1 Introduction

Suppose that p>1, 1 p + 1 q =1, f(x),g(y)0, f L p ( R + ), g L q ( R + ), f p = { 0 f p ( x ) d x } 1 p >0, g q >0. We have the following Hardy-Hilbert integral inequality (cf. [1]):

0 0 f ( x ) g ( y ) x + y dxdy< π sin ( π / p ) f p g q ,
(1)

where the constant factor π sin ( π / p ) is the best possible. Assuming that a m , b n 0, a= { a m } m = 1 l p , b= { b n } n = 1 l q , a p = { m = 1 a m p } 1 p >0, b q >0, we have the following Hardy-Hilbert inequality with the same best constant π sin ( π / p ) (cf. [1]):

m = 1 n = 1 a m b n m + n < π sin ( π / p ) a p b q .
(2)

Inequalities (1) and (2) are important in analysis and its applications (cf. [16]). Also we have the following Mulholland inequality (cf. [1]):

m = 2 n = 2 a m b n ln m n < π sin ( π / p ) { m = 2 a m p m 1 p } 1 p { n = 2 b n q n 1 q } 1 q .
(3)

In 1998, by introducing an independent parameter λ(0,1], Yang [7] gave an extension of (1) for p=q=2. Yang [5] gave some extensions of (1) and (2) as follows: If λ 1 , λ 2 ,λR, λ 1 + λ 2 =λ, k λ (x,y) is a non-negative homogeneous function of degree −λ, with

k( λ 1 )= 0 k λ (t,1) t λ 1 1 dt R + ,

ϕ(x)= x p ( 1 λ 1 ) 1 , ψ(x)= x q ( 1 λ 2 ) 1 , f(x),g(y)0,

f L p , ϕ ( R + )= { f ; f p , ϕ : = { 0 ϕ ( x ) | f ( x ) | p d x } 1 p < } ,

g L q , ψ ( R + ), f p , ϕ , g q , ψ >0, then

0 0 k λ (x,y)f(x)g(y)dxdy<k( λ 1 ) f p , ϕ g q , ψ ,
(4)

where the constant factor k( λ 1 ) is the best possible. Moreover, if k λ (x,y) is finite and k λ (x,y) x λ 1 1 ( k λ (x,y) y λ 2 1 ) is decreasing with respect to x>0 (y>0), then for a m , b n 0,

a l p , ϕ = { a ; a p , ϕ : = { n = 1 ϕ ( n ) | a n | p } 1 p < } ,

b= { b n } n = 1 l q , ψ , a p , ϕ , b q , ψ >0, it follows that

m = 1 n = 1 k λ (m,n) a m b n <k( λ 1 ) a p , ϕ b q , ψ ,
(5)

where the constant factor k( λ 1 ) is still the best possible.

Clearly, for λ=1, k 1 (x,y)= 1 x + y , λ 1 = 1 q , λ 2 = 1 p , inequality (3) reduces to (1), while (5) reduces to (2). Some other results including the multidimensional Hilbert-type integral inequalities are provided by [824].

About half-discrete Hilbert-type inequalities with the non-homogeneous kernels, Hardy et al. provided a few results in Theorem 351 of [1]. But they did not prove that the constant factors are the best possible. However, Yang [25] gave a result with the kernel 1 ( 1 + n x ) λ (0<λ2) by introducing a variable and proved that the constant factor is the best possible. In 2011 Yang [26] gave a half-discrete Hardy-Hilbert inequality with the best possible constant factor. Zhong et al. [2733] investigated several half-discrete Hilbert-type inequalities with particular kernels. Using the way of weight functions and the techniques of discrete and integral Hilbert-type inequalities with some additional conditions on the kernel, a half-discrete Hilbert-type inequality with a general homogeneous kernel of degree λR and a best constant factor k( λ 1 ) is obtained as follows:

0 f(x) n = 1 k λ (x,n) a n dx<k( λ 1 ) f p , ϕ a q , ψ
(6)

(see Yang and Chen [34]). At the same time, a half-discrete Hilbert-type inequality with a general non-homogeneous kernel and the best constant factor is given by Yang [35].

