1 Introduction

The fractional type Marcinkiewicz operator is defined by

μ Ω , ρ , α f(x)= ( 0 | 1 t ρ + α B ( t ) f ( x y ) Ω ( y / | y | ) | y | n ρ d y | 2 d t t ) 1 2 ,
(1.1)

where we write B(r)={|x|<r} R n for r>0 here and below. The operator μ Ω , ρ , α f is the so called singular integral operator. In this paper, we shall prove that this operator is bounded under a certain highly weak integrability assumption. To this end, we plan to employ a modified Littlewood-Paley decomposition adapted to our situation. It turns out that we can relax the integrability assumption on Ω and that the integral operator itself can be generalized to a large extent.

Let S n 1 be the unit sphere in the n-dimensional Euclidean space R n (n2), with the induced Lebesgue measure dσ=dσ( x ) and Ω L 1 ( S n 1 ). In the sequel, we often suppose that Ω satisfies the cancellation condition

S n 1 Ω ( y ) dσ ( y ) =0.
(1.2)

Here, for the symbols x and y , we adopt the following convention: Sometimes they stand for points in S n 1 . But for x R n {0}, we abbreviate x/|x| to x in the present paper. We make this slight abuse of notation since no confusion is likely to occur.

In the present paper we deal with operators of Marcinkiewicz type. Define

μ Ω , ρ , α , q f(x):= ( 0 | 1 t ρ + α B ( t ) f ( x y ) Ω ( y ) | y | n ρ d y | q d t t ) 1 q ( x R n ) .
(1.3)

As a special case, by letting ρ=1, α=0, q=2, we recapture the Marcinkiewicz integral operator that Stein introduced in 1958 [1]. In 1960, Hörmander considered the parametric Marcinkiewicz integral operator μ Ω , ρ , α , 2 [2]. Since then, about Marcinkiewicz type integral operators, many works appeared. A nice survey is given by Lu [3].

We formulate our results in the framework of Triebel-Lizorkin spaces of homogeneous type. For αR and p,q(1,), we let F ˙ p q α ( R n ) be the Triebel-Lizorkin space defined in [4, 5]. Note that the space S ( R n ) given by

S ( R n ) := α ( N { 0 } ) n { f S ( R n ) : R n x α f ( x ) d x = 0 }

is dense in F ˙ p q α ( R n ) as long as αR and p,q(1,). If u(1,), then define u = u u 1 and u ˜ =max(u, u ). Here and below a tacit understanding in the present paper is that the letter C is used for constants that may change from one occurrence to another, that is, the letter C will denote a positive constant which may vary from line to line but will remain independent of the relevant quantities. Our main theorem in the simplest form reads as follows:

Theorem 1 Let ρ>0, 1<p,q< and Ω L 1 ( S n 1 ).

  1. (i)

    If α(0,4/( p ˜ q ˜ )) and Ω satisfies the cancellation condition (1.2), then

    μ Ω , ρ , α , q f L p ( R n ) C Ω L 1 ( S n 1 ) f F ˙ p q α ( R n )
    (1.4)

for all f S ( R n ).

  1. (ii)

    If α(min{ 4 β p ˜ q ˜ ,ρ},0) and

    Z Ω := sup ξ S n 1 S n 1 | Ω ( y ) | | y ξ | β dσ ( y ) <+,
    (1.5)

for some 0<β1, then

μ Ω , ρ , α , q f L p ( R n ) C Z Ω f F ˙ p q α ( R n )
(1.6)

for all f S ( R n ).

  1. (iii)

    If α=0 and ΩLlogL( S n 1 ) satisfies the cancellation condition (1.2), then

    μ Ω , ρ , α , q f L p ( R n ) C Ω L log L ( S n 1 ) f F ˙ p q α ( R n )
    (1.7)

for all f S ( R n ).

In any case, by density we can extend (1.4), (1.6) and (1.7) and have them for all f F ˙ p q α ( R n ).

In 2002, Chen et al. obtained a result about the fractional type Marcinkiewicz integral operator [6], which we recall now.

Theorem A Let 1<p,q< and 1<r. Suppose Ω L r ( S n 1 ) satisfies the cancellation condition (1.2). If |α|<2/( r p ˜ q ˜ ) and ρ=1, then

μ Ω , ρ , α , q f L p ( R n ) C Ω L r ( S n 1 ) f F ˙ p q α ( R n )

for all f S ( R n ).

Si, Wang and Jiang discussed ones of somewhat different type [7]. About Theorems 1 and A, a couple of remarks may be in order.

Remark 1 If 0<β<1, 1/(1β)<r and Ω L r ( S n 1 ), it is easily seen that the condition (1.5) is satisfied. In this case

Z Ω C Ω L r ( S n 1 ) .

So, our result includes completely Theorem A, where they assumed that Ω L r ( S n 1 ). Let r>1 and define

Ω 0 ( y ) =sgn ( y ( 1 , 0 , , 0 ) ) | ( y ( 1 , 0 , , 0 ) ) | 1 / r .
(1.8)

Then it is also easily checked that Ω is in L 1 ( S n 1 ) L r ( S n 1 ) and satisfies (1.5) for any β(0,1/ r ).

In the case α=0, ρ=1 and q=2, the conclusion in Theorem 1(iii) is shown to hold even when ΩLlog L 1 / 2 ( S n 1 ) in [8].

Remark 2 We can relax the condition on α: |α|<4/( r p ˜ q ˜ ) suffices. Indeed, one can get |(Ω() | | n + 1 χ B ( 1 ) )ˆ(ξ)|C | ξ | 1 / r by direct computation.

By reexamining their proof, we can parametrize Theorem A: we can prove

( R n ( 0 | 1 t ρ + α B ( t ) f ( x y ) Ω ( y ) | y | n ρ d y | q d t t ) p / q d x ) 1 / p C f F ˙ p q α ( R n ) ,
(1.9)

provided |α|<4min{ 1 r ,min(ρ,1)} 1 p ˜ q ˜ . Comparing (1.9) with Theorem 1, one concludes that our theorem outranges Theorem A in view of the case when min(ρ,1)<1/ r . In our earlier paper [9], we improved Theorem A by relaxing the conditions postulated on Ω.

Our method is also applicable even in more generalized settings. For ρ>0, αR and Ω L 1 ( S n 1 ), we define the fractional type Marcinkiewicz integral operator by (1.1) and the fractional type Marcinkiewicz integral operator associated to surfaces {(x,y):x=ϕ(|y|) y } R n ×( R n {0}) by

μ Ω , ρ , ϕ , α f(x)= ( 0 | 1 t ρ ϕ ( t ) α B ( t ) f ( x ϕ ( | y | ) y ) Ω ( y ) | y | n ρ d y | 2 d t t ) 1 2 .
(1.10)

Theorem 1 extends further to the case when the operator is equipped with a function space Δ γ with γ1. Regarding to Calderón-Zygmund singular integral and Marcinkiewicz integral operators, many authors discussed those operators with modified kernel b(||)Ω() in place of Ω(), where b belongs to the class of all measurable functions h:[0,)C satisfying h Δ γ = sup R > 0 ( R 1 0 R | h ( t ) | γ d t ) 1 / γ < (1γ), see [1014], etc. We note that

L ( R + ) Δ β ( R + ) Δ α ( R + )for 1α<β,

and that all these inclusions are proper. We refer to [1517] for extension and generalization of the space Δ γ .

We define the modified fractional type Marcinkiewicz operator μ Ω , ρ , α , q ( b ) by

μ Ω , ρ , α , q ( b ) f(x)= ( 0 | 1 t ρ + α B ( t ) f ( x y ) b ( | y | ) Ω ( y ) | y | n ρ d y | q d t t ) 1 q .
(1.11)

We can recover Theorem 1 by letting b1 in the next theorem.

Theorem 2 Suppose that we are given Ω L 1 ( S n 1 ) and parameters p, q, α, γ, ρ satisfying

1<p,q<,γ> 1 2 max{ p ˜ , q ˜ },ρ>0.
  1. (i)

    Let α(0, 4 ( 1 / p ˜ 1 / ( 2 γ ) ) ( 1 / q ˜ 1 / ( 2 γ ) ) ( 1 1 / γ ) 2 ). If b Δ γ ( R + ) and Ω satisfies the cancellation condition (1.2), then

    μ Ω , ρ , α , q ( b ) f L p ( R n ) C Ω L 1 ( S n 1 ) b Δ γ f F ˙ p q α ( R n )
    (1.12)

for all f S ( R n ).

