2 p s ) 2 d s ] + 2 r s r ' d r ' ( d d ) r s D r ' r s 2 Cov ( A A , A D ) = 2 r < s ( a a ) r s D r s { ( a d ) r s [ ( 1 2 p r ) p s ( 1 p s ) + 2 ( 1 2 p s ) D r s ] + ( a d ) s r [ ( 1 2 p s ) p r ( 1 p r ) + 2 ( 1 2 p r ) D r s ] } + 2 r s s ' ( a a ) r s { ( a d ) s s ' [ ( 1 2 p s ) D s s ' D r s ' + 2 D r s s ' D s s ' ] + ( a d ) s ' s [ 2 ( 1 2 p s ) D r s D s s ' + p s ( 1 p s ) D r s s ' ] } + r s r ' s ' ( a a ) r s ( a d ) r ' s ' ( D r s s ' D r ' s + D r r ' s ' D s s ' + D r ' s s ' D r s ' ) Cov ( A A , D D ) = 2 r < s ( a a ) r s ( d d ) r s [ 2 ( 1 2 p r ) ( 1 2 p s ) D r s 2 + p r ( 1 p r ) p s ( 1 p s ) D r s D r s 3 ] + 2 r s s ' ( a a ) r s ( d d ) r s ' [ 2 ( 1 2 p r ) D r s s ' D r s ' + p r ( 1 p r ) D r s ' D s s ' D r s D r s ' 2 ] + 1 2 r s r ' s ' ( a a ) r s ( d d ) r ' s ' ( D r s r ' s ' D r ' s ' + D r r ' s ' D s r ' s ' D r s D r ' s ' 2 ) Cov ( A D , D D ) = 2 r s ( a d ) r s ( d d ) r s D r s ( 1 2 p s ) [ ( 1 2 p r ) ( 1 2 p s ) D r s + p r ( 1 p r ) p s ( 1 p s ) ] + 2 r s s ' ( a d ) r s { ( d d ) r s ' D r s s ' [ ( 1 2 p r ) D r s s ' + p r ( 1 p r ) D s s ' ] + ( d d ) s s ' D s s ' ( 1 2 p s ) [ ( 1 2 p s ) D r s s ' + p s ( 1 p s ) D r s ' ] } + r s r ' s ' ( a d ) r s ( d d ) r ' s ' D r s s ' D r s r ' s ' MathType@MTEF@5@5@+=feaafiart1ev1aaatCvAUfKttLearuWrP9MDH5MBPbIqV92AaeXatLxBI9gBaebbnrfifHhDYfgasaacH8akY=wiFfYdH8Gipec8Eeeu0xXdbba9frFj0=OqFfea0dXdd9vqai=hGuQ8kuc9pgc9s8qqaq=dirpe0xb9q8qiLsFr0=vr0=vr0dc8meaabaqaciaacaGaaeqabaqabeGadaaakeaafaqaaeWedaaaaaaaaeaacqqGdbWqcqqGVbWBcqqG2bGDcqGGOaakcqWGbbqqcqGGSaalcqWGebarcqGGPaqkaeaacqGH9aqpaeaacqaIWaamaeaacqqGdbWqcqqGVbWBcqqG2bGDcqGGOaakcqWGbbqqcqGGSaalcqWGbbqqcqWGbbqqcqGGPaqkaeaacqGH9aqpaeaacqaIYaGmdaaeqbqaaiabcIcaOiabdggaHjabdggaHjabcMcaPmaaBaaaleaacqWGYbGCcqWGZbWCaeqaaOGaemiraq0aaSbaaSqaaiabdkhaYjabdohaZbqabaaabaGaemOCaiNaeyipaWJaem4CamhabeqdcqGHris5aOWaamWaaeaacqGGOaakcqaIXaqmcqGHsislcqaIYaGmcqWGWbaCdaWgaaWcbaGaemOCaihabeaakiabcMcaPiabdggaHnaaBaaaleaacqWGYbGCaeqaaOGaey4kaSIaeiikaGIaeGymaeJaeyOeI0IaeGOmaiJaemiCaa3aaSbaaSqaaiabdohaZbqabaGccqGGPaqkcqWGHbqydaWgaaWcbaGaem4CamhabeaaaOGaay5waiaaw2faaiabgUcaRmaaqafabaGaemyyae2aaSbaaSqaaiabdkhaYjabcEcaNaqabaGccqGGOaakcqWGHbqycqWGHbqycqGGPaqkdaWgaaWcbaGaemOCaiNaem4CamhabeaakiabdseaenaaBaaaleaacqWGYbGCcqGGNaWjcqWGYbGCcqWGZbWCaeqaaaqaaiabdkhaYjabgcMi5kabdohaZjabgcMi5kabdkhaYjabcEcaNaqab0GaeyyeIuoaaOqaaiabboeadjabb+gaVjabbAha2jabcIcaOiabdgeabjabcYcaSiabdgeabjabdseaejabcMcaPaqaaiabg2da9aqaaiabikdaYmaaqafabaGaemyyae2aaSbaaSqaaiabdkhaYbqabaGccqWGebardaWgaaWcbaGaemOCaiNaem4CamhabeaakmaadmaabaGaeiikaGIaemyyaeMaemizaqMaeiykaKYaaSbaaSqaaiabdkhaYjabdohaZbqabaGccqWGebardaWgaaWcbaGaemOCaiNaem4CamhabeaakiabgUcaRiabdchaWnaaBaaaleaacqWGYbGCaeqaaOGaeiikaGIaeGymaeJaeyOeI0IaemiCaa3aaSbaaSqaaiabdkhaYbqabaGccqGGPaqkcqGGOaakcqWGHbqycqWGKbazcqGGPaqkdaWgaaWcbaGaem4CamNaemOCaihabeaaaOGaay5waiaaw2faaaWcbaGaemOCaiNaeyiyIKRaem4CamhabeqdcqGHris5aOGaey4kaSIaeGOmaiZaaabuaeaacqWGHbqydaWgaaWcbaGaemOCaiNaei4jaCcabeaakiabcIcaOiabdggaHjabdsgaKjabcMcaPmaaBaaaleaacqWGYbGCcqWGZbWCaeqaaOGaemiraq0aaSbaaSqaaiabdkhaYjabdohaZbqabaGccqWGebardaWgaaWcbaGaemOCaiNaei4jaCIaem4CamhabeaaaeaacqWGYbGCcqGHGjsUcqWGZbWCcqGHGjsUcqWGYbGCcqGGNaWjaeqaniabggHiLdaakeaacqqGdbWqcqqGVbWBcqqG2bGDcqGGOaakcqWGbbqqcqGGSaalcqWGebarcqWGebarcqGGPaqkaeaacqGH9aqpaeaacqaIYaGmdaaeqbqaaiabcIcaOiabdsgaKjabdsgaKjabcMcaPmaaBaaaleaacqWGYbGCcqWGZbWCaeqaaOGaemiraq0aa0baaSqaaiabdkhaYjabdohaZbqaaiabikdaYaaakmaadmaabaGaeiikaGIaeGymaeJaeyOeI0IaeGOmaiJaemiCaa3aaSbaaSqaaiabdkhaYbqabaGccqGGPaqkcqWGHbqydaWgaaWcbaGaemOCaihabeaakiabgUcaRiabcIcaOiabigdaXiabgkHiTiabikdaYiabdchaWnaaBaaaleaacqWGZbWCaeqaaOGaeiykaKIaemyyae2aaSbaaSqaaiabdohaZbqabaaakiaawUfacaGLDbaaaSqaaiabdkhaYjabgYda8iabdohaZbqab0GaeyyeIuoakiabgUcaRiabikdaYmaaqafabaGaemyyae2aaSbaaSqaaiabdkhaYjabcEcaNaqabaGccqGGOaakcqWGKbazcqWGKbazcqGGPaqkdaWgaaWcbaGaemOCaiNaem4CamhabeaakiabdseaenaaBaaaleaacqWGYbGCcqWGZbWCcqWGYbGCcqGGNaWjaeqaaOGaemiraq0aaSbaaSqaaiabdkhaYjabdohaZbqabaaabaGaemOCaiNaeyiyIKRaem4CamNaeyiyIKRaemOCaiNaei4jaCcabeqdcqGHris5aaGcbaGaee4qamKaee4Ba8MaeeODayNaeiikaGIaemiraqKaeiilaWIaemyqaeKaemyqaeKaeiykaKcabaGaeyypa0dabaGaeGOmaiZaaabuaeaacqGGOaakcqWGHbqycqWGHbqycqGGPaqkdaWgaaWcbaGaemOCaiNaem4CamhabeaakiabdseaenaaBaaaleaacqWGYbGCcqWGZbWCaeqaaaqaaiabdkhaYjabgYda8iabdohaZbqab0GaeyyeIuoakmaadmaabaGaemiCaa3aaSbaaSqaaiabdkhaYbqabaGccqGGOaakcqaIXaqmcqGHsislcqWGWbaCdaWgaaWcbaGaemOCaihabeaakiabcMcaPiabdsgaKnaaBaaaleaacqWGYbGCaeqaaOGaey4kaSIaemiCaa3aaSbaaSqaaiabdohaZbqabaGccqGGOaakcqaIXaqmcqGHsislcqWGWbaCdaWgaaWcbaGaem4CamhabeaakiabcMcaPiabdsgaKnaaBaaaleaacqWGZbWCaeqaaaGccaGLBbGaayzxaaGaey4kaSIaeGOmaiZaaabuaeaacqWGKbazdaWgaaWcbaGaemOCaiNaei4jaCcabeaakiabcIcaOiabdggaHjabdggaHjabcMcaPmaaBaaaleaacqWGYbGCcqWGZbWCaeqaaOGaemiraq0aaSbaaSqaaiabdkhaYjabdkhaYjabcEcaNaqabaGccqWGebardaWgaaWcbaGaemOCaiNaei4jaCIaem4CamhabeaaaeaacqWGYbGCcqGHGjsUcqWGZbWCcqGHGjsUcqWGYbGCcqGGNaWjaeqaniabggHiLdaakeaacqqGdbWqcqqGVbWBcqqG2bGDcqGGOaakcqWGebarcqGGSaalcqWGbbqqcqWGebarcqGGPaqkaeaacqGH9aqpaeaacqaIYaGmdaaeqbqaaiabdsgaKnaaBaaaleaacqWGYbGCaeqaaOGaemiraq0aaSbaaSqaaiabdkhaYjabdohaZbqabaaabaGaemOCaiNaeyiyIKRaem4CamhabeqdcqGHris5aOGaeiikaGIaeGymaeJaeyOeI0IaeGOmaiJaemiCaa3aaSbaaSqaaiabdkhaYbqabaGccqGGPaqkdaWadaqaaiabdseaenaaBaaaleaacqWGYbGCcqWGZbWCaeqaaOGaeiikaGIaemyyaeMaemizaqMaeiykaKYaaSbaaSqaaiabdkhaYjabdohaZbqabaGccqGHRaWkcqWGWbaCdaWgaaWcbaGaemOCaihabeaakiabcIcaOiabigdaXiabgkHiTiabdchaWnaaBaaaleaacqWGYbGCaeqaaOGaeiykaKIaeiikaGIaemyyaeMaemizaqMaeiykaKYaaSbaaSqaaiabdohaZjabdkhaYbqabaaakiaawUfacaGLDbaacqGHRaWkcqaIYaGmdaaeqbqaaiabdsgaKnaaBaaaleaacqWGYbGCcqGGNaWjaeqaaOGaeiikaGIaemyyaeMaemizaqMaeiykaKYaaSbaaSqaaiabdkhaYjabdohaZbqabaGccqWGebardaWgaaWcbaGaemOCaiNaei4jaCIaemOCaiNaem4CamhabeaakiabdseaenaaBaaaleaacqWGYbGCcqGGNaWjcqWGZbWCaeqaaaqaaiabdkhaYjabgcMi5kabdohaZjabgcMi5kabdkhaYjabcEcaNaqab0GaeyyeIuoaaOqaaGqaaiab=neadjab=9gaVjab=zha2jabcIcaOiabdseaejabcYcaSiabdseaejabdseaejabcMcaPaqaaiabg2da9aqaamaaqafabaGaeiikaGIaemizaqMaemizaqMaeiykaKYaaSbaaSqaaiabdkhaYjabdohaZbqabaGccqWGebardaqhaaWcbaGaemOCaiNaem4CamhabaGaeGOmaidaaaqaaiabdkhaYjabgYda8iabdohaZbqab0GaeyyeIuoakmaadmaabaGaeiikaGIaeGymaeJaeyOeI0IaeGOmaiJaemiCaa3aaSbaaSqaaiabdkhaYbqabaGccqGGPaqkdaahaaWcbeqaaiabikdaYaaakiabdsgaKnaaBaaaleaacqWGYbGCaeqaaOGaey4kaSIaeiikaGIaeGymaeJaeyOeI0IaeGOmaiJaemiCaa3aaSbaaSqaaiabdohaZbqabaGccqGGPaqkdaahaaWcbeqaaiabikdaYaaakiabdsgaKnaaBaaaleaacqWGZbWCaeqaaaGccaGLBbGaayzxaaGaey4kaSIaeGOmaiZaaabuaeaacqWGKbazdaWgaaWcbaGaemOCaiNaei4jaCcabeaakiabcIcaOiabdsgaKjabdsgaKjabcMcaPmaaBaaaleaacqWGYbGCcqWGZbWCaeqaaOGaemiraq0aa0baaSqaaiabdkhaYjabcEcaNiabdkhaYjabdohaZbqaaiabikdaYaaaaeaacqWGYbGCcqGHGjsUcqWGZbWCcqGHGjsUcqWGYbGCcqGGNaWjaeqaniabggHiLdaakeaacqqGdbWqcqqGVbWBcqqG2bGDcqGGOaakcqWGbbqqcqWGbbqqcqGGSaalcqWGbbqqcqWGebarcqGGPaqkaeaacqGH9aqpaeaacqaIYaGmdaaeqbqaaiabcIcaOiabdggaHjabdggaHjabcMcaPmaaBaaaleaacqWGYbGCcqWGZbWCaeqaaOGaemiraq0aaSbaaSqaaiabdkhaYjabdohaZbqabaaabaGaemOCaiNaeyipaWJaem4CamhabeqdcqGHris5aOWaaiqaaeaacqGGOaakcqWGHbqycqWGKbazcqGGPaqkdaWgaaWcbaGaemOCaiNaem4CamhabeaakmaadmaabaGaeiikaGIaeGymaeJaeyOeI0IaeGOmaiJaemiCaa3aaSbaaSqaaiabdkhaYbqabaGccqGGPaqkcqWGWbaCdaWgaaWcbaGaem4CamhabeaakiabcIcaOiabigdaXiabgkHiTiabdchaWnaaBaaaleaacqWGZbWCaeqaaOGaeiykaKIaey4kaSIaeGOmaiJaeiikaGIaeGymaeJaeyOeI0IaeGOmaiJaemiCaa3aaSbaaSqaaiabdohaZbqabaGccqGGPaqkcqWGebardaWgaaWcbaGaemOCaiNaem4CamhabeaaaOGaay5waiaaw2faaaGaay5EaaaabaaabaaabaWaaiGaaeaacqGHRaWkcqGGOaakcqWGHbqycqWGKbazcqGGPaqkdaWgaaWcbaGaem4CamNaemOCaihabeaakmaadmaabaGaeiikaGIaeGymaeJaeyOeI0IaeGOmaiJaemiCaa3aaSbaaSqaaiabdohaZbqabaGccqGGPaqkcqWGWbaCdaWgaaWcbaGaemOCaihabeaakiabcIcaOiabigdaXiabgkHiTiabdchaWnaaBaaaleaacqWGYbGCaeqaaOGaeiykaKIaey4kaSIaeGOmaiJaeiikaGIaeGymaeJaeyOeI0IaeGOmaiJaemiCaa3aaSbaaSqaaiabdkhaYbqabaGccqGGPaqkcqWGebardaWgaaWcbaGaemOCaiNaem4CamhabeaaaOGaay5waiaaw2faaaGaayzFaaaabaaabaaabaGaey4kaSIaeGOmaiZaaabuaeaacqGGOaakcqWGHbqycqWGHbqycqGGPaqkdaWgaaWcbaGaemOCaiNaem4CamhabeaaaeaacqWGYbGCcqGHGjsUcqWGZbWCcqGHGjsUcqWGZbWCcqGGNaWjaeqaniabggHiLdGcdaGabaqaaiabcIcaOiabdggaHjabdsgaKjabcMcaPmaaBaaaleaacqWGZbWCcqWGZbWCcqGGNaWjaeqaaaGccaGL7baadaWadaqaaiabcIcaOiabigdaXiabgkHiTiabikdaYiabdchaWnaaBaaaleaacqWGZbWCaeqaaOGaeiykaKIaemiraq0aaSbaaSqaaiabdohaZjabdohaZjabcEcaNaqabaGccqWGebardaWgaaWcbaGaemOCaiNaem4CamNaei4jaCcabeaakiabgUcaRiabikdaYiabdseaenaaBaaaleaacqWGYbGCcqWGZbWCcqWGZbWCcqGGNaWjaeqaaOGaemiraq0aaSbaaSqaaiabdohaZjabdohaZjabcEcaNaqabaaakiaawUfacaGLDbaaaeaaaeaaaeaadaGacaqaaiabgUcaRiabcIcaOiabdggaHjabdsgaKjabcMcaPmaaBaaaleaacqWGZbWCcqGGNaWjcqWGZbWCaeqaaOWaamWaaeaacqaIYaGmcqGGOaakcqaIXaqmcqGHsislcqaIYaGmcqWGWbaCdaWgaaWcbaGaem4CamhabeaakiabcMcaPiabdseaenaaBaaaleaacqWGYbGCcqWGZbWCaeqaaOGaemiraq0aaSbaaSqaaiabdohaZjabdohaZjabcEcaNaqabaGccqGHRaWkcqWGWbaCdaWgaaWcbaGaem4CamhabeaakiabcIcaOiabigdaXiabgkHiTiabdchaWnaaBaaaleaacqWGZbWCaeqaaOGaeiykaKIaemiraq0aaSbaaSqaaiabdkhaYjabdohaZjabdohaZjabcEcaNaqabaaakiaawUfacaGLDbaaaiaaw2haaaqaaaqaaaqaaiabgUcaRmaaqafabaGaeiikaGIaemyyaeMaemyyaeMaeiykaKYaaSbaaSqaaiabdkhaYjabdohaZbqabaGccqGGOaakcqWGHbqycqWGKbazcqGGPaqkdaWgaaWcbaGaemOCaiNaei4jaCIaem4CamNaei4jaCcabeaakiabcIcaOiabdseaenaaBaaaleaacqWGYbGCcqWGZbWCcqWGZbWCcqGGNaWjaeqaaOGaemiraq0aaSbaaSqaaiabdkhaYjabcEcaNiabdohaZbqabaGccqGHRaWkcqWGebardaWgaaWcbaGaemOCaiNaemOCaiNaei4jaCIaem4CamNaei4jaCcabeaakiabdseaenaaBaaaleaacqWGZbWCcqWGZbWCcqGGNaWjaeqaaOGaey4kaSIaemiraq0aaSbaaSqaaiabdkhaYjabcEcaNiabdohaZjabdohaZjabcEcaNaqabaGccqWGebardaWgaaWcbaGaemOCaiNaem4CamNaei4jaCcabeaakiabcMcaPaWcbaGaemOCaiNaeyiyIKRaem4CamNaeyiyIKRaemOCaiNaei4jaCIaeyiyIKRaem4CamNaei4jaCcabeqdcqGHris5aaGcbaGaee4qamKaee4Ba8MaeeODayNaeiikaGIaemyqaeKaemyqaeKaeiilaWIaemiraqKaemiraqKaeiykaKcabaGaeyypa0dabaGaeGOmaiZaaabuaeaacqGGOaakcqWGHbqycqWGHbqycqGGPaqkdaWgaaWcbaGaemOCaiNaem4CamhabeaakiabcIcaOiabdsgaKjabdsgaKjabcMcaPmaaBaaaleaacqWGYbGCcqWGZbWCaeqaaaqaaiabdkhaYjabgYda8iabdohaZbqab0GaeyyeIuoakmaadmaabaGaeGOmaiJaeiikaGIaeGymaeJaeyOeI0IaeGOmaiJaemiCaa3aaSbaaSqaaiabdkhaYbqabaGccqGGPaqkcqGGOaakcqaIXaqmcqGHsislcqaIYaGmcqWGWbaCdaWgaaWcbaGaem4CamhabeaakiabcMcaPiabdseaenaaDaaaleaacqWGYbGCcqWGZbWCaeaacqaIYaGmaaGccqGHRaWkcqWGWbaCdaWgaaWcbaGaemOCaihabeaakiabcIcaOiabigdaXiabgkHiTiabdchaWnaaBaaaleaacqWGYbGCaeqaaOGaeiykaKIaemiCaa3aaSbaaSqaaiabdohaZbqabaGccqGGOaakcqaIXaqmcqGHsislcqWGWbaCdaWgaaWcbaGaem4CamhabeaakiabcMcaPiabdseaenaaBaaaleaacqWGYbGCcqWGZbWCaeqaaOGaeyOeI0Iaemiraq0aa0baaSqaaiabdkhaYjabdohaZbqaaiabiodaZaaaaOGaay5waiaaw2faaaqaaaqaaaqaaiabgUcaRiabikdaYmaaqafabaGaeiikaGIaemyyaeMaemyyaeMaeiykaKYaaSbaaSqaaiabdkhaYjabdohaZbqabaGccqGGOaakcqWGKbazcqWGKbazcqGGPaqkdaWgaaWcbaGaemOCaiNaem