In this paper, by using the way of weight coefficients and technique of real analysis, a more accurate multidimensional discrete Mulholland-type inequality with the best possible constant factor is given, which is an extension of (3). The equivalent form, the operator expression with the norm as well as a few particular cases are also considered.

2 Some lemmas

Lemma 1 If ( 1 ) i h ( i ) (t)>0 (t>0; i=1,2), then for b>0, 0<α1,

( 1 ) i d i d x i h ( ( b + ln α x ) 1 α ) >0(x>1;i=1,2).
(7)

Proof We find

d d x h ( ( b + ln α x ) 1 α ) = 1 x h ( ( b + ln α x ) 1 α ) ( b + ln α x ) 1 α 1 ln α 1 x < 0 , d 2 d x 2 h ( ( b + ln α x ) 1 α ) = d d x [ 1 x h ( ( b + ln α x ) 1 α ) ( b + ln α x ) 1 α 1 ln α 1 x ] d 2 d x 2 h ( ( b + ln α x ) 1 α ) = 1 x 2 h ( ( b + ln α x ) 1 α ) ( b + ln α x ) 1 α 1 ln α 1 x d 2 d x 2 h ( ( b + ln α x ) 1 α ) = + 1 x 2 h ( ( b + ln α x ) 1 α ) ( b + ln α x ) 2 α 2 ln 2 α 2 x d 2 d x 2 h ( ( b + ln α x ) 1 α ) = + α ( 1 α 1 ) 1 x 2 h ( ( b + ln α x ) 1 α ) ( b + ln α x ) 1 α 2 ln 2 α 2 x d 2 d x 2 h ( ( b + ln α x ) 1 α ) = + ( α 1 ) 1 x 2 h ( ( b + ln α x ) 1 α ) ( b + ln α x ) 1 α 1 ln α 2 x d 2 d x 2 h ( ( b + ln α x ) 1 α ) = [ h ( ( b + ln α x ) 1 α ) ( b + ln α x ) ln x d 2 d x 2 h ( ( b + ln α x ) 1 α ) = + h ( ( b + ln α x ) 1 α ) ( b + ln α x ) 1 α ln α x d 2 d x 2 h ( ( b + ln α x ) 1 α ) = + b ( α 1 ) h ( ( b + ln α x ) 1 α ) ] 1 x 2 ( b + ln α x ) 1 α 2 ln α 2 x > 0 .

Then we have (7). □

If i 0 , j 0 N (N is the set of positive integers), α,β>0, we set

x α := ( k = 1 i 0 | x k | α ) 1 α ( x = ( x 1 , , x i 0 ) R i 0 ) ,
(8)
y β := ( k = 1 j 0 | y k | β ) 1 β ( y = ( y 1 , , y j 0 ) R j 0 ) .
(9)

Lemma 2 If sN, γ,M>0, Ψ(u) is a non-negative measurable function in (0,1], and

D M := { x R + s ; i = 1 s x i γ M γ } = { x ; i = 1 s ( x i M ) γ 1 } ,

then we have (cf. [36])

D M Ψ ( i = 1 s ( x i M ) γ ) d x 1 d x s = M s Γ s ( 1 γ ) γ s Γ ( s γ ) 0 1 Ψ ( u ) u s γ 1 d u .
(10)

Lemma 3 If sN, γ>0, ε>0, d=( d 1 ,, d s ) [ 1 2 , 1 ] s , then

A s ( ε ) : = m ln ( m + d ) γ s ε 1 i = 1 s ( m i + d i ) = Γ s ( 1 γ ) ε s ε / γ γ s 1 Γ ( s γ ) + O ( 1 ) ( ε 0 + ) .
(11)

Proof For M> s 1 / γ , we set

Ψ(u)= { 0 , 0 < u < s M γ , ( M u 1 / γ ) s ε , s M γ u 1 .

Then by the decreasing property and (10), it follows that

A s ( ε ) { x R + s ; x i e d i } ln ( x + d ) γ s ε d x i = 1 s ( x i + d i ) = u i = ln ( x i + d i ) { u R + s ; u i 1 } u γ s ε d u = lim M D M Ψ ( i = 1 s ( x i M ) γ ) d x 1 d x s = lim M M s Γ s ( 1 γ ) γ s Γ ( s γ ) s / M γ 1 ( M u 1 / γ ) s ε u s γ 1 d u = Γ s ( 1 γ ) ε s ε / γ γ s 1 Γ ( s γ ) .