  1. (ii)

    Assume α(min{2β 1 / p ˜ 1 / ( 2 γ ) 1 1 / γ 1 / q ˜ 1 / ( 2 γ ) 1 1 / γ ,ρ},0) with β(0,1]. If b Δ max ( γ , 2 ) and

    W Ω := sup ξ S n 1 S n 1 × S n 1 | Ω ( y ) Ω ( z ) | | ( y z ) ξ | β d σ ( y ) d σ ( z ) <+,
    (1.13)

then

μ Ω , ρ , α , q ( b ) f L p ( R n ) C W Ω b max ( γ , 2 ) f F ˙ p q α ( R n )
(1.14)

for all f S ( R n ).

  1. (iii)

    Assume α=0. If b Δ max ( γ , 2 ) , ΩLlogL( S n 1 ) and Ω satisfies the cancellation condition (1.2), then

    μ Ω , ρ , α , q ( b ) f L p ( R n ) C Ω L log L ( S n 1 ) b max ( γ , 2 ) f F ˙ p q α ( R n )
    (1.15)

for all f S ( R n ).

In any case, by density we can extend (1.12), (1.14) and (1.15) and have them for all f F ˙ p q α ( R n ).

Remark 3 In Theorem 1(ii) a modification of the proof changes 4β into 2β. We cannot estimate directly the Fourier transform of the measure σ t in Section 3, and we use the idea given by Duoandikoetxea and Rubio de Francia [[11], p.551] as in Chen et al. [6].

If 0<β<1, 1/(1β)<r and Ω L r ( S n 1 ), it is easily seen that the condition (1.13) is satisfied. In this case

W Ω C Ω L r ( S n 1 ) .

In the case α=0, ρ=1 and q=2, it is again known in [18] that the conclusion in Theorem 2(iii) holds even when ΩLlog L 1 / 2 ( S n 1 ).

In the earlier paper [9], in Theorem 1(ii) (respectively, in Theorem 2(ii)), we needed to postulate the additional conditions ρ>β (respectively, 2ρ>β) and the cancellation condition on Ω. However, these are no longer necessary in the new theorems.

Remark In [19], instead of W Ω , the following quantity is proposed:

sup ξ S n 1 | S n 1 S n 1 Ω ( y ) Ω ( z ) ¯ log ( 2 | ξ y | 2 + | ξ z | 2 ) 1 / 2 d σ ( y ) d σ ( z ) | <.

In addition to the factor of b, we can even distort the convolution. For α>0, 1q<, a kernel Ω and a positive function ϕ on R + , we define the operator μ Ω , ρ , ϕ , α , q and the modified one μ Ω , ρ , ϕ , α , q ( b ) by

μ Ω , ρ , ϕ , α , q f(x)= ( 0 | 1 t ρ ϕ ( t ) α B ( t ) f ( x ϕ ( | y | ) y ) Ω ( y ) | y | n ρ d y | q d t t ) 1 q ,
(1.16)

and

μ Ω , ρ , ϕ , α , q ( b ) f(x)= ( 0 | 1 t ρ ϕ ( t ) α B ( t ) f ( x ϕ ( | y | ) y ) b ( | y | ) Ω ( y ) | y | n ρ d y | q d t t ) 1 q .
(1.17)

Now we formulate our main theorem. Here and below we write R + :=(0,).

Theorem 3 Let ρ>0, 1<p,q< and Ω L 1 ( S n 1 ). Let c 0 >1 and c 1 >0. Suppose that ϕ: R + R + is a nonnegative increasing C 1 -function such that

ϕ(2t) c 0 ϕ(t)for all t R +
(1.18)

and that

ϕ(t) c 1 t ϕ (t)for all t R + .
(1.19)

Define

φ(t):= ϕ ( t ) t ϕ ( t ) for all t R + .

Then:

  1. (i)

    Let

    α ( 0 , 4 p ˜ q ˜ c 1 log 2 c 0 ) .
    (1.20)

If Ω satisfies the cancellation condition (1.2), then

μ Ω , ρ , ϕ , α , q f L p ( R n ) C Ω L 1 ( S n 1 ) f F ˙ p q α ( R n )
(1.21)

for all f S ( R n ).

  1. (ii)

    Let

    α ( min { 4 β c 1 log 2 c 0 p ˜ q ˜ , ρ log 2 c 0 } , 0 ) .

If ϕ satisfies the following additional condition:

φ(t) or t ϕ (t) is monotonic on  R + ,
(1.22)

and Ω satisfies

Z Ω := sup ξ S n 1 S n 1 | Ω ( y ) | | y ξ | β dσ ( y ) <+,
(1.23)

for some 0<β1, then

μ Ω , ρ , ϕ , α , q f L p ( R n ) C Z Ω f F ˙ p q α ( R n )
(1.24)

for all f S ( R n ).

  1. (iii)

    Let α=0. If ΩLlogL( S n 1 ) and it satisfies the cancellation condition (1.2), then

    μ Ω , ρ , ϕ , α , q f L p ( R n ) C Ω L log L ( S n 1 ) f F ˙ p q α ( R n )
    (1.25)

for all f S ( R n ).

In any case, by density we can extend (1.21), (1.24) and (1.25) and have them for all f F ˙ p q α ( R n ).

Note that (1.18) is referred to as the doubling condition. Thanks to the useful conversation with Professor XX Tao and Miss S He in the Zhejiang University of Science and Technology, we could improve our results.

We state our main result in full generality. Theorem 3 is almost a direct consequence of the next theorem.

Theorem 4 Suppose that we are given Ω L 1 ( S n 1 ), ϕ C 1 ( R + , R + ) and parameters p, q, α, γ, ρ satisfying

1<p,q<,ρ>0,γ> 1 2 max{ p ˜ , q ˜ },

in addition to (1.18) and (1.19) in Theorem  3. Then:

  1. (i)

    Assume that

    α ( 0 , 4 c 1 log 2 c 0 1 / p ˜ 1 / ( 2 γ ) 1 1 / γ 1 / q ˜ 1 / ( 2 γ ) 1 1 / γ ) .
    (1.26)

If b Δ γ ( R + ) and Ω satisfies the cancellation condition (1.2), then

μ Ω , ρ , ϕ , α , q ( b ) f L p ( R n ) C Ω L 1 ( S n 1 ) b Δ γ f F ˙ p q α ( R n )
(1.27)

for all f S ( R n ).

  1. (ii)

    Assume α(min{ 2 β c 1 log 2 c 0 1 / p ˜ 1 / ( 2 γ ) 1 1 / γ 1 / q ˜ 1 / ( 2 γ ) 1 1 / γ , ρ log 2 c 0 },0) for some β(0,1]. If b Δ max ( γ , 2 ) and

    W Ω := sup ξ S n 1 S n 1 × S n 1 | Ω ( y ) Ω ( z ) | | ( y z ) ξ | β d σ ( y ) d σ ( z ) <+,
    (1.28)

then

μ Ω , ρ , ϕ , α , q ( b ) f L p ( R n ) C W Ω b Δ max ( γ , 2 ) f F ˙ p q α ( R n )
(1.29)

for all f S ( R n ).

  1. (iii)

    Assume α=0. If b Δ max ( γ , 2 ) , ΩLlogL( S n 1 ) and it satisfies the cancellation condition (1.2), then

    μ Ω , ρ , ϕ , α , q ( b ) f L p ( R n ) C Ω L log L ( S n 1 ) b Δ max ( γ , 2 ) f F ˙ p q α ( R n )
    (1.30)

for all f S ( R n ).

In any case, by density we can extend (1.27), (1.29) and (1.30) and have them for all f F ˙ p q α ( R n ).

Theorem 3(i) and (iii) are direct consequences of Theorem 4. Indeed, assuming (1.20) and choosing γ1, we have (1.26). So, to obtain (i) we can apply Theorem 4 for such γ with b1. Theorem 3(iii) is a direct conseuqence of Theorem 4(iii). Note that in Theorems 3(ii) and 4(ii), the conditions of α is slightly improved.

Our strategy is to employ the Littlewood-Paley decomposition as Ding et al. did in [20]. However, we distort things via the sequence { a k } k Z . We rely upon the modified Littlewood-Paley decomposition for the proof of Theorem 4, which we shall describe now. Let { a k } k Z be a lacunary sequence of positive numbers in the sense that a k + 1 / a k a>1 (kZ). A sequence { Φ k } k Z of C ( R n )-functions is said to be a partition of unity adapted to { a k } k Z if

supp Φ ˆ k { ξ R n ; a k 1 | ξ | a k + 1 } ( k Z ) , k Z Φ ˆ k ( ξ ) = 1 ( ξ R n { 0 } ) ,

and

| ξ β β Φ ˆ k ( ξ ) | C β

for any multiindex β.