4CamNaei4jaCcabeaaaeaacqWGYbGCcqGHGjsUcqWGZbWCcqGHGjsUcqWGZbWCcqGGNaWjaeqaniabggHiLdGcdaWadaqaaiabikdaYiabcIcaOiabigdaXiabgkHiTiabikdaYiabdchaWnaaBaaaleaacqWGYbGCaeqaaOGaeiykaKIaemiraq0aaSbaaSqaaiabdkhaYjabdohaZjabdohaZjabcEcaNaqabaGccqWGebardaWgaaWcbaGaemOCaiNaem4CamNaei4jaCcabeaakiabgUcaRiabdchaWnaaBaaaleaacqWGYbGCaeqaaOGaeiikaGIaeGymaeJaeyOeI0IaemiCaa3aaSbaaSqaaiabdkhaYbqabaGccqGGPaqkcqWGebardaWgaaWcbaGaemOCaiNaem4CamNaei4jaCcabeaakiabdseaenaaBaaaleaacqWGZbWCcqWGZbWCcqGGNaWjaeqaaOGaeyOeI0Iaemiraq0aaSbaaSqaaiabdkhaYjabdohaZbqabaGccqWGebardaqhaaWcbaGaemOCaiNaem4CamNaei4jaCcabaGaeGOmaidaaaGccaGLBbGaayzxaaaabaaabaaabaGaey4kaSYaaSaaaeaacqaIXaqmaeaacqaIYaGmaaWaaabuaeaacqGGOaakcqWGHbqycqWGHbqycqGGPaqkdaWgaaWcbaGaemOCaiNaem4CamhabeaakiabcIcaOiabdsgaKjabdsgaKjabcMcaPmaaBaaaleaacqWGYbGCcqGGNaWjcqWGZbWCcqGGNaWjaeqaaOGaeiikaGIaemiraq0aaSbaaSqaaiabdkhaYjabdohaZjabdkhaYjabcEcaNiabdohaZjabcEcaNaqabaGccqWGebardaWgaaWcbaGaemOCaiNaei4jaCIaem4CamNaei4jaCcabeaakiabgUcaRiabdseaenaaBaaaleaacqWGYbGCcqWGYbGCcqGGNaWjcqWGZbWCcqGGNaWjaeqaaOGaemiraq0aaSbaaSqaaiabdohaZjabdkhaYjabcEcaNiabdohaZjabcEcaNaqabaGccqGHsislcqWGebardaWgaaWcbaGaemOCaiNaem4CamhabeaakiabdseaenaaDaaaleaacqWGYbGCcqGGNaWjcqWGZbWCcqGGNaWjaeaacqaIYaGmaaGccqGGPaqkaSqaaiabdkhaYjabgcMi5kabdohaZjabgcMi5kabdkhaYjabcEcaNiabgcMi5kabdohaZjabcEcaNaqab0GaeyyeIuoaaOqaaiabboeadjabb+gaVjabbAha2jabcIcaOiabdgeabjabdseaejabcYcaSiabdseaejabdseaejabcMcaPaqaaiabg2da9aqaaiabikdaYmaaqafabaGaeiikaGIaemyyaeMaemizaqMaeiykaKYaaSbaaSqaaiabdkhaYjabdohaZbqabaGccqGGOaakcqWGKbazcqWGKbazcqGGPaqkdaWgaaWcbaGaemOCaiNaem4CamhabeaakiabdseaenaaBaaaleaacqWGYbGCcqWGZbWCaeqaaOGaeiikaGIaeGymaeJaeyOeI0IaeGOmaiJaemiCaa3aaSbaaSqaaiabdohaZbqabaGccqGGPaqkdaWadaqaaiabcIcaOiabigdaXiabgkHiTiabikdaYiabdchaWnaaBaaaleaacqWGYbGCaeqaaOGaeiykaKIaeiikaGIaeGymaeJaeyOeI0IaeGOmaiJaemiCaa3aaSbaaSqaaiabdohaZbqabaGccqGGPaqkcqWGebardaWgaaWcbaGaemOCaiNaem4CamhabeaakiabgUcaRiabdchaWnaaBaaaleaacqWGYbGCaeqaaOGaeiikaGIaeGymaeJaeyOeI0IaemiCaa3aaSbaaSqaaiabdkhaYbqabaGccqGGPaqkcqWGWbaCdaWgaaWcbaGaem4CamhabeaakiabcIcaOiabigdaXiabgkHiTiabdchaWnaaBaaaleaacqWGZbWCaeqaaOGaeiykaKcacaGLBbGaayzxaaaaleaacqWGYbGCcqGHGjsUcqWGZbWCaeqaniabggHiLdaakeaaaeaaaeaacqGHRaWkcqaIYaGmdaaeqbqaaiabcIcaOiabdggaHjabdsgaKjabcMcaPmaaBaaaleaacqWGYbGCcqWGZbWCaeqaaOWaaiqaaeaacqGGOaakcqWGKbazcqWGKbazcqGGPaqkdaWgaaWcbaGaemOCaiNaem4CamNaei4jaCcabeaaaOGaay5EaaGaemiraq0aaSbaaSqaaiabdkhaYjabdohaZjabdohaZjabcEcaNaqabaGcdaWadaqaaiabcIcaOiabigdaXiabgkHiTiabikdaYiabdchaWnaaBaaaleaacqWGYbGCaeqaaOGaeiykaKIaemiraq0aaSbaaSqaaiabdkhaYjabdohaZjabdohaZjabcEcaNaqabaGccqGHRaWkcqWGWbaCdaWgaaWcbaGaemOCaihabeaakiabcIcaOiabigdaXiabgkHiTiabdchaWnaaBaaaleaacqWGYbGCaeqaaOGaeiykaKIaemiraq0aaSbaaSqaaiabdohaZjabdohaZjabcEcaNaqabaaakiaawUfacaGLDbaaaSqaaiabdkhaYjabgcMi5kabdohaZjabgcMi5kabdohaZjabcEcaNaqab0GaeyyeIuoaaOqaaaqaaaqaamaaciaabaGaey4kaSIaeiikaGIaemizaqMaemizaqMaeiykaKYaaSbaaSqaaiabdohaZjabdohaZjabcEcaNaqabaGccqWGebardaWgaaWcbaGaem4CamNaem4CamNaei4jaCcabeaakiabcIcaOiabigdaXiabgkHiTiabikdaYiabdchaWnaaBaaaleaacqWGZbWCaeqaaOGaeiykaKYaamWaaeaacqGGOaakcqaIXaqmcqGHsislcqaIYaGmcqWGWbaCdaWgaaWcbaGaem4CamhabeaakiabcMcaPiabdseaenaaBaaaleaacqWGYbGCcqWGZbWCcqWGZbWCcqGGNaWjaeqaaOGaey4kaSIaemiCaa3aaSbaaSqaaiabdohaZbqabaGccqGGOaakcqaIXaqmcqGHsislcqWGWbaCdaWgaaWcbaGaem4CamhabeaakiabcMcaPiabdseaenaaBaaaleaacqWGYbGCcqWGZbWCcqGGNaWjaeqaaaGccaGLBbGaayzxaaaacaGL9baaaeaaaeaaaeaacqGHRaWkdaaeqbqaaiabcIcaOiabdggaHjabdsgaKjabcMcaPmaaBaaaleaacqWGYbGCcqWGZbWCaeqaaOGaeiikaGIaemizaqMaemizaqMaeiykaKYaaSbaaSqaaiabdkhaYjabcEcaNiabdohaZjabcEcaNaqabaGccqWGebardaWgaaWcbaGaemOCaiNaem4CamNaem4CamNaei4jaCcabeaakiabdseaenaaBaaaleaacqWGYbGCcqWGZbWCcqWGYbGCcqGGNaWjcqWGZbWCcqGGNaWjaeqaaaqaaiabdkhaYjabgcMi5kabdohaZjabgcMi5kabdkhaYjabcEcaNiabgcMi5kabdohaZjabcEcaNaqab0GaeyyeIuoaaaaaaa@6B5E@

where (aa) sr = (aa) rs and (dd) sr = (dd) rs for r <s.

The result in Appendix D for the F2 model with p r = 1/2 for r = 1, ..., m and also assuming Drss'= 0 is a special case of the results presented here. There is a difference, by a factor -2, on the specification of v variable for dominance effect for the F2 model and the general two-allele model, which carries over to the comparison of results in Appendix D and E.