In the following, by mathematical induction we prove that, for any sN,

A s (ε) O s (1)+ Γ s ( 1 γ ) ε s ε / γ γ s 1 Γ ( s γ ) ( ε 0 + ) .
(12)

For s=1, by the Hermite-Hadamard inequality (cf. [37]), it follows that

A 1 ( ε ) = m 1 = 1 2 ln 1 ε ( m 1 + d 1 ) m 1 + d 1 + m 1 = 3 ln 1 ε ( m 1 + d 1 ) m 1 + d 1 O 1 ( 1 ) + 5 2 ln 1 ε ( x + d 1 ) d x x + d 1 O 1 ( 1 ) + e d 1 ln 1 ε ( x + d 1 ) d x x + d 1 = u = ln ( x + d 1 ) O 1 ( 1 ) + 1 u 1 ε d u = O 1 ( 1 ) + 1 ε ,

and then (12) is valid. Assuming that (12) is valid for s1N, then for s, we set

A s ( ε ) = { m N s ; i 0 , m i 0 = 1 , 2 } ln ( m + d ) γ s ε 1 i = 1 s ( m i + d i ) + { m N s ; m i 3 } ln ( m + d ) γ s ε 1 i = 1 s ( m i + d i ) .

There exist constants a,b R + , such that

{ m N s ; i 0 , m i 0 = 1 , 2 } ln ( m + d ) γ s ε 1 i = 1 s ( m i + d i ) a + b { m N s 1 ; m i 1 } ln ( m + d ) γ ( s 1 ) ( 1 + ε ) 1 i = 1 s 1 ( m i + d i ) .

By the assumption of mathematical induction for s1, we find

{ m N s 1 ; m i 1 } ln ( m + d ) γ ( s 1 ) ( 1 + ε ) 1 i = 1 s 1 ( m i + d i ) O s 1 ( 1 ) + Γ s 1 ( 1 γ ) ( 1 + ε ) ( s 1 ) ( 1 + ε ) / γ γ s 2 Γ ( s 1 γ ) ,

and then

{ m N s ; i 0 , m i 0 = 1 , 2 } ln ( m + d ) γ s ε 1 i = 1 s ( m i + d i ) O s (1).

By Lemma 1 and the Hermite-Hadamard inequality (cf. [37]), we obtain

{ m N s ; m i 3 } ln ( m + d ) γ s ε 1 i = 1 s ( m i + d i ) { x R + s ; x i 5 2 } ln ( x + d ) γ s ε 1 i = 1 s ( x i + d i ) d x { x R + s ; x i e d i } ln ( x + d ) γ s ε 1 i = 1 s ( x i + d i ) d x = u i = ln ( x i + d i ) { u R + s ; u i 1 } u γ s ε d u = Γ s ( 1 γ ) ε s ε / γ γ s 1 Γ ( s γ ) .

Hence we prove that (12) is valid for sN. Therefore, we have (11). □

Lemma 4 If C is the set of complex numbers and C =C{}, z k C{z|Rez0,Imz=0} (k=1,2,,n) are different points, the function f(z) is analytic in C except for z i (i=1,2,,n), and z= is a zero point of f(z) whose order is not less than 1, then for αR, we have

0 f(x) x α 1 dx= 2 π i 1 e 2 π α i k = 1 n Res [ f ( z ) z α 1 , z k ] ,
(13)

where 0<Imlnz=argz<2π. In particular, if z k (k=1,,n) are all poles of order 1, setting φ k (z)=(z z k )f(z) ( φ k ( z k )0), then

0 f(x) x α 1 dx= π sin π α k = 1 n ( z k ) α 1 φ k ( z k ).
(14)

Proof By [[38], p.118], we have (13). We find

1 e 2 π α i = 1 cos 2 π α i sin 2 π α = 2 i sin π α ( cos π α + i sin π α ) = 2 i e i π α sin π α .

In particular, since f(z) z α 1 = 1 z z k ( φ k (z) z α 1 ), it is obvious that

Res [ f ( z ) z α 1 , a k ] = z k α 1 φ k ( z k )= e i π α ( z k ) α 1 φ k ( z k ).