Denote by the set of all polynomials in R n . Let 1<p,q< and αR. For f S ( R n )/P, we define the norm f F ˙ p q α , { Φ k } k Z ( R n ) by

f F ˙ p q α , { Φ k } k Z ( R n ) = ( k Z a k α q | Φ k f | q ) 1 / q L p ( R n ) .
(1.31)

We admit that Proposition 1 below is true and we prove Theorem 4 first. We postpone the proof of Proposition 1 until the end of the paper.

Proposition 1 Let α0 and 1<p,q<. Let { a k } k Z be a lacunary sequence of positive numbers with a k + 1 / a k a>1 (kZ). If f F ˙ p q α , { Φ k } k Z ( R n ) and f F ˙ p q α , { Ψ k } k Z ( R n ) are equivalent for any two partitions of unity, { Φ k } k Z and { Ψ k } k Z , adapted to { a k } k Z , then there exists C 0 >a such that

a k + 1 a k C 0 (kZ),

and, in this case, f F ˙ p q α , { Φ k } k Z ( R n ) is equivalent to the usual homogeneous Triebel-Lizorkin space norm f F ˙ p q α ( R n ) .

In Sections 3-5, we shall prove Theorems 3 and 4 as well as Proposition 1, respectively.

2 A strategy of the proof of Theorem 4

2.1 A setup

For t>0, a function b on R + and a homogeneous kernel Ω on R n , assume

B ( t ) B ( t / 2 ) | b ( | x | ) Ω ( x ) | dx<.

For ρ>0 and a nice function ϕ, we define the family { σ t ;t R + } of measures and the maximal operator σ on R n by

R n f(x)d σ t (x)= 1 t ρ B ( t ) B ( t / 2 ) f ( ϕ ( | x | ) x ) b ( | x | ) Ω ( x ) | x | n ρ dx,
(2.1)
σ f(x)= sup t > 0 | | σ t | f ( x ) | ( x R n ) .
(2.2)

Note that the mapping x R n {0}ϕ(|x|) x R n B ( inf ϕ ) ¯ is a C 1 -diffeomorphism, since ϕ C 1 ( R + , R + ) satisfies (1.18) and (1.19). Therefore, if we consider the measure σ t by

R n f(x)d σ t (x)= 1 t ρ B ( t ) B ( t / 2 ) f(x) b ( | x | ) Ω ( x ) | x | n ρ dx,

then the above diffeomorphism induces σ t . So, as regards the absolute value of σ t , we have

R n f(x)d| σ t |(x)= 1 t ρ B ( t ) B ( t / 2 ) f ( ϕ ( | x | ) x ) | b ( | x | ) Ω ( x ) | | x | n ρ dx.

Denote by σ t the total mass of σ t . A direct consequence of this alternative definition of | σ t | is that we have

σ t C b Δ 1 Ω L 1 .
(2.3)

If we use (2.1), then we can write

μ ˜ Ω , α , ρ , q ( b ) (f)(x)= ( 0 | σ t f ( x ) | q d t t ϕ ( t ) q α ) 1 / q ( x R n ) .
(2.4)

Lemma 2.1 Let Ω L 1 ( S n 1 ).

  1. (1)

    For all admissible parameters,

    | σ ˆ t ( ξ ) | 2 n ρ Ω L 1 ( S n 1 ) b Δ 1 ( t > 0 , ξ R n ) .
    (2.5)
  2. (2)

    If in addition Ω satisfies (1.2), then we have

    | σ ˆ t ( ξ ) | 2 Ω L 1 ( S n 1 ) b Δ 1 ϕ(t)|ξ| ( t > 0 , ξ R n ) .
    (2.6)

Proof

  1. (1)

    From the definition of the Fourier transform, we have an expression of σ ˆ t (ξ):

    σ ˆ t (ξ)= 1 t ρ B ( t ) B ( t / 2 ) b ( | y | ) Ω ( y ) | y | n ρ e i ϕ ( | y | ) y ξ dy.
    (2.7)

From (2.7) we get (2.5).

  1. (2)

    Using the cancellation property (1.2) of Ω, we have another expression of σ ˆ t (ξ):

    σ ˆ t (ξ)= 1 t ρ B ( t ) B ( t / 2 ) b ( | y | ) Ω ( y ) | y | n ρ ( e i ϕ ( | y | ) y ξ 1 ) dy.
    (2.8)

From the monotonicity of ϕ, (1.18) and (2.8) we obtain

| σ ˆ t ( ξ ) | 1 t ρ t / 2 t ( S n 1 | Ω ( y ) | d σ ( y ) ) | ξ | | ϕ ( r ) b ( r ) | r ρ 1 d r Ω L 1 ( S n 1 ) ϕ ( t ) | ξ | t / 2 t | b ( r ) | d r r 2 Ω L 1 ( S n 1 ) b Δ 1 ϕ ( t ) | ξ | .

So we are done.

 □

As for the maximal operator σ given by (2.2), we invoke the following lemma in [[21], Lemma 3.2]: We define the directional Hardy-Littlewood maximal function of F for a fixed vector y S n 1 by

M y F(x)= sup r > 0 1 2 r r r | f ( x t y ) | dt.

By the orthogonal decomposition R n =HR y , we can prove that M y is bounded on L p ( R n ) for all 1<p< and that the bound is uniform over y . By combining the Hölder inequality and the change of variables to polar coordinates, we can prove the following.

Lemma 2.2 Let γ>1. Then there exists C>0 such that

σ (f)(x)C b Δ γ Ω L 1 ( S n 1 ) 1 / γ ( S n 1 | Ω ( y ) | M y ( | f | γ ) ( x ) d σ ( y ) ) 1 / γ
(2.9)

for all x R n .

Thanks to Lemma 2.2 and the Minkowski inequality, for p> γ there exists C>0 such that

σ ( f ) L p ( R n ) C b Δ γ Ω L 1 ( S n 1 ) f L p ( R n ) .
(2.10)

From the monotonicity, (1.18) and (2.6) we get, for αR, kZ,

( 2 k 2 k + 1 | σ ˆ t ( ξ ) | 2 d t t ϕ ( t ) 2 α ) 1 / 2 2 Ω L 1 ( S n 1 ) b Δ 1 |ξ| ϕ ( 2 k ) ϕ ( 2 k ) α .
(2.11)

Using (1.18) and (1.19), we have the following.

Lemma 2.3 For any 0β<1,

| σ ˆ t ( ξ ) | C W Ω b Δ 2 1 ( | ξ | ϕ ( t ) ) β / 2
(2.12)

for ξ R n . W Ω is the quantity defined in (1.28).

For a precise proof, see the proof of [[21], Lemma 2.4].

2.2 Properties of ϕ

We denote a j :=1/ϕ( 2 j ) and a:= 2 1 / φ L ( R + ) >1. Then { a j } j Z is also a lacunary sequence of the same lacunarity as { ϕ ( 2 j ) } j Z . From the assumption (1.18), it follows that

ϕ ( 2 k t ) c 0 k ϕ(t)
(2.13)

for kN. It is easily seen from (1.19) that { ϕ ( 2 j ) } j Z is a lacunary sequence of positive numbers satisfying

ϕ ( 2 k t ) =ϕ(t)exp ( t 2 k t ( log ϕ ( s ) ) d s ) 2 k / φ L ( R + ) ϕ(t)= a k ϕ(t)
(2.14)

for kN and t>0. See e.g. [[21], Lemma 2.8] for details.

Note also that, for ϕ C 1 ( R + , R + ) satisfying (1.18), the condition (1.19) implies

ϕ(2t) C 1 ϕ(t)(t>0)
(2.15)

for some C 1 >1. Indeed, assuming (1.18), there exists s[t,2t]

ϕ(2t)ϕ(t)=t ϕ (s) c 1 t s ϕ(s) c 1 c 0 ϕ(t)

by the mean value theorem, proving (2.15).

If in addition ϕ is concave, then (2.15) implies (1.19). Indeed,

ϕ (2t) ϕ ( 2 t ) ϕ ( t ) t ( C 1 1) ϕ ( t ) t (t>0).

2.3 Construction of partition of unity

For our purpose, we introduce a partition of unity and a characterization of the homogeneous Triebel-Lizorkin spaces associated to ϕ satisfying (1.18) and (1.19).

Take a nonincreasing C (R)-function η such that χ [ 1 / a , 1 / a ] (t)η(t) χ [ 1 , 1 ] (t) for all tR (see Figure 1).

Figure 1
figure 1

The graph of η .

We define functions ψ j on R n by

ψ j (ξ)=η ( | ξ | a j + 1 ) η ( | ξ | a j ) ( ξ R n ) .
(2.16)

Then observe that

ψ j (ξ)={ 0 , 0 | ξ | a j / a , | ξ | a a j + 1 , 1 , a a j t a j + 1 ,
(2.17)

and that

supp ψ j { a j / a | ξ | a a j + 1 } ,
(2.18)
supp ψ j supp ψ =,for |j|2,
(2.19)
j Z ψ j (ξ)=1 ( R n { 0 } ) .
(2.20)

That is, { ψ j } j Z is a smooth partition of unity adapted to { a j } j Z .

Let Ψ j be defined on R n by Ψ ˆ j (ξ)= ψ j (ξ) for ξ R n . By Proposition 1, we have

( j = | a j α Ψ j f | q ) 1 / q L p f F ˙ p q α ( R n )
(2.21)

if a j + 1 / a j b (jZ) for some ba.

This condition is satisfied in our case, i.e. a j + 1 / a j =ϕ( 2 j )/ϕ( 2 j 1 ) c 1 .

2.4 A reduction by using the scaling invariance

Now, using the definition of μ Ω , ρ , ϕ , α , q ( b ) (f)(x) and the triangle inequality, via change of variables y 2 k y, we obtain

μ Ω , ρ , ϕ , α , q ( b ) ( f ) ( x ) = ( 0 | 1 t ρ ϕ ( t ) α B ( t ) b ( | y | ) Ω ( y ) | y | n ρ f ( x ϕ ( | y | ) y ) d y | q d t t ) 1 / q = ( 0 | k = 0 1 t ρ ϕ ( t ) α B ( 2 k t ) B ( 2 k 1 t ) b ( | y | ) Ω ( y ) | y | n ρ f ( x ϕ ( | y | ) y ) d y | q d t t ) 1 / q k = 0 ( 0 | 1 t ρ ϕ ( t ) α B ( 2 k t ) B ( 2 k 1 t ) b ( | y | ) Ω ( y ) | y | n ρ f ( x ϕ ( | y | ) y ) d y | q d t t ) 1 / q = k = 0 1 2 ρ k ( 0 | 1 t ρ ϕ ( 2 k t ) α B ( t ) B ( t / 2 ) b ( 2 k | y | ) Ω ( y ) | y | n ρ f ( x ϕ ( 2 k | y | ) y ) d y | q d t t ) 1 / q .

Hence

μ Ω , ρ , ϕ , α , q ( b ) ( f ) ( x ) k = 0 1 2 ρ k × ( 0 | 1 t ρ ϕ ( 2 k t ) α B ( t ) B ( t / 2 ) b ( 2 k | y | ) Ω ( y ) | y | n ρ f ( x ϕ ( 2 k | y | ) y ) d y | q d t t ) 1 / q .
(2.22)

So, in the case α0 we have

μ Ω , ρ , ϕ , α , q ( b ) ( f ) ( x ) k = 0 1 2 ( ρ + α / φ ) k × ( 0 | 1 t ρ ϕ ( t ) α B ( t ) B ( t / 2 ) b ( 2 k | y | ) Ω ( y ) | y | n ρ f ( x ϕ ( 2 k | y | ) y ) d y | q d t t ) 1 / q .

So, in the case 0>α>ρ/log c 0 , from (2.22), we have

μ Ω , ρ , ϕ , α , q ( b ) ( f ) ( x ) k = 0 1 2 ( ρ + α log 2 c 0 ) k × ( 0 | 1 t ρ ϕ ( t ) α B ( t ) B ( t / 2 ) b ( 2 k | y | ) Ω ( y ) | y | n ρ f ( x ϕ ( 2 k | y | ) y ) d y | q d t t ) 1 / q .

Notice that b and b( 2 k ) satisfy the same condition due to the scaling invariance of Δ γ . Likewise ϕ and ϕ( 2 k ) satisfy the same conditions (1.18) and (1.19) with constants independent of k. Hence, for our purpose, it is sufficient to consider the modified operator given by

μ ˜ Ω , ρ , ϕ , α , q ( b ) (f)(x):= ( 0 | 1 t ρ ϕ ( t ) α B ( t ) B ( t / 2 ) b ( | y | ) Ω ( y ) | y | n ρ f ( x ϕ ( | y | ) y ) d y | q d t t ) 1 / q

for x R n .

Now we proceed to the proof of Theorem 4. Let

μ ˜ Ω , ρ , ϕ , α , q , j ( b ) f(x):= ( k = 2 k 2 k + 1 | Ψ j k σ t f ( x ) | q d t t ϕ ( t ) q α ) 1 / q ( x R n )
(2.23)

for each j. Using the partition of unity (2.16) and the triangle inequality, we then have

μ ˜ Ω , ρ , ϕ , α , q ( b ) f ( x ) = ( 0 | j Z Ψ j σ t f ( x ) | q d t t ϕ ( t ) q α ) 1 / q = ( k Z 2 k 2 k + 1 | j Z Ψ j k σ t f ( x ) | q d t t ϕ ( t ) q α ) 1 / q j Z ( k Z 2 k 2 k + 1 | Ψ j k σ t f ( x ) | q d t t ϕ ( t ) q α ) 1 / q j Z μ ˜ Ω , ρ , ϕ , α , q , j ( b ) f ( x ) .
(2.24)

Next, we treat the L p -estimate of μ ˜ Ω , ρ , ϕ , α , q , j ( b ) f.

Let us set

α(j):={ α / c 1 , j 0 , α log 2 c 0 , j < 0 .

In Section 4 we plan to distinguish three cases to prove.

Lemma 2.4 Assume either one of the following three conditions:

  1. 1.

    1<q<r<γq< (see Figure 2).

Figure 2
figure 2

1/q - 1/r graph with γ= 3 .

  1. 2.

    1< q < r <γ q < (see Figure 3).

Figure 3
figure 3

1/q - 1/r graph with γ= 3 .

  1. 3.

    1<q=r<.

If Ω L 1 ( S n 1 ), then we have

μ ˜ Ω , ρ , ϕ , α , q , j ( b ) f L r ( R n ) C 2 α ( j ) j Ω L 1 ( S n 1 ) f F ˙ r q α ( R n ) .
(2.25)

However, in case 3, we just interpolate cases 1 and 2. So we concentrate on cases 1 and 2 in Section 4.

Note that cases 1-3 do not cover all the cases as the above images show.

We also need to prove the following.

Lemma 2.5 Let ϕ satisfy the same conditions (1.18) and (1.19). Assume that Ω L 1 ( S n 1 ) satisfies the cancellation condition (1.2). Then

μ ˜ Ω , ρ , ϕ , α , 2 , j ( b ) f L 2 ( R n ) C 2 ( α ( j ) / α α ( j ) ) j Ω L 1 ( S n 1 ) b Δ γ f F ˙ 2 , 2 α .
(2.26)

By using the strong decay of (2.25), interpolate (2.25) and (2.26) to have (2.25) again for any admissible p and q. Thus, in conclusion, (2.24) is summable over j by virtue of (2.25).

3 Proof of Theorem 4

In this section, we prove Theorem 4. One can obtain Theorem 4 by observing carefully the proof of [[6], Theorem 6], but for the sake of completeness we shall give its detailed proof, modifying their one.

3.1 Proof of Lemma 2.4

Here we do not need the cancellation property of Ω and hence we can consider its absolute value of σ t .

  1. (1)

    In the case q<r<γq, let

    J:= μ ˜ Ω , ρ , ϕ , α , q , j ( b ) f L r ( R n ) q = ( k Z 2 k 2 k + 1 | Ψ j k σ t f | q d t t ϕ ( t ) α q ) 1 / q L r ( R n ) q .

Let us set s= ( r / q ) =r/(rq). By the duality L q / r - L s , we can take a nonnegative function h L s ( R n ) with h L s ( R n ) =1 such that

J= R n k Z { 2 k 2 k + 1 | Ψ j k σ t f ( x ) | q d t t ϕ ( t ) α q } h(x)dx.