Then by (13), we obtain (14). □

Example 1 For sN, we set

k λ (x,y)= k = 1 s 1 ( x λ / s + c k y λ / s ) (0< c 1 << c s ,0<λs).

For 0< λ 1 i 0 , 0< λ 2 j 0 , λ 1 + λ 2 =λ, by (14), we find

k s ( λ 1 ) : = 0 k = 1 s 1 t λ / s + c k t λ 1 1 d t = u = t λ / s s λ 0 k = 1 s 1 u + c k u s λ 1 λ 1 d u = π s λ sin ( π s λ 1 λ ) k = 1 s c k s λ 1 λ 1 j = 1 ( j k ) s 1 c j c k R + .
(15)

In particular, for s=1, we obtain

k 1 ( λ 1 )= 1 λ 0 u ( λ 1 / λ ) 1 u + c 1 du= π λ sin ( π λ 1 λ ) c 1 λ 1 λ 1 .

Definition 1 For sN, 0<α,β1, 0< c 1 << c s , 0<λs, 0< λ 1 i 0 , 0< λ 2 j 0 , λ 1 + λ 2 =λ, τ=( τ 1 ,, τ i 0 ) [ 1 2 , 1 ] i 0 , σ=( σ 1 ,, σ j 0 ) [ 1 2 , 1 ] j 0 , ln(m+τ)=(ln( m 1 + τ 1 ),,ln( m i 0 + τ i 0 )) R + i 0 , ln(n+σ)=(ln( n 1 + σ 1 ),,ln( n j 0 + σ j 0 )) R + j 0 , we define two weight coefficients w λ ( λ 2 ,n) and W λ ( λ 1 ,m) as follows:

w λ ( λ 2 , n ) : = m ln ( n + σ ) β λ 2 ln ( m + τ ) α λ 1 i 0 k = 1 s [ ln ( m + τ ) α λ / s + c k ln ( n + σ ) β λ / s ] i = 1 i 0 ( m i + τ i ) , W λ ( λ 1 , m ) : = n ln ( m + τ ) α λ 1 ln ( n + σ ) β λ 2 j 0 k = 1 s [ ln ( m + τ ) α λ / s + c k ln ( n + σ ) β λ / s ] j = 1 j 0 ( n j + σ j ) ,
(16)

where m = m i 0 = 1 m 1 = 1 and n = n j 0 = 1 n 1 = 1 .

Lemma 5 Let the assumptions as in Definition  1 be fulfilled. Then:

  1. (i)

    we have

    w λ ( λ 2 ,n)< K 2 ( n N j 0 ) ,
    (17)
W λ ( λ 1 ,m)< K 1 ( m N i 0 ) ,
(18)

where

K 1 := Γ j 0 ( 1 β ) β j 0 1 Γ ( j 0 β ) k s ( λ 1 ), K 2 := Γ i 0 ( 1 α ) α i 0 1 Γ ( i 0 α ) k s ( λ 1 ),
(19)

and k s ( λ 1 ) is indicated by (15);

  1. (ii)

    for p>1, 0<ε<pmin{ λ 1 ,1 λ 2 }, setting λ ˜ 1 = λ 1 ε p , λ ˜ 2 = λ 2 + ε p , we have

    0< K ˜ 2 ( 1 θ ˜ λ ( n ) ) < w λ ( λ ˜ 2 ,n),
    (20)

where

θ ˜ λ ( n ) : = 1 k s ( λ ˜ 1 ) 0 i 0 λ / ( α s ) / ln ( n + σ ) β λ / s v s λ 1 λ 1 k = 1 s ( v + c k ) d v θ ˜ λ ( n ) = O ( 1 ln ( n + σ ) β λ ˜ 1 ) ,
(21)
K ˜ 2 = Γ i 0 ( 1 α ) k s ( λ ˜ 1 ) α i 0 1 Γ ( i 0 α ) R + .
(22)

Proof By Lemma 1, the Hermite-Hadamard inequality (cf. [37]), (10), and (15), it follows that

w λ ( λ 2 , n ) < ( 1 2 , ) i 0 ln ( n + σ ) β λ 2 ln ( x + τ ) α λ 1 i 0 d x k = 1 s [ ln ( x + τ ) α λ / s + c k ln ( n + σ ) β λ / s ] i = 1 i 0 ( x i + τ i ) = u i = ln ( x i + τ i ) { u R + i 0 ; u i > ln ( 1 2 + τ i ) } ln ( n + σ ) β λ 2 u α λ 1 i 0 k = 1 s [ u α λ / s + c k ln ( n + σ ) β λ / s ] d u R + i 0 n σ β λ 2 u α λ 1 i 0 k = 1 s [ u α λ / s + c k ln ( n + σ ) β λ / s ] d u = lim M D M ln ( n + σ ) β λ 2 M λ 1 i 0 [ i = 1 j 0 ( u i M ) α ] ( λ 1 i 0 ) / α k = 1 s { M λ s [ i = 1 i 0 ( u i M ) α ] λ α s + c k ln ( n + σ ) β λ s } d u = lim M M i 0 Γ i 0 ( 1 α ) α i 0 Γ ( i 0 α ) 0 1 ln ( n + σ ) β λ 2 M λ 1 i 0 t ( λ 1 i 0 ) / α t i 0 α 1 k = 1 s ( M λ s t λ α s + c k ln ( n + σ ) β λ s ) d t = lim M M λ 1 Γ i 0 ( 1 α ) α i 0 Γ ( i 0 α ) 0 1 ln ( n + σ ) β λ 2 t λ 1 α 1 k = 1 s ( M λ s t λ α s + c k ln ( n + σ ) β λ s ) d t = t = ln ( n + σ ) β α M α v α s / λ s Γ i 0 ( 1 α ) λ α i 0 1 Γ ( i 0 α ) 0 v s λ 1 λ 1 k = 1 s ( v + c k ) d v = Γ i 0 ( 1 α ) α i 0 1 Γ ( i 0 α ) k s ( λ 1 ) = K 2 .

Hence, we have (17). In the same way, we have (18).

By the decreasing property and (10), similarly to the proof of (11), we find

w λ ( λ ˜ 2 , n ) > { x R + i 0 ; x i e τ i } ln ( n + σ ) β λ ˜ 2 ln ( x + τ ) α λ ˜ 1 i 0 d x k = 1 s [ ln ( x + τ ) α λ / s + c k ln ( n + σ ) β λ / s ] i = 1 i 0 ( x i + τ i ) = u i = ln ( x i + τ i ) ln ( n + σ ) β λ ˜ 2 { u R + i 0 ; u i 1 } u α λ ˜ 1 i 0 d u k = 1 s [ u α λ / s + c k ln ( n + σ ) β λ / s ] = ln ( n + σ ) β λ ˜ 2 lim M D M { i = 1 i 0 ( u i M ) α } λ ˜ 1 i 0 α M λ ˜ 1 i 0 d u 1 d u i 0 k = 1 s [ { i = 1 i 0 ( u i M ) α } λ α s M λ s + c k ln ( n + σ ) β λ / s ] = M i 0 Γ i 0 ( 1 α ) α i 0 Γ ( i 0 α ) ln ( n + σ ) β λ ˜ 2 lim M i 0 M α 1 t λ ˜ 1 i 0 α M λ ˜ 1 i 0 t i 0 α 1 k = 1 s [ t λ α s M λ s + c k ln ( n + σ ) β λ / s ] d t = s Γ i 0 ( 1 α ) λ α i 0 1 Γ ( i 0 α ) i 0 λ / ( α s ) ln ( n + σ ) β λ / s v s λ ˜ 1 λ 1 d v k = 1 s ( v + c k ) = K ˜ 2 ( 1 θ ˜ λ ( n ) ) > 0 , 0 < θ ˜ λ ( n ) = s λ k s ( λ ˜ 1 ) 0 i 0 λ / ( α s ) / ln ( n + σ ) β λ / s v s λ 1 λ 1 k = 1 s ( v + c k ) d v 0 s λ k s ( λ ˜ 1 ) k = 1 s c k 0 i 0 λ / ( α s ) / ln ( n + σ ) β λ / s v s λ ˜ 1 λ 1 d v 0 = 1 λ ˜ 1 k s ( λ ˜ 1 ) k = 1 s c k i 0 λ ˜ 1 / α ln ( n + σ ) β λ ˜ 1 .