Denote by σ t the total mass of σ t . By the Hölder inequality

J = k Z 2 k 2 k + 1 { R n | R n Ψ j k f ( x y ) d σ t ( y ) | q h ( x ) d x } d t t ϕ ( t ) α q k Z 2 k 2 k + 1 { R n [ R n | Ψ j k f ( x y ) | q d | σ t | ( y ) ] σ t q / q h ( x ) d x } d t t ϕ ( t ) α q .

By virtue of (2.3), we have

J C Ω L 1 ( S n 1 ) q b Δ 1 × k Z 2 k 2 k + 1 { R n [ R n | Ψ j k f ( y ) | q d | σ t | ( x y ) ] h ( x ) d x } d t t ϕ ( t ) α q = C Ω L 1 ( S n 1 ) q b Δ 1 × k Z 2 k 2 k + 1 { R n | Ψ j k f ( y ) | q ( R n h ( x ) d | σ t | ( x y ) ) d y } d t t ϕ ( t ) α q .

Since 1<q<r<γq, we have s> γ . So, by (2.10) and Hölder’s inequality, we conclude

J 1 / q C Ω L 1 ( S n 1 ) b Δ γ ( R n ( k Z 2 k 2 k + 1 | Ψ j k f ( y ) | q σ ( h ) ( y ) d t t ϕ ( t ) α q ) d y ) 1 / q C Ω L 1 ( S n 1 ) b Δ γ ( R n k Z 1 ϕ ( 2 k ) α q | Ψ j k f ( y ) | q σ ( h ) ( y ) d y ) 1 / q C Ω L 1 ( S n 1 ) b Δ γ ( R n ( k Z 1 ϕ ( 2 k ) α q | Ψ j k f ( y ) | q ) s d y ) 1 / ( s q ) h L s ( R n ) 1 / q = C Ω L 1 ( S n 1 ) b Δ γ ( R n ( Z 1 ϕ ( 2 j ) α q | Ψ f ( y ) | q ) r / q d y ) 1 / r .

Thus, we have

μ ˜ Ω , ρ , ϕ , α , q , j ( b ) f L r ( R n ) C 2 α ( j ) j b Δ γ f F ˙ r q α .
(3.1)
  1. (2)

    In case 1<r<q and r <γ q , it follows that r > q . By duality, there is a sequence of functions g k (x,t) such that

    ( R n ( k Z 2 k 2 k + 1 | g k ( x , t ) | q d t t ) r / q d x ) 1 / r =1

and such that

( k Z 2 k 2 k + 1 | Ψ j k σ t f | q d t t ϕ ( t ) α q ) 1 / q L r ( R n ) = R n k Z { 2 k 2 k + 1 ( Ψ j k σ t f ( x ) ) g k ( x , t ) d t t ϕ ( t ) α } d x .

Then we have

R n k Z 2 k 2 k + 1 ( Ψ j k σ t f ( x ) ) g k ( x , t ) d t t ϕ ( t ) α d x R n k Z { 2 k 2 k + 1 ( R n | Ψ j k f ( y ) | d | σ t | ( x y ) ) | g k ( x , t ) | d t t ϕ ( t ) α } d x R n k Z { 2 k 2 k + 1 | Ψ j k f ( y ) | ( R n | g k ( x , t ) | d | σ t | ( x y ) ) d t t ϕ ( t ) α } d x C R n k Z { 2 k 2 k + 1 1 ϕ ( 2 k ) α | Ψ j k f ( y ) | ( R n | g k ( x , t ) | d | σ t | ( x y ) ) d t t } d y .

By using the Hölder inequality for sequences, we have

R n ( k Z 2 k 2 k + 1 ( Ψ j k σ t f ( x ) ) g k ( x , t ) d t t ϕ ( t ) α ) d x C R n ( k Z 1 ϕ ( 2 k ) α q | Ψ j k f ( y ) | q ) 1 / q × ( k Z 2 k 2 k + 1 ( R n | g k ( x , t ) | d | σ t | ( x y ) ) q d t t ) 1 / q d y .

By the properties of ϕ and Proposition 1, we conclude

R n ( k Z 2 k 2 k + 1 ( Ψ j k σ t f ( x ) ) g k ( x , t ) d t t ϕ ( t ) α ) d x C 2 α ( j ) j b Δ γ ( R n ( k Z 1 ϕ ( 2 k ) α q | Ψ k f ( y ) | q ) r / q d y ) 1 / r × ( R n ( k Z 2 k 2 k + 1 ( R n | g k ( x , t ) | d | σ t | ( x y ) ) q d t t ) r / q d y ) 1 / r = C 2 α ( j ) j b Δ γ f F ˙ r q α × ( R n ( k Z 2 k 2 k + 1 ( R n | g k ( x , t ) | d | σ t | ( x y ) ) q d t t ) r / q d y ) 1 / r .

In the same way as in [[6], p.705], using (2.10), we can check

( R n ( k Z 2 k 2 k + 1 ( R n | g k ( x , t ) | d | σ t | ( x y ) ) q d t t ) r / q d y ) 1 / r C Ω L 1 ( S n 1 ) ( R n ( k Z 2 k 2 k + 1 | g k ( x , t ) | q d t t ) r / q d x ) 1 / r ,

if ( r q ) > γ . Hence we have, for 1< q < r <γ q ,

μ ˜ Ω , ρ , ϕ , α , q , j ( b ) f L r ( R n ) C 2 α ( j ) j f F ˙ r q α .
(3.2)

So we are done.

3.2 Proof of Lemma 2.5

By virtue of the Plancherel theorem and the Fubini theorem, we have

μ ˜ Ω , ρ , ϕ , α , 2 , j ( b ) f L 2 2 = k = R n ( 2 k 2 k + 1 | Ψ j k σ t f ( x ) | 2 d t t ϕ ( t ) 2 α ) d x = C k = R n ( 2 k 2 k + 1 | σ ˆ t ( ξ ) | 2 d t t ϕ ( t ) 2 α ) | f ˆ ( ξ ) | 2 ψ j k ( ξ ) 2 d ξ .
(3.3)

By (2.11), (3.3) and the support property of ψ j k , we have

μ ˜ Ω , ρ , ϕ , α , 2 , j ( b ) f L 2 2 C b Δ 1 k = R n | ξ | 2 ϕ ( 2 k ) 2 α 2 | f ˆ ( ξ ) | 2 ψ j k ( ξ ) 2 d ξ C b Δ 1 = R n 1 ϕ ( 2 ) 2 ϕ ( 2 j ) 2 α 2 | f ˆ ( ξ ) | 2 ψ ( ξ ) 2 d ξ .

For j0, from (2.14), it follows that ϕ( 2 j )C 2 j / c 1 ϕ( 2 ), and for j0, from (2.13) we get ϕ( 2 j ) 2 j log 2 c 0 ϕ( 2 ). Likewise, we have ϕ( 2 ) 2 α ( j ) j ϕ( 2 j ).

We need to control the integrand; first of all,

1 ϕ ( 2 j l ) 2 α 2 = ϕ ( 2 j l ) 2 ϕ ( 2 j l ) 2 α .

When j0, we use

ϕ ( 2 j ) 2 C 2 2 j log 2 c 0 ϕ ( 2 ) 2

and

( 1 ϕ ( 2 j ) ) 2 α C ( 2 α ( j ) j ϕ ( 2 ) ) 2 α C 2 2 ( α / c 1 ) j ϕ ( 2 ) 2 α .

When j0, we use

ϕ ( 2 j ) 2 C 2 2 j / c 1 ϕ ( 2 ) 2

and

( 1 ϕ ( 2 j ) ) 2 α C ( 2 α ( j ) j ϕ ( 2 ) ) 2 α C 2 2 α ( log 2 c 0 ) j ϕ ( 2 ) 2 α .

So, if j0, we have

μ ˜ Ω , ρ , ϕ , α , 2 , j ( b ) f L 2 2 C 2 2 ( log 2 c 0 α / c 1 ) j = R n 1 ϕ ( 2 ) 2 α | f ˆ ( ξ ) | 2 ψ ( ξ ) 2 d ξ C 2 2 ( log 2 c 0 α / c 1 ) j f F ˙ 2 , 2 α 2 .

Hence, after incorporating a similar estimate for j0, we get (2.26).

3.3 Interpolation and the conclusion of the proof of (i)

Let

α ( 0 , 1 c 1 log 2 c 0 1 / p ˜ 1 / ( 2 γ ) 1 / 2 1 / ( 2 γ ) 1 / q ˜ 1 / ( 2 γ ) 1 / 2 1 / ( 2 γ ) ) .