Hence, we have (20) and (21). □

3 Main results and operator expressions

Setting Φ(m):= i = 1 i 0 ( m i + τ i ) p 1 ln ( m + τ ) α p ( i 0 λ 1 ) i 0 (m N i 0 ) and Ψ(n):= j = 1 j 0 ( n j + σ j ) q 1 ln ( n + σ ) β q ( j 0 λ 2 ) j 0 (n N j 0 ), wherefrom

[ Ψ ( n ) ] 1 p = j = 1 j 0 ( n j + σ j ) 1 ln ( n + σ ) β p λ 2 j 0 ,

we have the following.

Theorem 1 If sN, 0<α,β1, 0< c 1 << c s , 0<λs, 0< λ 1 i 0 , 0< λ 2 j 0 , λ 1 + λ 2 =λ, τ [ 1 2 , 1 ] i 0 , σ [ 1 2 , 1 ] j 0 , then for p>1, 1 p + 1 q =1, a m , b n 0, 0< a p , Φ , b q , Ψ <, we have

I : = n m a m b n k = 1 s [ ln ( m + τ ) α λ / s + c k ln ( n + σ ) β λ / s ] < K 1 1 p K 2 1 q a p , Φ b q , Ψ ,
(23)

where the constant factor

K 1 1 p K 2 1 q = [ Γ j 0 ( 1 β ) β j 0 1 Γ ( j 0 β ) ] 1 p [ Γ i 0 ( 1 α ) β i 0 1 Γ ( i 0 α ) ] 1 q k s ( λ 1 )
(24)

is the best possible ( k s ( λ 1 ) is indicated by (15)).

Proof By the Hölder inequality (cf. [37]), we have

I = n m 1 k = 1 s [ ln ( m + τ ) α λ / s + c k ln ( n + σ ) β λ / s ] × [ ln ( m + τ ) α ( i 0 λ 1 ) / q ln ( n + σ ) β ( j 0 λ 2 ) / p i = 1 i 0 ( m i + τ i ) 1 / q j = 1 j 0 ( n j + σ j ) 1 / p a m ] × [ ln ( n + σ ) β ( j 0 λ 2 ) / p ln ( m + τ ) α ( i 0 λ 1 ) / q j = 1 j 0 ( n j + σ j ) 1 / p i = 1 i 0 ( m i + τ i ) 1 / q b n ] { m W λ ( λ 1 , m ) i = 1 i 0 ( m i + τ i ) p 1 ln ( m + τ ) α p ( i 0 λ 1 ) i 0 a m p } 1 p × { n w λ ( λ 2 , n ) j = 1 j 0 ( n j + σ j ) q 1 ln ( n + σ ) β q ( j 0 λ 2 ) j 0 b n q } 1 q .

Then by (17) and (18), we have (23).

For 0<ε<pmin{ λ 1 ,1 λ 2 }, λ ˜ 1 = λ 1 ε p , λ ˜ 2 = λ 2 + ε p , we set

a ˜ m = ln ( m + τ ) α i 0 + λ 1 ε p 1 i = 1 i 0 ( m i + τ i ) , b ˜ n = ln ( n + σ ) β j 0 + λ 2 ε q 1 j = 1 j 0 ( n j + σ j ) ( m N i 0 , n N j 0 ) .

Then by (11) and (20)-(22), we obtain

a ˜ p , Φ b ˜ q , Ψ = { m i = 1 i 0 ( m i + τ i ) p 1 ln ( m + τ ) α p ( i 0 λ 1 ) i 0 a ˜ m p } 1 p a ˜ p , Φ b ˜ q , Ψ = × { n j = 1 j 0 ( n j + σ j ) q 1 ln ( n + σ ) β q ( j 0 λ 2 ) j 0 b ˜ n q } 1 q a ˜ p , Φ b ˜ q , Ψ = { m ln ( m + τ ) α i 0 ε 1 i = 1 i 0 ( m i + τ i ) } 1 p a ˜ p , Φ b ˜ q , Ψ = × { n ln ( n + σ ) β j 0 ε 1 j = 1 j 0 ( n j + σ j ) } 1 q a ˜ p , Φ b ˜ q , Ψ = 1 ε [ Γ i 0 ( 1 α ) i 0 ε / α α i 0 1 Γ ( i 0 α ) + ε O ( 1 ) ] 1 p [ Γ j 0 ( 1 β ) j 0 ε / β β j 0 1 Γ ( j 0 β ) + ε O ˜ ( 1 ) ] 1 q ,
(25)
I ˜ : = n [ m a ˜ m k = 1 s ( ln ( m + τ ) α λ / s + c k ln ( n + σ ) β λ / s ) ] b ˜ n I ˜ = n w λ ( λ ˜ 2 , n ) ln ( n + σ ) β j 0 ε 1 j = 1 j 0 ( n j + σ j ) I ˜ > K ˜ 2 n ( 1 O ( 1 ln ( n + σ ) β λ ˜ 1 ) ) ln ( n + σ ) β j 0 ε 1 j = 1 j 0 ( n j + σ j ) I ˜ = K ˜ 2 [ Γ j 0 ( 1 β ) ε j 0 ε / β β j 0 1 Γ ( j 0 β ) + O ˜ ( 1 ) O ( 1 ) ] .
(26)

If there exists a constant K K 1 1 p K 2 1 q , such that (23) is valid when replacing K 1 1 p K 2 1 q by K, then we have

( K 2 + o ( 1 ) ) [ Γ j 0 ( 1 β ) j 0 ε / β β j 0 1 Γ ( j 0 β ) + ε O ˜ ( 1 ) ε O ( 1 ) ] < ε I ˜ < ε K a ˜ p , φ b ˜ q , ψ = K [ Γ i 0 ( 1 α ) i 0 ε / α α i 0 1 Γ ( i 0 α ) + ε O ( 1 ) ] 1 p [ Γ j 0 ( 1 β ) j 0 ε / β β j 0 1 Γ ( j 0 β ) + ε O ˜ ( 1 ) ] 1 q .

For ε 0 + , we find

Γ j 0 ( 1 β ) Γ i 0 ( 1 α ) k s ( λ 1 ) β j 0 1 Γ ( j 0 β ) α i 0 1 Γ ( i 0 α ) K [ Γ i 0 ( 1 α ) α i 0 1 Γ ( i 0 α ) ] 1 p [ Γ j 0 ( 1 β ) β j 0 1 Γ ( j 0 β ) ] 1 q ,

and then K 1 1 p K 2 1 q K. Hence, K= K 1 1 p K 2 1 q is the best possible constant factor of (23). □

Theorem 2 With the assumptions of Theorem  1, for 0< a p , Φ <, we have the following inequality with the best constant factor K 1 1 p K 2 1 q :

J : = { n [ Ψ ( n ) ] 1 p ( m a m k = 1 s [ ln ( m + τ ) α λ / s + c k ln ( n + σ ) β λ / s ] ) p } 1 p < K 1 1 p K 2 1 q a p , Φ ,
(27)

which is equivalent to (23).

Proof We set b n as follows:

b n := [ Ψ ( n ) ] 1 p ( m a m k = 1 s ( ln ( m + τ ) α λ / s + c k ln ( n + σ ) β λ / s ) ) p 1 .

Then it follows that J p = b q , Ψ q . If J=0, then (27) is trivially valid, since 0< a p , Φ <; if J=, then it is a contradiction since the right hand side of (27) is finite. Suppose that 0<J<. Then by (23), we find

b q , Ψ q = J p =I< K 1 1 p K 2 1 q a p , Φ b q , Ψ ,

namely, b q , Ψ q 1 =J< K 1 1 p K 2 1 q a p , Φ , and then (27) follows.

On the other hand, assuming that (27) is valid, by the Hölder inequality, we have

I = n ( Ψ ( n ) ) 1 q [ m a m k = 1 s ( ln ( m + τ ) α λ / s + c k ln ( n + σ ) β λ / s ) ] × [ ( Ψ ( n ) ) 1 q b n ] J b q , Ψ .
(28)

Then by (27), we have (23). Hence (27) and (23) are equivalent.

By the equivalency, the constant factor K 1 1 p K 2 1 q in (27) is the best possible. Otherwise, we would reach a contradiction by (28) that the constant factor K 1 1 p K 2 1 q in (23) is not the best possible. □

For p>1, we define two real weight normal discrete spaces l p , φ and l q , ψ as follows:

l p , φ : = { a = { a m } ; a p , Φ = { m Φ ( m ) a m p } 1 p < } , l q , ψ : = { b = { b n } ; b q , Ψ = { n Ψ ( n ) b n q } 1 q < } .

With the assumptions of Theorem 2, in view of J< K 1 1 p K 2 1 q a p , Φ , we have the following definition.

Definition 2 Define a multidimensional Hilbert-type operator T: l p , Φ l p , Ψ 1 p as follows: For a l p , Φ , there exists an unique representation Ta l p , Ψ 1 p , satisfying for n N j 0 ,

(Ta)(n):= m a m k = 1 s [ ln ( m + τ ) α λ / s + c k ln ( n + σ ) β λ / s ] .
(29)

For b l q , Ψ , we define the following formal inner product of Ta and b as follows:

(Ta,b):= n m a m b n k = 1 s [ ln ( m + τ ) α λ / s + c k ln ( n + σ ) β λ / s ] .
(30)

Then by Theorem 1 and Theorem 2, for 0< a p , φ , b q , ψ <, we have the following equivalent inequalities:

(Ta,b)< K 1 1 p K 2 1 q a p , Φ b q , Ψ ,
(31)
T a p , Ψ 1 p < K 1 1 p K 2 1 q a p , Φ .
(32)

It follows that T is bounded since

T:= sup a ( θ ) l p , Φ T a p , Ψ 1 p a p , Φ K 1 1 p K 2 1 q .
(33)

Since the constant factor K 1 1 p K 2 1 q in (32) is the best possible, we have:

Corollary 1 With the assumptions of Theorem  2, T is defined by Definition  2, it follows that

T= K 1 1 p K 2 1 q = [ Γ j 0 ( 1 β ) β j 0 1 Γ ( j 0 β ) ] 1 p [ Γ i 0 ( 1 α ) α i 0 1 Γ ( i 0 α ) ] 1 q k s ( λ 1 ).
(34)

Remark 1 (i) Setting Φ 1 (m):= i = 1 i 0 ( m i + 1 ) p 1 ln ( m + 1 ) α p ( i 0 λ 1 ) i 0 (m N i 0 ) and Ψ 1 (n):= j = 1 j 0 ( n j + 1 ) q 1 ln ( n + 1 ) β q ( j 0 λ 2 ) j 0 (n N j 0 ), then putting τ=σ=1 in (23) and (27), we have the following equivalent inequalities with the best constant factor K 1 1 p K 2 1 q :

n m a m b n k = 1 s [ ln ( m + 1 ) α λ / s + c k ln ( n + 1 ) β λ / s ] < K 1 1 p K 2 1 q a p , Φ 1 b q , Ψ 1 ,
(35)
{ n [ Ψ 1 ( n ) ] 1 p ( m a m k = 1 s [ ln ( m + 1 ) α λ / s + c k ln ( n + 1 ) β λ / s ] ) p } 1 p < K 1 1 p K 2 1 q a p , Φ 1 .
(36)

Hence, (23) and (27) are more accurate inequalities than (35) and (36).

  1. (ii)

    Putting i 0 = j 0 =1, λ=s, ϕ 1 (m):= ( m + 1 ) p 1 ln p ( 1 λ 1 ) 1 (m+1) (mN) and ψ 1 (n):= ( n + 1 ) q 1 ln q ( 1 λ 2 ) 1 (n+1) (nN), in (32), we have the following new inequality:

    m = 1 n = 1 a m b n k = 1 s ln ( m + 1 ) ( n + 1 ) c k < π sin ( π λ 1 ) k = 1 s j = 1 ( j k ) s c k λ 1 1 c j c k a p , ϕ 1 b q , ψ 1 .
    (37)

In particular, for s= c k =1, λ 1 = 1 q , λ 2 = 1 p in (37), we can deduce (4). Hence, (23) is an extension of (4).