By interpolating (2.26) and (2.25), we claim that there exists δ>0 such that

μ ˜ Ω , ρ , ϕ , α , q , j ( b ) f L p ( R n ) C 2 δ | j | f F ˙ p q α .
(3.4)

When p=q=2, then (3.4) is correct by virtue of (2.25) (j0) and (2.26) (j<0). We check next the case p2 and q2. For j0, by (2.25) we may take δ=α(j)=α/ c 1 . For j1, we take 1< r 1 , r 2 < and 0< θ 1 , θ 2 <1 satisfying

1 p = θ 1 2 + 1 θ 1 r 1 ,
(3.5)
1 q = θ 2 2 + 1 θ 2 r 2 .
(3.6)

Note that we have

(p2)( r 1 2)>0,(q2)( r 2 2)>0.

We choose 1< r 1 , r 2 < so that

p ˜ < r 1 ˜ <2γ, q ˜ < r 2 ˜ <2γ

and then determine θ 1 , θ 2 by (3.5), (3.6). As in the Figure 4, we can arrange that

α< θ 1 θ 2 c 1 log 2 c 0 < 1 c 1 log 2 c 0 1 / p ˜ 1 / ( 2 γ ) 1 / 2 1 / ( 2 γ ) 1 / q ˜ 1 / ( 2 γ ) 1 / 2 1 / ( 2 γ ) .
(3.7)
Figure 4
figure 4

The relation between (1/p,1/q) and (1/ r 1 ,1/ r 2 ) .

We shall see that this choice is possible. Recall that p ˜ , q ˜ <2γ. Then some arithmetic shows that

θ 1 = 1 / p 1 / r 1 1 / 2 1 / r 1 = 1 / p 1 / r 1 1 / 2 1 / r 1 = 1 / p ˜ 1 / r 1 ˜ 1 / 2 1 / r 1 ˜

and that

θ 2 = 1 / q 1 / r 2 1 / 2 1 / r 2 = 1 / q 1 / r 2 1 / 2 1 / r 2 = 1 / q ˜ 1 / r 2 ˜ 1 / 2 1 / r 2 ˜ .

Assuming that p ˜ , q ˜ >2, we conclude that the parameters θ 1 and θ 2 are increasing on (2,) with respect to r 1 ˜ and r 2 ˜ as functions in r 1 ˜ and r 2 ˜ , respectively. Hence

θ 1 θ 2 = 1 / p ˜ 1 / r 1 ˜ 1 / 2 1 / r 1 ˜ 1 / q ˜ 1 / r 2 ˜ 1 / 2 1 / r 2 ˜ < 1 / p ˜ 1 / ( 2 γ ) 1 / 2 1 / ( 2 γ ) 1 / q ˜ 1 / ( 2 γ ) 1 / 2 1 / ( 2 γ ) .

Therefore, since

0<α< 1 c 1 log 2 c 0 1 / p ˜ 1 / ( 2 γ ) 1 / 2 1 / ( 2 γ ) 1 / q ˜ 1 / ( 2 γ ) 1 / 2 1 / ( 2 γ ) ,

and p ˜ , q ˜ <2γ, we get (3.7) by choosing r 1 sufficiently near 2γ if p>2 and r 1 sufficiently near 2γ if 1<p<2, and by choosing r 2 similarly according to q>2 or 1<q<2.

Now, interpolating (2.26) and (2.25) with r= r 1 , q=2, we get

μ ˜ Ω , ρ , ϕ , α , 2 , j ( b ) f L p ( R n ) C 2 ( θ 1 ( 1 / c 1 α log 2 c 0 ) ( 1 θ 1 ) α log 2 c 0 ) j f F ˙ p 2 α .
(3.8)

We then interpolate (2.25) and (3.8) with r=p, q= r 2 . As a consequence, we have

μ ˜ Ω , ρ , ϕ , α , q , j ( b ) f L p ( R n ) C 2 { θ 2 ( θ 1 ( 1 / c 1 α log 2 c 0 ) ( 1 θ 1 ) α log 2 c 0 ) ( 1 θ 2 ) α log 2 c 0 } j f F ˙ p q α .

An arithmetic together with (3.7) shows that

θ 2 ( θ 1 ( 1 / c 1 α log 2 c 0 ) ( 1 θ 1 ) α log 2 c 0 ) (1 θ 2 )α log 2 c 0 = θ 1 θ 2 / c 1 α log 2 c 0 >0.

Thus, taking δ=min{α/ c 1 , θ 1 θ 2 / c 1 α log 2 c 0 }, we obtain the desired estimate (3.4).

In the case p=2 or q=2, we can get the desired estimate more simply, by applying interpolation once.

Thus by (2.24) and (3.4) we obtain

μ ˜ Ω , ρ , ϕ , α , q ( b ) f L p ( R n ) j Z μ ˜ Ω , ρ , ϕ , α , q , j ( b ) f L p ( R n ) C f F ˙ p q α .
(3.9)

This completes the proof of Theorem 4(i).

3.4 The proof of (ii)

Below we shall prove Theorem 4(ii). By the Schwarz inequality, we have

| σ ˆ t ( ξ ) | = 1 t ρ | t / 2 < | y | t e i ϕ ( | y | ) y ξ b ( | y | ) Ω ( y ) | y | n ρ d y | = 1 t ρ | t / 2 t ( S n 1 Ω ( y ) e i ϕ ( r ) y ξ d σ ( y ) ) b ( r ) r ρ 1 d r | ( t / 2 t | b ( r ) | 2 d r r ) 1 / 2 ( t / 2 t | S n 1 Ω ( y ) e i ϕ ( r ) y ξ d σ ( y ) | 2 d r r ) 1 / 2 C b Δ 2 ( t / 2 t | S n 1 Ω ( y ) e i ϕ ( r ) y ξ d σ ( y ) | 2 d r r ) 1 / 2 .

Recall

W Ω = sup ξ R n { 0 } ( S n 1 × S n 1 | Ω ( y ) Ω ( z ) | | ( y z ) ξ | β d σ ( y ) d σ ( z ) ) 1 / 2 .
(3.10)

Then, by (2.12) and the doubling condition of ϕ, we have

( 2 k 2 k + 1 | σ ˆ t ( ξ ) | 2 d t t ϕ ( t ) 2 α ) 1 / 2 C W Ω b Δ 2 | ξ | β / 2 ϕ ( 2 k ) β / 2 ϕ ( 2 k ) α .
(3.11)

By (3.3), (3.11) and the support property of ψ j k , we have

μ ˜ Ω , ρ , ϕ , α , 2 , j ( b ) f L 2 ( R n ) 2 C W Ω 2 b Δ 2 2 k = R n | f ˆ ( ξ ) | 2 ψ j k ( | ξ | ) 2 | ξ | β ϕ ( 2 k 1 ) β ϕ ( 2 k + 1 ) 2 α d ξ C W Ω 2 b Δ 2 2 = R n ( ϕ ( 2 ) ϕ ( 2 j ) ) β ϕ ( 2 j ) 2 α | f ˆ ( ξ ) | 2 ψ ( | ξ | ) 2 d ξ .

As in the case (i), we have

ϕ ( 2 ) 2 j / c 1 ϕ ( 2 j )

for j0, and

ϕ ( 2 ) 2 j log 2 c 0 ϕ ( 2 j )

for j0. Similarly, we have

ϕ ( 2 j ) 2 j / c 1 ϕ ( 2 )

for j0 and

ϕ ( 2 j ) c 0 j 1 = 2 j log 2 c 0 ϕ ( 2 )

for j0. So, as in the L 2 -estimate in (i), we obtain

μ ˜ Ω , ρ , ϕ , α , 2 , j ( b ) f L 2 ( R n ) { C 2 ( β / ( 2 c 1 ) + α log 2 c 0 ) j W Ω b Δ 2 f F ˙ 2 , 2 α if  j 1 , C 2 ( ( β log 2 c 0 ) / 2 + α / c 1 ) j W Ω b Δ 2 f F ˙ 2 , 2 α if  j 0 .
(3.12)

As for the L p -estimate, since α<0, we use ϕ( 2 j ) c 0 j ϕ( 2 ) for j0 and ϕ( 2 j ) 2 j / c 1 ϕ( 2 ) for j0. Hence we get, as in the L p -estimate in (i), for any 1<q,r< with r ˜ <γ q ˜ and jZ

μ ˜ Ω , ρ , ϕ , α , q , j ( b ) f L r ( R n ) { C 2 ( α / c 1 ) j W Ω b Δ 2 f F ˙ r q α for  j 0 , C 2 ( α log 2 c 0 ) j W Ω b Δ 2 f F ˙ r q α for  j 0 .
(3.13)

It follows that, for

α ( 2 β c 1 log 2 c 0 1 / p ˜ 1 / ( 2 γ ) 1 1 / γ 1 / q ˜ 1 / ( 2 γ ) 1 1 / γ , 0 ) ,

there still exists δ>0 such that

μ ˜ Ω , ρ , ϕ , α , q , j ( b ) f L p ( R n ) C 2 δ | j | f F ˙ p q α ,
(3.14)

by using (3.13) in the case j0, and interpolating (3.12) and (3.13) in the case j>0, as in the case (i).

Thus by (2.24) and (3.14) we obtain

μ ˜ Ω , ρ , ϕ , α , q ( b ) f L p ( R n ) j Z μ ˜ Ω , ρ , ϕ , α , q , j ( b ) f L p ( R n ) C W Ω b Δ 2 f F ˙ p q α .

This completes the proof of Theorem 4(ii).

3.5 Proof of (iii)

We proceed to show (iii). Let ΩLlogL( S n 1 ). We normalize Ω to have Ω L log L ( S n 1 ) =1. Then, as in [[8], pp.698-699], there is a subset ΛN{0} and a sequence of functions { Ω m ;mΛ} satisfying 0Λ and the following conditions:

S n 1 Ω m ( y ) dσ ( y ) =0;
(3.15)
Ω ( x ) = m Λ Ω m ( x ) ;
(3.16)
Ω 0 L 2 ( S n 1 ) + m Λ m Ω m L 1 ( S n 1 ) C Ω L log L ( S n 1 ) .
(3.17)

Indeed, we just let

Λ= { m N : σ { 2 m 1 < | Ω | 2 m } > 2 4 m }

and define

Ω m ( x ) = Ω ( x ) χ { 2 m 1 < | Ω | 2 m } ( x ) 1 σ ( S n 1 ) 2 m 1 < | Ω ( y ) | 2 m Ω ( y ) d σ ( y ) , Ω 0 ( x ) = Ω ( x ) m Λ N Ω m ( x ) .

For details we refer to [22].

Now for mΛ, by observing the proof of the case (i), we choose θ 1 and θ 2 very close to

4 1 / p ˜ 1 / ( 2 γ ) 1 1 / γ 1 / q ˜ 1 / ( 2 γ ) 1 1 / γ

so that δ=α/ c 1 for small α>0. For large m, setting α=1/m, we obtain

μ Ω m , ρ , ϕ , α , q , j ( b ) f L p ( R n ) C 2 | j | / m Ω m L 1 ( S n 1 ) f F ˙ p q 1 / m ,jZ.
(3.18)

Next, from Ω m L 2 ( S n 1 ) it follows that Ω m satisfies the condition in Theorem 4(ii) for any β<1/2. Fix 0<β<1/2 and α 0 >0 with

α 0 < ( 0 , min { 2 β c 1 log 2 c 0 1 / p ˜ 1 / ( 2 γ ) 1 1 / γ 1 / q ˜ 1 / ( 2 γ ) 1 1 / γ , ρ log 2 c 0 } ) .

Let also

δ 0 =min { α 0 c 1 , β θ 1 θ 2 2 c 1 + α 0 log 2 c 0 }

in the proof of the case (ii). Then we obtain

μ Ω m , ρ , ϕ , α 0 , q , j ( b ) f L p ( R n ) C 2 δ 0 | j | Ω m L 2 ( S n 1 ) f F ˙ p q α 0 ,jZ.
(3.19)

Since α 0 1 / m + α 0 +(1 α 0 1 / m + α 0 )=1 and 1 m α 0 1 / m + α 0 α 0 (1 α 0 1 / m + α 0 )=0, an interpolation between (3.18) and (3.19) yields

μ Ω m , ρ , ϕ , 0 , q , j ( b ) f L p ( R n ) C 2 ( α 0 / ( 1 + m α 0 ) + δ 0 / ( 1 + m α 0 ) ) | j | Ω m L 1 ( S n 1 ) α 0 / ( 1 / m + α 0 ) Ω m L 2 ( S n 1 ) 1 / ( 1 + m α 0 ) f F ˙ p q 0 C 2 | j | / m 2 4 / α 0 f F ˙ p q 0 , j Z .

Thus, summing up the above estimate, we obtain

μ Ω m , ρ , ϕ , 0 , q ( b ) f L p ( R n ) C 1 2 1 / m f F ˙ p q 0 Cm f F ˙ p q 0 .
(3.20)

Combining (3.20) with (3.16) and (3.17) and the definition of μ Ω , 0 , ρ , q ( b ) , we obtain the desired estimate

μ Ω , ρ , ϕ , 0 , q ( b ) f L p ( R n ) C Ω L log L ( S n 1 ) f F ˙ p q 0 .

Thus, we are done.

4 Proof of Theorem 3

Here we shall relax the condition on α by taking advantage of a new condition on ϕ. We use the notations in the proof of Theorem 4, by setting b(t)1 and γ=. Using (1.18) and (1.19), we apply Theorem 4(i) and we obtain the conclusion of Theorem 3(i).

We go to the proof of (ii). First

σ ˆ t ( ξ ) = 1 t ρ B ( t ) B ( t / 2 ) Ω ( y ) | y | n ρ e i ϕ ( | y | ) y ξ d y = S n 1 Ω ( y ) 1 t ρ ( t / 2 t e i ϕ ( | y | ) y ξ r ρ 1 d r ) d σ ( y ) .
(4.1)

With a change of variables we get

B ( t , ξ ) : = 1 t ρ t / 2 t e i ϕ ( | y | ) y ξ r ρ 1 d r = 1 t ρ ϕ ( t / 2 ) ϕ ( t ) e i s y ξ ϕ 1 ( s ) ρ ϕ 1 ( s ) ϕ ( ϕ 1 ( s ) ) d s = 1 t ρ ϕ ( t / 2 ) ϕ ( t ) e i s y ξ ϕ 1 ( s ) ρ s ϕ ( ϕ 1 ( s ) ) ϕ 1 ( s ) ϕ ( ϕ 1 ( s ) ) d s = 1 t ρ ϕ ( t / 2 ) ϕ ( t ) e i s y ξ ϕ 1 ( s ) ρ s φ ( ϕ 1 ( s ) ) d s .
(4.2)

Suppose now that t ϕ (t) is increasing on R + . Then ϕ 1 (s) ϕ ( ϕ 1 (s)) is also increasing. So by applying the second mean value theorem to the real part of the expression (4.2), we see that there exists u with ϕ(t/2)<u<ϕ(t) such that

ReB(t,ξ)= 1 t ρ ϕ 1 ( ϕ ( t / 2 ) ) ϕ ( ϕ 1 ( ϕ ( t / 2 ) ) ϕ ( t / 2 ) u Re ( e i s y ξ ) ϕ 1 ( s ) ρ ds.

Since ϕ 1 ( s ) ρ is increasing, we have

| Re B ( t , ξ ) | ϕ 1 ( u ) ρ t ρ ϕ 1 ( ϕ ( t / 2 ) ) ϕ ( ϕ 1 ( ϕ ( t / 2 ) ) | y ξ | ϕ 1 ( ϕ ( t ) ) ρ t ρ ϕ ( ϕ 1 ( ϕ ( t / 2 ) ) ) ϕ 1 ( ϕ ( t / 2 ) ) ϕ ( ϕ 1 ( ϕ ( t / 2 ) ) 1 ϕ ( t / 2 ) | y ξ | = ϕ 1 ( ϕ ( t ) ) ρ t ρ ϕ ( t / 2 ) t / 2 ϕ ( t / 2 ) 1 ϕ ( t / 2 ) | y ξ | = ϕ 1 ( ϕ ( t ) ) ρ φ ( t / 2 ) t ρ 1 ϕ ( t / 2 ) | y ξ | C c 0 φ ϕ ( t ) | y ξ | .

After estimating ImB(t,ξ) in a similar manner, we obtain

| B ( t , ξ ) | C c 0 φ ϕ ( t ) | y ξ | .
(4.3)

In the case t ϕ (t) is decreasing or φ(t) is monotonic, we get the same estimate (4.3) in a similar way. Clearly, we have |B(t,ξ)|1/ρ, and hence for any 0<β1, |B(t,ξ)| C ( ϕ ( t ) | y ξ | ) β . By (4.1) we get

| σ ˆ t ( ξ ) | C ( S n 1 | Ω ( y ) | y ξ | β d σ ( y ) ) 1 ( ϕ ( t ) | ξ | ) β .
(4.4)

Now the rest of the proof is the same as that of the case (i).

This completes the proof of Theorem 3.

5 Proof of Proposition 1

The part is an appendix of the present paper, where we prove Proposition 1. Let ψS( R n ) (see Figure 5) be chosen so that

χ B ( 1 ) ψ χ B ( a 1 / 3 ) .
Figure 5
figure 5

The graph of ψ j .

Define

φ k (ξ)=ψ ( a k 1 ξ ) ψ ( a k 1 1 ξ ) ( ξ R n ) .
(5.1)

Notice that supp φ k {ξ R n ; a k 1 |ξ| a 1 / 3 a k } (kZ) and that φ k (ξ)=1 on { a 1 / 3 a k 1 |ξ| a k }. Let

Φ k = F 1 φ k .
(5.2)

Then we see that { Φ k } k Z is a partition of unity adapted to { a k } k Z . Similarly, taking ψ so that

χ B ( a 1 / 3 ) ψ χ B ( 1 ) ,

and setting

φ k (ξ)=ψ ( a k + 1 1 ξ ) ψ ( a k 1 ξ ) ( ξ R n ) ,

we obtain another partition of unity { Ψ k } k Z adapted to { a k } k Z satisfying supp Ψ ˆ k {ξ R n ; a k / a 1 / 3 |ξ| a k + 1 } (kZ) and Ψ ˆ k (ξ)=1 on { a k |ξ| a k + 1 / a 1 / 3 }. Note that { a k |ξ| a 2 / 3 a k }{ a k |ξ| a k + 1 / a 1 / 3 }. Let us take a function ΘS so that supp(FΘ)B( a 1 / 3 /21/2). Consider

f k (x)= f k ( x 1 , x 2 ,, x n )=exp ( i ( a 1 / 3 + a 2 / 3 ) 2 a k x 1 ) Θ( a k x) ( x R n ) .

Then we have

F f k (ξ)= a k n FΘ ( ξ a k ( a 1 / 3 + a 2 / 3 ) 2 e 1 ) ( ξ R n ) ,

where e 1 =(1,0,,0). It follows that suppF f k { a 1 / 3 a k |ξ| a 2 / 3 a k }. Hence we have

Φ j f k (x)= δ ( j 1 ) k f k (x)and Ψ j f k (x)= δ j k f k (x),

where

δ j k ={ 1 ( j = k ) , 0 ( j k )

for j,kZ.

f k F p q α , { Φ k } k Z = a k + 1 α f k L p ( R n ) = a k + 1 α Θ ( a k ) L p ( R n )

and

f k F p q + α , { Ψ k } k Z = a k α f k L p ( R n ) = a k α Θ ( a k ) L p ( R n ) .

Since the two norms are assumed equivalent, we obtain

a k + 1 a k C 0

for some C 0 >1. Since a k + 1 a k a, we have C 0 >a.

Thus we have proved the first part of our proposition. We proceed to the second part. Let { a k } k Z be a lacunary sequence of positive numbers with 1<a a k + 1 / a k C 0 (kZ), and let { Φ k } k Z be a partition of unity adapted to { a k } k Z .

Now we can define the classical homogeneous Triebel-Lizorkin spaces as follows: Let ψS( R n ) be chosen so that χ B ( a 2 / 3 ) ψ χ B ( a ) . Define

φ k (ξ)=ψ ( a k ξ ) ψ ( a k + 1 ξ ) ( ξ R n ) .

Notice that φ k (ξ)=1 on { a k |ξ| a k + 2 3 }.

Define

f F ˙ p q α = ( j = | a α j F 1 φ j f | q ) 1 / q L p .

Let us prove

f F ˙ p q α , { Φ k } k Z C f F ˙ p q α .

For each kZ, we choose m k Z so that

a m k a k < a m k + 1 .

Combining with a m k + 1 a a k a k + 1 , we get m k + 1 m k +1. And combining with a k + 1 / a k C 0 , we have m k + 1 m k 1+ log a C 0 . Furthermore we have

Φ k = Φ k l = m k 1 m k + 1 + 1 φ l .

Consequently, we obtain

f F ˙ p q α , { Φ k } k Z = ( k Z a k α q | Φ k f | q ) 1 / q L p ( R n ) = ( k Z a k α q | Φ k l = m k 1 m k + 1 + 1 φ l f | q ) 1 / q L p ( R n ) ( k Z a k α q | Φ k l = m k 1 m k + 1 + 1 φ l f | q ) 1 / q L p ( R n ) .

We now invoke the Plancherel-Polya-Nikolskij inequality: We have

| l = m k 1 m k + 1 + 1 φ l f(x)|C ( 1 + | a m k + 1 + 1 ( x y ) | ) n M [ l = m k 1 m k + 1 + 1 φ l f ] (y).

Using Plancherel’s theorem, the assumption | ξ β β Φ ˆ k (ξ)| C β for all β and that supp Φ ˆ k { a k 1 |ξ| a k + 1 }, we get

R n ( 1 + | a m k + 1 + 1 x | ) n | Φ k ( x ) | d x C R n ( 1 + | a k + 1 x | ) n | Φ k ( x ) | d x C ( R n ( 1 + | a k + 1 x | ) 4 n | Φ k ( x ) | 2 d x ) 1 / 2 ( R n ( 1 + | a k + 1 x | ) 2 n d x ) 1 / 2 C a k n / 2 ( R n ( | Φ ˆ k ( ξ ) | 2 + a k + 1 4 n | n Φ ˆ k ( ξ ) | 2 ) d ξ ) 1 / 2 C a k n / 2 ( a k 1 | ξ | a k + 1 ( | Φ ˆ k ( ξ ) | 2 + a k + 1 4 n | ξ | 4 n ) d ξ ) 1 / 2 C .

Hence, it follows that

f F ˙ p q α , { Φ k } k Z C ( k Z a k α q M [ | l = m k 1 m k + 1 + 1 φ l f | ] q ) 1 / q L p ( R n ) .

By the Fefferman-Stein vector-valued maximal inequality (see [23]), we obtain

f F ˙ p q α , { Φ k } k Z C ( k Z a k α q | l = m k 1 m k + 1 + 1 φ l f | q ) 1 / q L p ( R n ) .

If we use ( a 1 + a 2 + + a N ) q N q ( a 1 q + a 2 q ++ a N q ), then we obtain

f F ˙ p q α , { Φ k } k Z C ( k Z a k α q ( m k + 1 m k 1 + 2 ) q l = m k 1 m k + 1 + 1 | φ l f | q ) 1 / q L p ( R n ) .

Noting m k + 1 m k 1, m k + 1 m k 1+ log a C 0 and that a m k 1 + 1 a m k a k < a m k + 1 a m k 1 + 1 + [ log a C 0 ] , we conclude

f F ˙ p q α , { Φ k } k Z C ( k Z a k α q l = m k 1 m k 1 + 2 + [ 2 log a C 0 ] | φ l f | q ) 1 / q L p ( R n ) C f F p q α .

Let us prove the reverse inequality. For each kZ, we can choose k Z so that

a k a k 1 a k + 1 a k + 3 .

Then we have

φ k = φ k ( Φ k + Φ k + 1 + Φ k + 2 + Φ k + 3 ).

Notice that

sup l Z {k: k =l}3 log a C 0

because a l + 3 / a l C 0 3 . Thus, it follows that

f F ˙ p q α = ( k = | a α k F 1 φ k f | q ) 1 / q L p = ( k = | a α k F 1 φ k ( F 1 Φ k + + F 1 Φ k + 3 ) f | q ) 1 / q L p C ( k = M [ | a α k ( F 1 Φ k + + F 1 Φ k + 3 ) f | ] q ) 1 / q L p .

Again by the Fefferman-Stein vector-valued maximal inequality (see [23]), we obtain

f F ˙ p q α C ( k = | a α k ( F 1 Φ k + + F 1 Φ k + 3 ) f | q ) 1 / q L p C ( k = ( | a k α F 1 Φ k f | + + | a k + 3 α F 1 Φ k + 3 f | ) q ) 1 / q L p C f F ˙ p q α , { Φ k } k Z .

This completes the proof of our proposition.